Advanced Introduction to Machine Learning 10715, Fall 2014 **Spectral Clustering Eric Xing** Lecture 20, November 17, 2014

1

and and the second

Reading: © Eric Xing @ CMU, 2014

Data Clustering

Data Clustering

• Two different criteria

- Compactness, e.g., k-means, mixture models
- Connectivity, e.g., spectral clustering

Spectral Clustering

Weighted Graph Partitioning

- Some graph terminology
 - Objects (e.g., pixels, data points)
 i∈ *I* = vertices of graph *G*
 - Edges (*ij*) = pixel pairs with $W_{ij} > 0$
 - Similarity matrix $\mathbf{W} = [W_{ij}]$
 - Degree

 $d_i = \sum_{j \in G} S_{ij}$ $d_A = \sum_{i \in A} d_i \quad \text{degree of } A \subseteq G$

• Assoc(A,B) = $\sum_{i \in A} \sum_{j \in B} W_{ij}$

Cuts in a Graph

- (edge) cut = set of edges whose removal makes a graph disconnected
- weight of a cut:

 $\operatorname{cut}(A, B) = \sum_{i \in A} \sum_{j \in B} W_{ij} = \operatorname{Assoc}(A, B)$

• Normalized Cut criteria: minimum cut(A,Ā)

Ncut(A,B) =
$$\frac{\operatorname{cut}(A,B)}{d_A} + \frac{\operatorname{cut}(A,B)}{d_B}$$

More generally:

$$\operatorname{Ncut}(A_{1}, A_{2} \dots A_{k}) = \sum_{r=1}^{k} \left(\frac{\sum_{i \in A_{r}, j \in V \setminus A_{r}} W_{ij}}{\sum_{i \in A_{r}, j \in V} W_{ij}} \right) = \sum_{r=1}^{k} \left(\frac{\operatorname{cut}(A_{r}, \overline{A}_{r})}{d_{A_{r}}} \right)$$

© Eric Xing @ CMU, 2014

Graph-based Clustering

• Data Grouping

Image sigmentation

- Affinity matrix: $W = [w_{i,i}]$
- Degree matrix: $D = \text{diag}(d_i)$
- Laplacian matrix: L = D W
- (bipartite) partition vector:

 $x = [x_1, \dots, x_N]$ = [1,1,...1,-1,-1,...-1]

© Eric Xing @ CMU, 2014

Clustering via Optimizing Normalized Cut

• The normalized cut:

Ncut(A,B) =
$$\frac{\operatorname{cut}(A,B)}{d_A} + \frac{\operatorname{cut}(A,B)}{d_B}$$

- Computing an optimal normalized cut over all possible *y* (i.e., partition) is NP hard
- Transform Ncut equation to a matrix form (Shi & Malik 2000):

$$\min_{x} Ncut(x) = \min_{y} \frac{y^{T} (D - W) y}{y^{T} D y}$$

Subject to: $y \in \{1, -b\}^{n}$
 $y^{T} D1 = 0$
Still an NP hard problem

$$Ncut(A, B) = \frac{cut(A, B)}{\deg(A)} + \frac{cut(A, B)}{\deg(B)}$$

 $= \frac{(1 + x)^{T} (D - S)(1 + x)}{k1^{T} D1} + \frac{(1 - x)^{T} (D - S)(1 - x)}{(1 - k)1^{T} D1}; k = \frac{\sum_{x, > 0} D(i, i)}{\sum_{i} D(i, i)}$
 $\otimes \text{Eric Xing @ CMU, 2014...}$

Relaxation

$$\min_{x} Ncut(x) = \min_{y} \frac{y^{T} (D - W) y}{y^{T} D y}$$

Rayleigh quotient

Subject to: $y \in \{1, -b\}^n$ $y^T D = 0$

• Instead, relax into the continuous domain by solving generalized eigenvalue system:

$$\min_{y} y^{T} (D - W) y, \quad \text{s.t. } y^{T} D y = \mathbf{1}$$

- Which gives: $(D-W)y = \lambda Dy$ Rayleigh quotient theorem
- Note that $(D W)\mathbf{1} = \mathbf{0}$ so, the first eigenvector is $y_0 = 1$ with eigenvalue 0.
- The second smallest eigenvector is the real valued solution to this problem!!

