Advanced Introduction to
Machine Learning

10715, Fall 2014

The Kernel Trick,
Reproducing Kernel Hilbert Space,
and the Representer Theorem

Reading:

© Eric Xing @ CMU, 2014

Recap: the SVM problem

e \We solve the following constrained opt problem:

m 1 m
max,](a)ZZai _Ezaiajyiyj(XiTXj)
i=1

i j=1

st. 0<eg, <C, 1=1...,m
Z:O(iyi =0.
i=1

e Thisis a quadratic programming problem.
e A global maximum of o, can always be found.

m
e The solution: W = Z oYX,
i=1
e How to predict: wlx +b<0
new

© Eric Xing @ CMU, 2014

o Kernel

e Point rule or average rule

e Can we predict vec(y)?

© Eric Xing @ CMU, 2014

Outline ot

e The Kernel trick

e Maximum entropy discrimination

e Structured SVM, aka, Maximum Margin Markov
Networks

© Eric Xing @ CMU, 2014 4

(1) Non-linear Decision Boundary |

e 5o far, we have only considered large-margin classifier with a
linear decision boundary

e How to generalize it to become nonlinear?

e Key idea: transform Xx; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)

© Eric Xing @ CMU, 2014 5

Non-linear Decision Boundary

© Eric Xing @ CMU, 2014

Non-linear Decision Boundary os
Ais did ot 0 it hm/ spomntylle |/

s omaton
>
(% . %) = (Vi &) W(o/(la"ﬂ'\'))
+ .
Yadim Mj/&
W
j G\W_{ﬁ\m S«V)MA’I{M sho . X Nnow //IW}
horadaV) % spmtdle /
‘., Y«
'3‘5 X

© Eric Xing @ CMU, 2014 7

Transforming the Data %

Input space Feature space

e Computation in the feature space can be costly because it is high
dimensional
e The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue

© Eric Xing @ CMU, 2014 8

The Kernel Trick ot

e Recall the SVM optimization problem
max, JZ(a)= Zai _%Zaianiyj'(XiTXj)
i=1 i,j=1

st 0<eg <C, 1=1..., m

Zai y; =0.
=1
e The data points only appear as inner product

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x;,x;)=¢(x;)" ¢(x;)

© Eric Xing @ CMU, 2014 9

An Example for feature mapping cece
and kernels oo

e Consider an input X=[x,X,]
e Suppose ¢(.) is given as follows

¢£{X1 D = 1,42%,, V2%, X, X N2, X,

X,

e An inner product in the feature space is

A DME)-

e SO, If we define the kernel function as follows, there I1s no
need to carry out ¢(.) explicitly

K(x,x') = (1+xTx')2

© Eric Xing @ CMU, 2014 10

More examples of kernel
functions

e Linear kernel (we've seen it)
K(x,x')=x"x'
e Polynomial kernel (we just saw an example)

K(X,X') = (1 +X x')p

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

Zj
In this case the feature space consists of functions and results in a non-
parametric classifier.

e Radial basis kernel
K(x,X') = exp(—;x—x'

© Eric Xing @ CMU, 2014

11

The essence of kernel

e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(x,2)= (2724 ¢)?
e How many dimensions we’ve got in the new space?
e How many operations it takes to compute K()?

e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)

lo — =|1®
K(z,z) =exp (— 53)
e Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension ¢(x) is?

© Eric Xing @ CMU, 2014

12

Kernel matrix -

e Suppose for now that K is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., X,,, we can
compute an mxm matrix K = {K; ;}, where Az ;= d(x:) T b(x;)

e This is called a kernel matrix!

e Now, Iif a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it

must satisfy:
e Symmetry K=KT
proof Kij=o(xi) o(x;) = dp(x;) T d(x;) = K
e Positive —semidefinite yI'Ky>0 WYy
proof?

© Eric Xing @ CMU, 2014 13

Mercer kernel

Theorem (Mercer): Let K: R” x R” — R be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {x;,...,zm}, (M < 00), the corresponding kernel matrix
is symmetric positive semi-denite.

