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Structured Sparsity

 Sparsity

 Group sparsity

 Total variation sparsity
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Healthy

Sick

ACTCGTACGTAGACCTAGCATTACGCAATAATGCGA

ACTCGAACCTAGACCTAGCATTACGCAATAATGCGA

TCTCGTACGTAGACGTAGCATTACGCAATTATCCGA

ACTCGAACCTAGACCTAGCATTACGCAATTATCCGA

ACTCGTACGTAGACGTAGCATAACGCAATAATGCGA

TCTCGTACCTAGACGTAGCATAACGCAATAATCCGA

ACTCGAACCTAGACCTAGCATAACGCAATTATCCGA

Single nucleotide 
polymorphism (SNP)

Causal (or "associated") SNP

Genetic Basis of Diseases
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T . . . . T . . G . . . . . G . . . . . . T . . . . . T . . C .

A . . . . A . . C . . . . . C . . . . . . T . . . . . T . . C .

A . . . . T . . G . . . . . G . . . . . . A . . . . . A . . G .

T . . . . T . . C . . . . . G . . . . . . A . . . . . A . . C . 

A . . . . A . . C . . . . . C . . . . . . A . . . . . T . . C . 

Data

Genotype Phenotype

• Cancer: Dunning et al. 2009.
• Diabetes: Dupuis et al. 2010.
• Atopic dermatitis: Esparza-Gordillo et al. 
2009.
• Arthritis:  Suzuki et al. 2008

Standard Approach

causal SNP

a univariate phenotype:
e.g., disease/control

Genetic Association Mapping
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Healthy

Cancer

ACTCGTACGTAGACCTAGCATTACGCAATAATGCGA

ACTCGAACCTAGACCTAGCATTACGCAATAATGCGA

TCTCGTACGTAGACGTAGCATTACGCAATTATCCGA

ACTCGAACCTAGACCTAGCATTACGCAATTATCCGA

ACTCGTACGTAGACGTAGCATAACGCAATAATGCGA

TCTCGTACCTAGACGTAGCATAACGCAATAATCCGA

ACTCGAACCTAGACCTAGCATAACGCAATTATCCGA

Causal SNPs

Genetic Basis of Complex Diseases
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Genetic Basis of Complex Diseases

Healthy

Cancer

ACTCGTACGTAGACCTAGCATTACGCAATAATGCGA

ACTCGAACCTAGACCTAGCATTACGCAATAATGCGA

TCTCGTACGTAGACGTAGCATTACGCAATTATCCGA

ACTCGAACCTAGACCTAGCATTACGCAATTATCCGA

ACTCGTACGTAGACGTAGCATAACGCAATAATGCGA

TCTCGTACCTAGACGTAGCATAACGCAATAATCCGA

ACTCGAACCTAGACCTAGCATAACGCAATTATCCGA

Causal SNPs

Biological 
mechanism
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Intermediate Phenotype

Genetic Basis of Complex Diseases

Healthy

Cancer

ACTCGTACGTAGACCTAGCATTACGCAATAATGCGA

ACTCGAACCTAGACCTAGCATTACGCAATAATGCGA

TCTCGTACGTAGACGTAGCATTACGCAATTATCCGA

ACTCGAACCTAGACCTAGCATTACGCAATTATCCGA

ACTCGTACGTAGACGTAGCATAACGCAATAATGCGA

TCTCGTACCTAGACGTAGCATAACGCAATAATCCGA

ACTCGAACCTAGACCTAGCATAACGCAATTATCCGA

Causal SNPs

Clinical records

Gene expression
Association to 
intermediate phenotypes
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Subnetworks for 
lung physiology Subnetwork for 

quality of life

Genetic Association for 
Asthma Clinical Traits

TCGACGTTTTACTGTACAATT

Statistical challenge
How to find 

associations to a multivariate entity 
in a graph?
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Gene 
Expression 
Trait Analysis

TCGACGTTTTACTGTACAATT

Genes
Samples

Statistical challenge
How to find 

associations to a multivariate entity 
in a tree?
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Association with Phenome

ACGTTTTACTGTACAATT

Multivariate complex syndrome (e.g., asthma)
age at onset, history of eczema

genome‐wide expression profile

ACGTTTTACTGTACAATT

Traditional Approach
causal SNP

a univariate phenotype:
gene expression  level

Structured Association 
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Sparse Associations

Pleotropic effects

Epistatic effects
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Consider
one phenotype at a 
time

Consider
multiple correlated 
phenotypes (phenome) 
jointly 

vs
.

