Advanced Introduction to Machine Learning 10715, Fall 2014 Spectral Clustering Eric Xing Calling Co **Lecture 20, November 17, 2014**

Data Clustering

Data Clustering

• Two different criteria

- \bullet Compactness, e.g., k-means, mixture models
- \bullet Connectivity, e.g., spectral clustering

Spectral Clustering

Weighted Graph Partitioning

- Some graph terminology
	- \bullet Objects (e.g., pixels, data points) $i\epsilon$ *I* = vertices of graph G
	- \bullet Edges (*ij*) = pixel pairs with $W_{ii} > 0$
	- \bullet Similarity matrix $\mathbf{W} = [W_{ii}]$
	- \bullet **Degree**

 d_i = $\Sigma_{j \in G}$ S_{ij} $d_{\scriptscriptstyle{A}}$ = $\Sigma_{i\in A}$ d_{i} $\;$ degree of A \subseteq G

 \bullet $\text{Assoc}(A,B) = \sum_{i \in A} \sum_{j \in B} W_{ij}$

Cuts in a Graph

- (edge) cut = set of edges whose removal makes a graph disconnected
- weight of a cut:

cut(*A*, *B*) = $\Sigma_{i \in A} \Sigma_{j \in B} W_{ij}$ =Assoc(A,B)

Normalized Cut criteria: minimum cut(A,Ā)

$$
Ncut(A, B) = \frac{cut(A, B)}{d_A} + \frac{cut(A, B)}{d_B}
$$

More generally:
\n
$$
\text{Ncut}(A_1, A_2 \dots A_k) = \sum_{r=1}^k \left(\frac{\sum_{i \in A_r, j \in V \setminus A_r} W_{ij}}{\sum_{i \in A_r, j \in V} W_{ij}} \right) = \sum_{r=1}^k \left(\frac{\text{cut}(A_r, \overline{A}_r)}{d_{A_r}} \right)
$$

 \oslash Eric Xing \oslash CMU, 2014 \oslash 7

Graph-based Clustering

 \bullet Data Grouping

 \bullet Image sigmentation

- \bullet \bullet Affinity matrix: $\textstyle{W = \left[\textit{w}_{i, j} \right]}$
- \bullet • Degree matrix: $D = diag(d_i)$
- \bullet Laplacian matrix: $L = D W$
- \bullet (bipartite) partition vector:

 $=[1, 1, \ldots 1, -1, -1, \ldots -1]$ $x = [x_1, \ldots, x_N]$

© Eric Xing @ CMU, 2014

Clustering via Optimizing Normalized Cut

• The normalized cut:

 \bullet

$$
Ncut(A, B) = \frac{cut(A, B)}{d_A} + \frac{cut(A, B)}{d_B}
$$

- Computing an optimal normalized cut over all possible *^y* (i.e., partition) is NP hard
- Transform Ncut equation to a matrix form (Shi & Malik 2000):

$$
\begin{aligned}\n\min_{x} Ncut(x) &= \min_{y} \frac{y^{T} (D - W) y}{y^{T} D y} \\
\text{Subject to: } & y \in \{1, -b\}^{n} \\
y^{T} D1 &= 0 \\
\text{Still an NP hard problem} \\
&= \frac{cut(A, B)}{\deg(A)} + \frac{cut(A, B)}{\deg(B)} \\
&= \frac{(1 + x)^{T} (D - S)(1 + x)}{kT D 1} + \frac{(1 - x)^{T} (D - S)(1 - x)}{(1 - k)T D 1}; \ k = \frac{\sum_{x, y, 0} D(i, i)}{\sum_{i} D(i, i)} \\
& \text{# The image can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \text{ can be used.} \\
\text{We will find } \mathcal{Q} \
$$

Relaxation

$$
\min_{x} Ncut(x) = \min_{y} \frac{y^{T} (D - W) y}{y^{T} D y}
$$

Rayleigh quotient

 $v^T D1 = 0$ Subject to: $\ y \in \{\mathbf{1},\!-b\}^n$

 \bullet Instead, relax into the continuous domain by solving generalized eigenvalue system:

$$
\min_{y} y^{T} (D - W) y
$$
, s.t. $y^{T} Dy = 1$

- \bullet Which gives: $(D-W)y = \lambda Dy$ Rayleigh quotient theorem
- \bullet • Note that $(D-W)\boldsymbol{1} = \boldsymbol{0}$ so, the first eigenvector is y_o =1 with eigenvalue 0.
- \bullet The second smallest eigenvector is the real valued solution to this problem!!

Algorithm

$$
w_{i,j} = e^{-\frac{\left\|X_{(i)} - X_{(j)}\right\|_{2}^{2}}{\sigma_{X}^{2}}}
$$

2

- 2.Compute affinity matrix (W) and degree matrix (D).
- 3.. Solve $(D-W)y = \lambda Dy$
	- \bullet \bullet \quad Do singular value decomposition (SVD) of the graph Laplacian $\ L = D - W$

$$
L = V^T \Lambda V \quad \Rightarrow \quad y^*
$$

- 4.. Use the eigenvector with the second smallest eigenvalue, \boldsymbol{y} , to bipartition the graph. * *y*
	- \bullet For each threshold k ,
- $A_k = \{i \mid y_i \text{ among } k \text{ largest element of } y^*\}$ B_k ={*i* | y_i among $n\text{-}k$ smallest element of y *}
- \bullet Compute Ncut(A_k, B_k)
- \bullet **Output** k^* = arg max $\text{Ncut}(A_k, B_k)$ and A_{k^*}, B_{k^*}

$$
Ncut(A, B) = \frac{y^T (D - S) y}{y^T D y}, \text{ with } y_i \in \{1, -b\}, y^T D1 = 0.
$$

Ideally …

Example

affinity matrix reordered according to solution vector

the partition according to the solution vector

....