© Eric Xing @ CMU, 2014 14

SVM examples -

05 0.5
of of
-05 -0.5
] *]
i R 0 0.5 1 15 2 ot [—y> 0 0.5 1 15 2

4" order polynomial 8" order polynomial

© Eric Xing @ CMU, 2014 15

Examples for Non Linear SVMs — | $32¢
Gaussian Kernel os

Linear

© Eric Xing @ CMU, 2014 16

Remember the Kernel Trick!!! 1T
Primal
Formulation: mm ’w w—l—C’Z&
‘ + bly; = 1 —& V)
§ =20 Vy

Infinite, cannot be directly But the dot product is
computed easy to compute ©

Dual Formulation: 1
© max E o — = E ;Y Y
o D
i 1,]

Zaiyi =0

© Eric Xing @ CMU, 2014 17

Overview of Hilbert Space
Embedding oo

e Create an infinite dimensional statistic for a distribution.

e Two Requirements:
e Map from distributions to statistics is one-to-one

e Although statistic is infinite, it is cleverly constructed such that the kernel
trick can be applied.

e Perform Belief Propagation as if these statistics are the
conditional probability tables.

e We will now make this construction more formal by
Introducing the concept of Hilbert Spaces

© Eric Xing @ CMU, 2014

18

Vector Space

e A set of objects closed under linear combinations (e.g.,
addition and scalar multiplication):

v,weyY — av+pfweV
e Obeys distributive and associative laws,

e Normally, you think of these “objects” as finite dimensional
vectors. However, in general the objects can be functions.
e Nonrigorous Intuition: A function is like an infinite dimensional vector.

£ =

© Eric Xing @ CMU, 2014

19

Hilbert Space os

e A Hilbert Space is a complete vector space equipped with an
Inner product.

e The inner product <f,g> has the following properties:
e Symmetry (f.9)=4g.f)
e Linearity afi +Bf2ng) =aolfi,9)+ 3f2,9)
e Nonnegativity (f, f> =0
o Zero {(f,f)=0 = f=0

e Basically a “nice” infinite dimensional vector space, where lots
of things behave like the finite case

e e.g. using inner product we can define “norm” or “orthogonality”
e e.g. anorm can be defined, allows one to define notions of convergence

© Eric Xing @ CMU, 2014 20

Hilbert Space Inner Product -

e Example of an inner product (just an example, inner product
not required to be an integral)

(f.g) = f f(@)g(x) da

Inner product of two functions is a number

e Traditional finite vector space inner product
(v,w) =1 w

] — scalar

© Eric Xing @ CMU, 2014

21

000
0000
T
Recall the SVM kernel Intuition 4
rflulll;l w w + CZf
(w'd(x;) +b)y; =21-& Vj =0 V)
Maps data points to Feature Functions, which corresponds to_sQgme
vectors in a vector space. :)
L= @
[ty

© Eric Xing @ CMU, 2014 22

- o000
\’CK{\; {N\\

The Feature Function | 3 °

e Consider holding one element of the kernel fixed. We get a
function of one variable which we call the feature function.
The collection of feature functions is called the feature map.

¢, = K(x,-) c\%k\

e For a Gaussian Kernel the feature functions are unnormalized
Gaussians:

é1(y) = exp (Hl —y)

o)

Mﬁ—y@)

o2

$15(y) = exp (

© Eric Xing @ CMU, 2014 23

Reproducing Kernel Hilbert Space | ¢

e Given a kernel k(x,x’), we now construct a Hilbert space such
that k defines an inner product in that space

e We begin with a kernel map:
¢ x— k()
e We now construct a vector space containing all linear combinations of the

functions k(,x): = S 6; kx;-)h"
f() =220 ik, @)

m/

e We now define an inner product. Let g(:) = Zj:l

(f,9) = 2 i Z}Til aiﬁ_ﬂxi, z;) >

please verify this in fact is an inner product: satisfying symmetry, linearity, and
zero-normlaw: (f fy =0 = f =0

(here we need “reproducing property”, and Cauchy-Schwartz inequality
© Eric Xing @ CMU, 2014 24

we have

Reproducing Kernel Hilbert Space | ¢

e The k(,x) Is areproducing kernel map:

(k(-),) = 2oity ik,) = f(x)
e This shows that the kernel is a representer of evaluation (or, evaluation function)

e This is analogous to the Dirac delta function.

