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Recap: the SVM problem

e \We solve the following constrained opt problem:

m 1 m
max, ](a)ZZai _Ezaiajyiyj(XiTXj)
i=1

i j=1

st. 0<eg, <C, 1=1...,m
Z:O(iyi =0.
i=1

e Thisis a quadratic programming problem.
e A global maximum of o, can always be found.

m
e The solution: W = Z oYX,
i=1
e How to predict: wlx +b<0
new
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o Kernel

e Point rule or average rule

e Can we predict vec(y)?
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Outline ot

e The Kernel trick

e Maximum entropy discrimination

e Structured SVM, aka, Maximum Margin Markov
Networks
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(1) Non-linear Decision Boundary |

e 5o far, we have only considered large-margin classifier with a
linear decision boundary

e How to generalize it to become nonlinear?

e Key idea: transform Xx; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)
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Transforming the Data %

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue
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The Kernel Trick ot

e Recall the SVM optimization problem
max, JZ(a)= Zai _%Zaianiyj'(XiTXj)
i=1 i,j=1

st 0<eg <C, 1=1..., m

Zai y; =0.
=1
e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x;,x;)=¢(x;)" ¢(x;)
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An Example for feature mapping cece
and kernels oo

e Consider an input X=[x,X,]
e Suppose ¢(.) is given as follows

¢£{X1 D = 1,42%,, V2%, X, X N2, X,

X,

e An inner product in the feature space is

A DME)-

e SO, If we define the kernel function as follows, there I1s no
need to carry out ¢(.) explicitly

K(x,x') = (1+xTx')2
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More examples of kernel
functions

e Linear kernel (we've seen it)
K(x,x')=x"x'
e Polynomial kernel (we just saw an example)

K(X,X') = (1 +X x')p

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

Zj
In this case the feature space consists of functions and results in a non-
parametric classifier.

e Radial basis kernel
K(x,X') = exp(—;x—x'

© Eric Xing @ CMU, 2014

10



The essence of kernel

e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(x,2)= (2724 ¢)?
e How many dimensions we’ve got in the new space?
e How many operations it takes to compute K()?

e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)

lo — =|1®
K(z,z) =exp (— 53 )
e Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension ¢(x) is?
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Kernel matrix -

e Suppose for now that K is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., X,,, we can
compute an mxm matrix K = {K; ;}, where Az ;= d(x:) T b(x;)

e This is called a kernel matrix!

e Now, Iif a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it

must satisfy:
e Symmetry K=KT
proof Kij=o(xi) o(x;) = dp(x;) T d(x;) = K
e Positive —semidefinite yI'Ky>0 WYy
proof?
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Mercer kernel -

Theorem (Mercer): Let K: R" x R" — R" be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {z;,...,xm}, (M < 00), the corresponding kernel matrix
1s symmetric positive semi-denite.
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SVM examples -
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Examples for Non Linear SVMs — | $32¢
Gaussian Kernel os

Linear
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Remember the Kernel Trick!!! 1T
Primal
Formulation: mm ’w w—l—C’Z&
‘ + bly; = 1 —& V)
§ =20 Vy

Infinite, cannot be directly But the dot product is
computed easy to compute ©

Dual Formulation: 1
© max E o — = E ;Y Y
o D
i 1,]

Zaiyi =0
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Overview of Hilbert Space
Embedding oo

e Create an infinite dimensional statistic for a distribution.

e Two Requirements:
e Map from distributions to statistics is one-to-one

e Although statistic is infinite, it is cleverly constructed such that the kernel
trick can be applied.

e Perform Belief Propagation as if these statistics are the
conditional probability tables.

e We will now make this construction more formal by
Introducing the concept of Hilbert Spaces
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Vector Space

e A set of objects closed under linear combinations (e.g.,
addition and scalar multiplication):

v,weyY — av+pfweV
e Obeys distributive and associative laws,

e Normally, you think of these “objects” as finite dimensional
vectors. However, in general the objects can be functions.
e Nonrigorous Intuition: A function is like an infinite dimensional vector.