Standard Approach New Approach

Phenotypes Phenome

Structured Sparse Association :               
a New Paradigm 
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Sparse Learning

 Linear Model:

 Lasso (Sparse Linear Regression)

 Why sparse solution? 
penalizing 

constraining

[R.Tibshirani  96]
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Multi-Task Extension
 Multi-Task Linear Model: 

Coefficients for k-th task:
Coefficient Matrix:

Input:
Output:

Coefficients for a variable (2nd)

Coefficients for a task (2nd)
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 Background: Sparse multivariate regression for disease 
association studies

 Structured association – a new paradigm
 Association to a graph-structured phenome

 Graph-guided fused lasso (Kim & Xing, PLoS Genetics, 2009)

 Association to a tree-structured phenome
 Tree-guided group lasso (Kim & Xing, ICML 2010)

Outline
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GenotypeTrait

Multivariate Regression for Single-
Trait Association Analysis

Xy

2.1 x=

x= β

Association 
Strength

?
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GenotypeTrait

Multivariate Regression for Single-
Trait Association Analysis

Many non-zero associations: 
Which SNPs are truly 
significant?

2.1 x=

Association 
Strength
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Genotype

x=2.1 

Trait

Lasso for Reducing False 
Positives (Tibshirani, 1996)

Many zero associations (sparse results), 
but what if there are multiple related 
traits?
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Lasso 
Penalty    
for sparsity

Association 
Strength
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Genotype

(3.4, 1.5, 2.1, 0.9, 1.8) 

Multivariate Regression for Multiple-
Trait Association Analysis
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How to combine information across 
multiple traits to increase the power?

Association 
Strength

x=

Association 
strength   between 
SNP j and Trait i: βj,i

Allergy Lung 
physiology

LD
Synthetic

lethal

+ 
ji,

 |βj,i|
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Genotype

(3.4, 1.5, 2.1, 0.9, 1.8) 

Trait

Multivariate Regression for Multiple-
Trait Association Analysis
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Allergy Lung 
physiology

Association 
Strength

x=

+
We introduce
graph-guided fusion 
penalty

Association 
strength   between 
SNP j and Trait i: βj,i

+ 
ji,

 |βj,i|
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Multiple-trait Association:
Graph-Constrained Fused Lasso

Step 1: Thresholded correlation 
graph of phenotypes

ACGTTTTACTGTACAATT

Step 2: Graph‐constrained fused lasso

Lasso 
Penalty

Graph-constrained 
fusion penalty

Fusion
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Fusion Penalty

 Fusion Penalty: | βjk - βjm |
 For two correlated traits (connected in the network), the 

association strengths may have similar values.

ACGTTTTACTGTACAATT

SNP j

Trait m

Trait k

Association strength   
between SNP j and Trait k:
βjk

Association strength   
between SNP j and Trait m:
βjm
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ACGTTTTACTGTACAATT

Overall effect

Graph-Constrained Fused Lasso

 Fusion effect propagates to the entire network 
 Association between SNPs and subnetworks of traits
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ACGTTTTACTGTACAATT

Multiple-trait Association:                
Graph-Weighted Fused Lasso

 Subnetwork structure is embedded as a densely connected 
nodes with large edge weights

 Edges with small weights are effectively ignored

Overall effect
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Estimating Parameters

 Quadratic programming formulation
 Graph-constrained fused lasso

 Graph-weighted fused lasso

 Many publicly available software packages for solving 
convex optimization problems can be used
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 50 SNPs 
taken from 
HapMap 
chromosome 
7, CEU 
population