N
e If we plug in the kernel in for f: {(k(-, x) g\ ?‘\ g Y. K)
/S(U‘\

e With such a definition of inner product, we have constructed a
subspace of the Hilbert space --- a reproducing kernel
Hilbert space (RKHS)

© Eric Xing @ CMU, 2014 25

Mercer’s theorem and RKHS ot

e Recall the following condition for Mercer’s theorem for K

f f K(e,y)f(2)f(y) dedy >0 V§

e We can also “construct” our Reproducing Kernel Hilbert Space with
a Mercer Kernel, as a linear combination of its eigen-functions:

J Kz, 2)di(a) = 32520 Ay ()

which can be shown to entall reproducing property (homework?)

© Eric Xing @ CMU, 2014 26

Summary: RKHS .

e Consider the set of functions that can be formed with linear
combinations of these feature functions:

I
Fo = {f(z) ; Z oo, (2),Vk e Ny and z; € X}
=1

e We define the Reproducing Kernel Hilbert Space F to the
completion of Fo (like Fo with the “holes” filled In)

e Intuitively, the feature functions are like an over-complete basis for
the RKHS

f(2) = a101(2) + aada(z) - _ _ _ _

© Eric Xing @ CMU, 2014

27

Summary: Reproducing Property | ¢

e It can now be derived that the inner product of a function f
with ¢, evaluates a function at point x:

<f7 ¢1’> — <Z Oéij:Ej? Qbaz>
— Z @j<¢a¢j) ¢T> Linearity of inner product

j
= Z ozjK(xj,) Definition of kernel
J

= € \
f() Remember that

K(xjv :E) = ¢5L’j (33)

] = scalar

© Eric Xing @ CMU, 2014 28

Summary: Evaluation Function 4

e A Reproducing Kernel Hilbert Space is an Hilbert Space where for
any X, the evaluation functional indexed by X takes the following
form:

Evaluation Function,

EV&IX () — <¢X?7T rg;atsbe a function in the

Same evaluation function for different Different points are associated with
functions (but same point) different evaluation functions
f(Xl) :<¢X19f> f(XQ) :<¢X27.f>
g(X1) =<¢x,,9) g(X2) = (¢x,,9)

e Equivalent (More Technical) Definition: An RKHS is a Hilbert Space
where the evaluation functionals are bounded. (The previous
definition then follows from Riesz Representation Theorem)

© Eric Xing @ CMU, 2014 29

RKHS or Not? :

Is the vector space of 3 dimensional real valued vectors an RKHS?

Yesl!ll
Eval;(-) = {e;,)

Homework !

© Eric Xing @ CMU, 2014

30

RKHS or Not?

e |s the space of functions such that

|17z <

an RKHS?

NO' I l I Homework !

But, can’t the evaluation functional be an inner product with the
delta function?

EV&lX () — <5X > The problem is that the
’

FOO = | £ d:

my space!

© Eric Xing @ CMU, 2014

31

The Kernel @ 33

e | can evaluate my evaluation function with another evaluation
function!

k(X1, Xa) = ¢x,(X2) = dx,(X1) = {Px1,0x3) = f(ﬁ)xl (2)¢x,(2) dz

e Doing this for all pairs in my dataset gives me the Kernel
Matrix K:

E(X1, X1) k(Xq,Xo) k(Xy, X5)

K= k(X,Xs) k(X1,Xs) k(Xi,Xs)
kX1, X1) k(X1 Xa) k(X1 Xs)

e There may be infinitely many evaluation functions, but | only
have a finite number of training points, so the kernel matrix is
finite!!!!