£ =
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Hilbert Space os

e A Hilbert Space is a complete vector space equipped with an
Inner product.

e The inner product <f,g> has the following properties:
e Symmetry (f.9)=4g.f)
e Linearity afi +Bf2ng) =aolfi,9)+ 3f2,9)
e Nonnegativity (f, f> =0
o Zero {(f,f)=0 = f=0

e Basically a “nice” infinite dimensional vector space, where lots
of things behave like the finite case

e e.g. using inner product we can define “norm” or “orthogonality”
e e.g. anorm can be defined, allows one to define notions of convergence
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Hilbert Space Inner Product -

e Example of an inner product (just an example, inner product
not required to be an integral)

(f.g) = f f(@)g(x) da

Inner product of two functions is a number

e Traditional finite vector space inner product
(v,w) =1 w

] — scalar
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Recall the SVM kernel Intuition

min — w w—l—CZf

w.b

(w'd(x;) +b)y; =21-& Vj =0 V)

Maps data points to Feature Functions, which corresponds to some
vectors in a vector space.
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The Feature Function ot

e Consider holding one element of the kernel fixed. We get a
function of one variable which we call the feature function.
The collection of feature functions is called the feature map.

wa L= K(:E, )

e For a Gaussian Kernel the feature functions are unnormalized
Gaussians:

é1(y) = exp (Hl —y)

o)

Mﬁ—y@)

o2

I
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Reproducing Kernel Hilbert Space | ¢

e Given a kenel k(x,x’), we now construct a Hilbert space such
that k defines an inner product in that space

e We begin with a kernel map:
¢ x— k()

e We now construct a vector space containing all linear combinations of the

functions k( ,x):
f() =220 aik(, 2)

e We now define an inner product. Let g(+) = 2?21 Bik (-, x;)
we have

(f9) =30 S Bkl o)

please verify this in fact is an inner product: satisfying symmetry, linearity, and
zero-normlaw: (f fy =0 = f =0

(here we need “reproducing property”, and Cauchy-Schwartz inequaliy
© Eric Xing @ CMU, 2014
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Reproducing Kernel Hilbert Space | ¢

e The k( ,x) Is areproducing kernel map:
m
<k<7 .CE), f> — Zizl leﬂﬁ(fz) — f($>
e This shows that the kernel is a representer of evaluation (or, evaluation function)
e This is analogous to the Dirac delta function.

o Ifwe plug in the kernel in for f:  (k(-,z), k(-,2")) = k(x,2’)

e With such a definition of inner product, we have constructed a
subspace of the Hilbert space --- a reproducing kernel
Hilbert space (RKHS)
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Back to Feature Map '+

e The collection of evaluation functions is the feature map!!!

mml'w w—I—CZf

‘+b 1—53 g

The Feature Map is the
collection of Evaluation
Functions!

e Intuition: A more complicated feature map/kernel corresponds to
“richer” RKHS

e Basically, a “really nice” infinite dimensional vector space where
even more things behave like the finite case
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Inner Product of Feature Maps os

e Define the Inner Product as:

(P Py) = (K (2,-), K(y,-)) := K(7,y)

_I — scalar

e Note that:

¢ (y) = ¢y(v) = K(z,y)



Mercer’s theorem and RKHS ot

e Recall the following condition for Mercer’s theorem for K

f f K(e,y)f(2)f(y) dedy >0 V§

e We can also “construct” our Reproducing Kernel Hilbert Space with
a Mercer Kernel, as a linear combination of its eigen-functions:

J Kz, 2)di(a) = 32520 Ay ()

which can be shown to entall reproducing property (homework?)

© Eric Xing @ CMU, 2014 27



Summary: RKHS .

e Consider the set of functions that can be formed with linear
combinations of these feature functions:

k
Jo = {f(z) : Z oo, (2),Vk e Ny and z; € X}
j=1

e We define the Reproducing Kernel Hilbert Space F to the
completion of Fo (like Fo with the “holes” filled In)

e Intuitively, the feature functions are like an over-complete basis for
the RKHS

f(2) = a101(2) + aada(z) - _ _ _ _

© Eric Xing @ CMU, 2014
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Summary: Reproducing Property | ¢

e It can now be derived that the inner product of a function f
with ¢, evaluates a function at point x:

<f7 ¢1’> — <Z Oéij:Ej? Qbaz>
— Z @j<¢a¢j ) ¢T> Linearity of inner product

j
= Z ozjK(xj, ) Definition of kernel
J

= € \
f( ) Remember that

K(xjv :E) = ¢5L’j (33)

] = scalar
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Summary: Evaluation Function 4

e A Reproducing Kernel Hilbert Space is an Hilbert Space where for
any X, the evaluation functional indexed by X takes the following
form:

Evaluation Function,

EV&IX () — <¢X?7T rg;atsbe a function in the

Same evaluation function for different Different points are associated with
functions (but same point) different evaluation functions
f(Xl) :<¢X19f> f(XQ) :<¢X27.f>
g(X1) =<¢x,,9) g(X2) = (¢x,,9)

e Equivalent (More Technical) Definition: An RKHS is a Hilbert Space
where the evaluation functionals are bounded. (The previous
definition then follows from Riesz Representation Theorem)
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RKHS or Not? :

Is the vector space of 3 dimensional real valued vectors an RKHS?