Poor features can lead to poor outcome (xing et al 2002)

affinity matrix reordered according to solution vector

© Eric Xing @ CMU, 2014 15

Cluster vs. block matrix

B

© Eric Xing @ CMU, 2014

Compare to Minimum cut

Criterion for partition:

Superior performance?

 \bullet K-means and Gaussian mixture methods are biased toward convex clusters

Ncut is superior in certain cases

Representation

 \bullet Partition matrix X:

$$
X = [X_1, \dots, X_K]
$$

$$
X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{matrix} \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \n\underline{\mathbf{g}} \\ \n\underline{\mathbf{g}} \n\underline{\
$$

segments

- Pair-wise similarity matrix W: $W(i, j) = aff(i, j)$ \bullet
- $=\sum\nolimits_{j}w_{i,\,j}$ • Degree matrix D: $D(i,i) = \sum_i w_i$ \bullet
- \bullet Laplacian matrix L: $L = D W$ \bullet

© Eric Xing @ CMU, 2014

Eigenvectors and blocks

 \bullet Near-block matrices have near-block eigenvectors:

 $© Eric Xing @ CMU, 2014$ 23

Spectral Space

Clusters clear regardless of row ordering:

Spectral Clustering

- Algorithms that cluster points using eigenvectors of matrices derived from the data
- \bullet Obtain data representation in the low-dimensional space that can be easily clustered
- Variety of methods that use the eigenvectors differently (we have seen an example)
- **•** Empirically very successful
- Authors disagree:
	- \bullet Which eigenvectors to use
	- \bullet How to derive clusters from these eigenvectors
- Two general methods

Method #1

- Partition using only one eigenvector at a time
- Use procedure recursively
- Example: Image Segmentation
	- \bullet Uses 2nd (smallest) eigenvector to define optimal cut
	- \bullet Recursively generates two clusters with each cut

Method #2

- Use k eigenvectors (k chosen by user)
- Directly compute k-way partitioning
- Experimentally has been seen to be "better"

Spectral Clustering Algorithm Ng, Jordan, and Weiss 2003

 Form the affinity matrix 0 2 $= e$ $\forall i \neq j$, $w_{ii} =$ *i i* $W_{i,j} = e$, $\forall i \neq j$, w , j v \qquad , \qquad σ

2 2

— ר טוי

S S

i j

- 0 Define diagonal matrix $D_{ii} = \sum_{k} a_{ik}$
- 0 Form the matrix $L = D^{-1/2} W D^{-1/2}$
- Stack the *k* largest eigenvectors of L to for the columns of the new matrix X:

$$
X = \begin{bmatrix} | & | & & | \\ x_1 & x_2 & \cdots & x_k \\ | & | & | & | \end{bmatrix}
$$

• Renormalize each of X's rows to have unit length and get new matrix Y. Cluster rows of Y as points in *R k*

SC vs Kmeans

© Eric Xing @ CMU, 2014 29

Why it works?

• K-means in the spectrum space !

More formally …

• Recall generalized Ncut

$$
Ncut(A_1, A_2... A_k) = \sum_{r=1}^k \left(\frac{\sum_{i \in A_r, j \in V \setminus A_r} W_{ij}}{\sum_{i \in A_r, j \in V} W_{ij}} \right) = \sum_{r=1}^k \left(\frac{cut(A_r, \overline{A}_r)}{d_{A_r}} \right)
$$

Minimizing this is equivalent to spectral clustering

min Ncut(
$$
A_1, A_2 ... A_k
$$
) = $\sum_{r=1}^{k} \left(\frac{\text{cut}(A_r, \overline{A}_r)}{d_{A_r}} \right)$
\nmin $Y^T D^{-1/2} W D^{-1/2} Y$
\ns.t. $Y^T Y = I$
\n
$$
Y = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{g} \\ \mathbf{g} \\ \mathbf{h} \\ \mathbf{
$$

Toy examples

Images from Matthew Brand (TR-2002-42)

User's Prerogative

- Choice of k, the number of clusters
- Choice of scaling factor
	- Realistically, search over σ^- and pick value that gives the tightest clusters σ^2
- Choice of clustering method: k-way or recursive bipartite
- Kernel affinity matrix

 $W_{i,j} = K(S_i, S_j)$

Conclusions

Good news:

- \bullet Simple and powerful methods to segment images.
- \bullet Flexible and easy to apply to other clustering problems.

• Bad news:

- \bullet High memory requirements (use sparse matrices).
- \bullet Very dependant on the scale factor for a specific problem.

$$
W(i, j) = e^{\frac{-\left\|X_{(i)} - X_{(j)}\right\|_{2}^{2}}{\sigma_{X}^{2}}}
$$