© Eric Xing @ CMU, 2014 32

Correspondence between i
Kernels and RKHS oo

e A kernel is positive semi-definite if the kernel matrix is positive
semidefinite for any choice of finite set of observations.

e Theorem (Moore-Aronszajn): Every positive semi-definite
kernel corresponds to a unique RKHS, and every RKHS is
associated with a unigue positive semi-definite kernel.

e Note that the kernel does not uniquely define the feature map
(but we don’t really care since we never directly evaluate the

feature map anyway). /,(vc") k ¢)
A- 10
LIEBR
Cd)

© Eric Xing @ CMU, 2014 33

Jou Joqr | 3822
RKHS norm and SVM :
e Recall that in SVM: W= WEW - .\
/ZeL;d(*‘ \
U} X Q: zyz iii de,z/

Therefore f(-) € H

Moreover: Hf()”%_{ _

W @ N

Wty) E 2

© Eric Xing @ CMU, 2014 34

Primal and dual SVM objective o°

e In our primal problem, we minimize w'w subject to constraints.
This is equivalent to:

lw]]? = w w—zzaz%yzyy i) ®(;))

=1 g=1
m m
= > Y agyyk(z, z))
i=1 j=1
= || fl%

which is equivalent to minimizing the Hilbert norm of f subject
to constraints

© Eric Xing @ CMU, 2014 35

The Representer Theorem

e In the general case, for a primal problem P of the form:

?273{0(fidziyit) + QU flln) }

where {z;,v:})*; are the training data.

If the following conditions are satisfied:

e The loss function C is point-wise, i.e., C(f, {SCi, yz}) — C({g% Vi, f(%)})
e () is monotonically increasing

e The representer theorem (Kimeldorf and Wahba, 1971):
every minimizer of P admits a representation of the form

m
f()=> aK(-,z)
1=1
l.e., a linear combination of (a finite set of) function given by the data

© Eric Xing @ CMU, 2014

36

ﬂ'[%lcj ‘c.:
14423
Proof of Representer Theorem S .

X, L.,
VCZ‘PQ —+ ‘('\L l(1(, Kw{)l "

n
= Z il xe) + $0)

v

$05)= <dor k)

~ Ho
~ Hye,
:(Edik(.\({)-(-{_m , k('xo) {C(q[(\(-.} \{*

L (¢

Sty 4o \f ‘y;im(. %)

z\' k\l(a‘.ﬂo.) - —
Sty = Q) %\t;kc,) ot g,)
mn = CL A

M’((”I CHp , £+ =Hoe
© Eric Xing @ CMU, 2014

37

Another view of SVM

e Q:why SVM is “dual-sparse”, i.e., having a few support
vectors (most of the a’s are zero).

e The SVM loss w'w does not seem to imply that
e And the representer theorem does not either!

© Eric Xing @ CMU, 2014

38

59k w9828
Another view of SVM: L, regularization | ¢*

e The basis-pursuit denoising cost function (chen & Donoho):

J(a) = _Hf Zaz¢z HL2 + Az,

e Instead we consider the following modified cost:

J(a) = Z!If Zaz L2l + Al

© Eric Xing @ CMU, 2014 39

kot 22
RKHS norm interp ron of SVM | 22

| N

Ja) =5 IfC) =3 oKk (@)z + Ml

i=1
e The RKHS norm of the first term can now be computed
exactly! <
U 2ok $O 260G kg
- Ny ~2 2o kW)t Tl)
T 2 W) cSowg ko ke x)

= 2oyt Z oLy Kk)

~

© Eric Xing @ CMU, 2014 40

RKHS norm interpretation of SVM | &2

e Now we have the following optimization problem:

mm{ ZozzyZJr Zozzcvj (zi, x; +Z)"O‘Z}
(i i

This Is exactly the dual problem of SVM!