Algorithm

$$w_{i,j} = e^{\frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$$

- 2. Compute affinity matrix (W) and degree matrix (D).
- 3. Solve $(D-W)y = \lambda Dy$
 - Do singular value decomposition (SVD) of the graph Laplacian L = D W

$$L = V^T \Lambda V \quad \Rightarrow \quad y^T$$

- 4. Use the eigenvector with the second smallest eigenvalue, y, to bipartition the graph.
 - For each threshold *k*,
- $A_k = \{i \mid y_i \text{ among } k \text{ largest element of } y^* \}$ $B_k = \{i \mid y_i \text{ among } n - k \text{ smallest element of } y^* \}$
- Compute Ncut(A_k, B_k)
- Output $k^* = \arg \max \operatorname{Ncut}(A_k, B_k)$ and A_{k^*}, B_{k^*}

Ncut(*A*, *B*)=
$$\frac{y^T (D - S) y}{y^T D y}$$
, with $y_i \in \{1, -b\}, y^T D \mathbf{1} = \mathbf{0}$.

Ideally ...

Example

affinity matrix reordered according to solution vector

Poor features can lead to poor outcome (xing et al 2002)

affinity matrix reordered according to solution vector

Cluster vs. block matrix

B

© Eric Xing @ CMU, 2014

Compare to Minimum cut

Superior performance?

• K-means and Gaussian mixture methods are biased toward convex clusters

Ncut is superior in certain cases

Representation

• Partition matrix X:

$$X = \begin{bmatrix} X_1, \dots, X_K \end{bmatrix} X$$

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Pair-wise similarity matrix W: W(i, j) = aff(i, j)
- Degree matrix D: $D(i,i) = \sum_{j} W_{i,j}$
- Laplacian matrix L: L = D W

© Eric Xing @ CMU, 2014

Eigenvectors and blocks

• Near-block matrices have near-block eigenvectors:

Spectral Space

• Can put items into blocks by eigenvectors:

• Clusters clear regardless of row ordering:

Spectral Clustering

- Algorithms that cluster points using eigenvectors of matrices derived from the data
- Obtain data representation in the low-dimensional space that can be easily clustered
- Variety of methods that use the eigenvectors differently (we have seen an example)
- Empirically very successful
- Authors disagree:
 - Which eigenvectors to use
 - How to derive clusters from these eigenvectors
- Two general methods

Method #1

- Partition using only one eigenvector at a time
- Use procedure recursively
- Example: Image Segmentation
 - Uses 2nd (smallest) eigenvector to define optimal cut
 - Recursively generates two clusters with each cut

Method #2

- Use k eigenvectors (k chosen by user)
- Directly compute k-way partitioning
- Experimentally has been seen to be "better"

Spectral Clustering Algorithm Ng, Jordan, and Weiss 2003

- Form the affinity matrix $W_{i,j} = e^{\frac{-\|S_i S_j\|_2^2}{\sigma^2}}, \quad \forall i \neq j, \qquad W_{i,i} = 0$
- Define diagonal matrix $D_{ii} = \Sigma_{\kappa} a_{ik}$
- Form the matrix $L = D^{-1/2} W D^{-1/2}$
- Stack the k largest eigenvectors of L to for the columns of the new matrix X:

$$X = \begin{bmatrix} | & | & | \\ x_1 & x_2 & \cdots & x_k \\ | & | & | \end{bmatrix}$$

 Renormalize each of X's rows to have unit length and get new matrix Y. Cluster rows of Y as points in R^k

SC vs Kmeans

© Eric Xing @ CMU, 2014

Why it works?

• K-means in the spectrum space !

More formally ...

• Recall generalized Ncut

$$\operatorname{Ncut}(A_1, A_2 \dots A_k) = \sum_{r=1}^k \left(\frac{\sum_{i \in A_r, j \in V \setminus A_r} W_{ij}}{\sum_{i \in A_r, j \in V} W_{ij}} \right) = \sum_{r=1}^k \left(\frac{\operatorname{cut}(A_r, \overline{A_r})}{d_{A_r}} \right)$$

• Minimizing this is equivalent to spectral clustering

min Ncut
$$(A_1, A_2 \dots A_k) = \sum_{r=1}^k \left(\frac{\operatorname{cut}(A_r, \overline{A_r})}{d_{A_r}} \right)$$

min $Y^T D^{-1/2} W D^{-1/2} Y$
s.t. $Y^T Y = I$
 $Y = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Toy examples

Images from Matthew Brand (TR-2002-42)

User's Prerogative

- Choice of k, the number of clusters
- Choice of scaling factor
 - Realistically, search over σ^2 and pick value that gives the tightest clusters
- Choice of clustering method: k-way or recursive bipartite
- Kernel affinity matrix

 $W_{i,j} = K(S_i, S_j)$

Conclusions

• Good news:

- Simple and powerful methods to segment images.
- Flexible and easy to apply to other clustering problems.

• Bad news:

- High memory requirements (use sparse matrices).
- Very dependant on the scale factor for a specific problem.

$$W(i, j) = e^{\frac{-\|X_{(i)} - X_{(j)}\|_{2}^{2}}{\sigma_{X}^{2}}}$$