 10 traits

Trait 
Correlation 
Matrix

True 
Regression 
Coefficients

Single 
SNP-Single 
Trait Test

Significant 
at α = 0.01

Lasso Graph-guided 
Fused Lasso

Thresholded Trait 
Correlation Network

Simulation 
Results

Phenotypes
SN

Ps

No 
association

High 
association
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Simulation Results
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Association to a 
Tree-structured 
Phenome

TCGACGTTTTACTGTACAATT
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Tree-Guided Group Lasso 
 In a simple case of two genes

• Low height
• Tight correlation
• Joint selection

• Large height
• Weak correlation
• Separate 
selection

h

h

G
en

ot
yp

es

G
en
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es
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L1 penalty
• Lasso penalty
• Separate
selection

L2 penalty 
• Group lasso
• Joint selection

h

Elastic net

Select the 
child nodes 
jointly or
separately?

Tree-Guided Group Lasso 
 In a simple case of two genes

Tree-guided group 
lasso
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h2

h1

Select the 
child nodes 
jointly or 
separately?

Joint 
selection

Separate 
selection

Tree-Guided Group Lasso 
 For a general tree

Tree-guided group 
lasso
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h2

h1

Select the 
child nodes 
jointly or 
separately?

Tree-Guided Group Lasso 
 For a general tree

Tree-guided group 
lasso

Joint 
selection

Separate 
selection
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Previously, in Jenatton, 
Audibert & Bach, 2009

Balanced Shrinkage
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Estimating Parameters

 Second-order cone program

 Many publicly available software packages for solving convex 
optimization problems can be used
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Illustration with Simulated Data

True association 
strengths  Lasso  Tree‐guided 

group lasso 

SN
Ps

Phenotypes

No 
association

High 
association
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Yeast eQTL Analysis

Tree‐guided 
group lasso 

Single‐Marker 
Single‐Trait Test

SN
Ps

Phenotypes

No 
association

High 
association

Hierarchical 
clustering tree
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Ultimately …

Pleotropic effects

Epistatic effects
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Structured Input/Output-Lasso
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This full model incorporates input/output structure of the dataset as 
well as epistatic effects guided by genetic interaction networks

network SNPin cluster  m :S
networksn interactio genetic:

th
m

U

Lasso penalty: within group sparsity Input structure: group selection of 
correlated epistatic SNPs 

Output structure: group selection of 
SNPs across multiple correlated traits

[Lee, Zhu and Xing, submitted 2010]
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Sensitivity and Specificity varying the 
number of SNPs

9/15/2014 39 For each number of SNPs, we show the average of  the 
performance with 5 different simulated data

 Marginal SNP: Methods taking 
advantage of output structures 
outperforms others.

 Epistatic SNP: Methods taking 
advantage of input structures 
outperforms others.

 IO-Lasso outperforms other methods 
for detecting both marginal & epsitatic 
eQTLs
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Computation Time
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Proximal Gradient Descent
Original 
Problem:

Approximatio
n Problem:

Gradient of the
Approximation
:
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Geometric Interpretation
 Smooth approximation

Uppermost 
Line
Nonsmooth

Uppermost 
Line
Smooth
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Convergence Rate
Theorem: If we require                                     and set             , the 
number of iterations is upper bounded by: 

Remarks: state of the art IPM method for for SOCP converges at a rate
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Multi-Task Time Complexity
 Pre-compute:

 Per-iteration  Complexity (computing gradient)

Tree:

Graph:

IPM for SOCP

Proximal-Gradient

IPM for SOCP

Proximal-Gradient

Proximal-Gradient: Independent of Sample 
Size 

Linear in #.of Tasks© Eric Xing @ CMU, 2014 44



Experiments
 Multi-task Graph Structured Sparse Learning 

(GFlasso)
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Experiments

 Multi-task Tree-Structured Sparse Learning 
(TreeLasso)
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Conclusions

 Novel statistical methods for joint association analysis to 
correlated phenotypes 
 Graph-structured phenome : graph-guided fused lasso
 Tree-structured phenome : tree-guided group lasso

 Advantages
 Greater power to detect weak association signals
 Fewer false positives
 Joint association to multiple correlated phenotypes
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