Yesl!ll
Eval;(-) = {e;, )

Homework !

© Eric Xing @ CMU, 2014
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RKHS or Not?

e |s the space of functions such that

|17z <

an RKHS?

NO' I l I Homework !

But, can’t the evaluation functional be an inner product with the
delta function?

EV&lX () — <5X > The problem is that the
’

FOO = | £ d:

my space!

© Eric Xing @ CMU, 2014
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The Kernel ot

e | can evaluate my evaluation function with another evaluation
function!

k(X1, Xa) = ¢x,(X2) = dx,(X1) = {Px1,0x3) = f(ﬁ)xl (2)¢x,(2) dz

e Doing this for all pairs in my dataset gives me the Kernel
Matrix K:

E(X1, X1) k(Xq,Xo) k(Xy, X5)

K= k(X,Xs) k(X1,Xs) k(Xi,Xs)
kX1, X1) k(X1 Xa) k(X1 Xs)

e There may be infinitely many evaluation functions, but | only
have a finite number of training points, so the kernel matrix is
finite!!!!
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Correspondence between i
Kernels and RKHS oo

e A kernel is positive semi-definite if the kernel matrix is positive
semidefinite for any choice of finite set of observations.

e Theorem (Moore-Aronszajn): Every positive semi-definite
kernel corresponds to a unique RKHS, and every RKHS is
associated with a unigue positive semi-definite kernel.

e Note that the kernel does not uniquely define the feature map

(but we don’t really care since we never directly evaluate the
feature map anyway).
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RKHS norm and SVM ot

e Recall that in SVM:

fl)=(w,z) = Z?il aiyik (-, ;)

Therefore f(-) € H

Moreover: ”f()”% — Zazyz ZEZ ZOKJ?J]
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Primal and dual SVM objective o°

e In our primal problem, we minimize w'w subject to constraints.
This is equivalent to:

lw]]? = w w—zzaz%yzyy i) ®(;))

=1 g=1
m m
= > Y agyyk(z, z))
i=1 j=1
= || fl%

which is equivalent to minimizing the Hilbert norm of f subject
to constraints
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The Representer Theorem

e In the general case, for a primal problem P of the form:

?273{0( fidziyit) + QU flln) }

where {z;,v:})*; are the training data.

If the following conditions are satisfied:

e The loss function C is point-wise, i.e., C(f, {SCi, yz}) — C({g% Vi, f(%)})
e () is monotonically increasing

e The representer theorem (Kimeldorf and Wahba, 1971):
every minimizer of P admits a representation of the form

m
f()=> aK(-,z)
1=1
l.e., a linear combination of (a finite set of) function given by the data
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Proof of Representer Theorem 4
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Another view of SVM

e Q:why SVM is “dual-sparse”, i.e., having a few support
vectors (most of the a’s are zero).

e The SVM loss w'w does not seem to imply that
e And the representer theorem does not either!
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Another view of SVM: L, regularization | ¢

e The basis-pursuit denoising cost function (chen & Donoho):

J(a) = _Hf Zaz¢z HL2 + Az,

e Instead we consider the following modified cost:

J(a) = Z!If Zaz L2l + Al
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RKHS norm interpretation of SVM | &2

J(a) = Z!If Zaz Szl + Al

e The RKHS norm of the first term can now be computed
exactly!
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RKHS norm interpretation of SVM | &2

e Now we have the following optimization problem:
1
mozn { — Z ;Y + 9 Z OéiCVjK(il?z‘a 33j> + Z )\’047:|}
1 1,] 1

This Is exactly the dual problem of SVM!
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Take home message -

e Kernelis a (nonlinear) feature map into a Hilbert space
e Mercer kernels are “legal”

e RKHS is a Hilbert equipped with an “inner product” operator
defined by mercer kernel

e Reproducing property make kernel works like an evaluation
function

e Representer theorem ensures optimal solution to a general
class of loss function to be in the Hilbert space

e SVM can be recast as an L1-regularized minimization
problem in the RKHS
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