¢4 U<

© Eric Xing @ CMU, 2014 41

Take home message e 2 56 S

e Kernelis a (nonlinear) feature map into a Hilbert space
e Mercer kernels are “legal”

e RKHS is a Hilbert space equipped with an “inner product”
operator defined by mercer kernel

e Reproducing property make kernel works like an evaluation
function

e Representer theorem ensures optimal solution to a general
class of loss function to be in the Hilbert space

e SVM can be recast as an L1-regularized minimization
problem in the RKHS

© Eric Xing @ CMU, 2014

42

(2) Model averaging 4+

e Inputs x, classy = +1, -1
e data D = { (x.y1), .. (X,.Ym) }

e Point Rule:

e learn forf(x) discriminant function

from F = {f} family of discriminants

e classify y = sign fort(x)

e E.g.,SVM hw) = P(mu/&'g)
FoPYUx) = Wl xpew + b—

© Eric Xing @ CMU, 2014 43

Model averaging

e There exist many f with near optimal performance

e Instead of choosing fort,
average overall fin F

Q(f) = weight of f ‘ ¥
v = o
_ \)
= sign(f Q

e Howto specify:
F = { f } family of discriminant functions?

e How tolearn Q(f) distribution over F?

© Eric Xing @ CMU, 2014

44

Recall Bayesian Inference

e Bayesian

learning:

po(w)
~~ Bayes Learner —— p(w|D)

D = {(xi,9i) }ivq

p(w)p(D|w)
p(D)

Bayes Thrm : p(w|D) =

e Bayes Predictor (model averaging):

b (i p(w)) = arg max [plw) fx, 5 w)dw

yeY(x)

e What p,?

Recall in SVM: /i (x;w) = arg max F(x,y:w)
‘ yeEY(x) '

© Eric Xing @ CMU, 2014

45

How to score distributions? :

e ENntropy

e Entropy H(X) of a random variable X

EZP i) logy, P(z = 1)

e H(X) is the expected number of bits needed to encode a randomly drawn
value of X (under most efficient code)

e Why?

Information theory:

Most efficient code assigns -log,P(X=i) bits to encode the message X=lI,
So, expected number of bits to code one random X is:

- Z P(z = i)log, P(x = 1)

© Eric Xing @ CMU, 2014 46

Sample Entropy

Entropy(S)

e S is a sample of training examples
e [, Is the proportion of positive examples in S
e p_is the proportion of negative examples in S
e Entropy measure the impurity of S

H(S) = —p+logypy — p—log, p—

© Eric Xing @ CMU, 2014

47

More definitions on entropy

e Conditional Entropy
e Specific conditional entropy H(X|Y=v) of X given Y=v :

N
H(X|y=j)=-) Plz=ily=j)log, P(z =ily =j)
1—1

e Conditional entropy H(X|Y) of X given Y :

HX|Y)==) Ply=j)log, H(Xy =j)
jeVal(y)

e Mututal information (aka information gain) of X and Y :

I[(X;Y) = H(X)-HX|Y)=H(®Y)-HY|X)
= H(X)+HY)-H(X,Y)

© Eric Xing @ CMU, 2014

48

0eco
Relative Entropy 3T
e How to measure similarity between two distributions?
- Y QX = w)los =

This is also known as the Kullback—Leibler divergence

e How does KL relate to MI?

© Eric Xing @ CMU, 2014 49

Maximum Entropy Discrimination

e Givendataset D = {(x;,v;)}Y ., find

i\

QumE = arg max(&(@ %{w\
s.t. y<<f(xi>>Q;>E >, Ve

& >0 Vi

e solution Q,,c correctly classifies 2
e among all admissible Q, Q,, has max entropy
e max entropy = "Minimum assumption” about f

© Eric Xing @ CMU, 2014

50

000

0000

o000

- - 1

Introducing Priors °
e Prior Q,(f) O
e Minimum Relative Entropy D(Q, Qo) = KL(Q|Qo)
Discrimination
Qure = argmin KL(Q|Qo) + U(§)
sit. Y (g = & Vi

£ >0 Vi h W ¢

B)y
e Convex problem: Q,,se Unique solution
e MER W= "minimum additional assumption" over Qp about f

© Eric Xing @ CMU, 2014 51

0000
0000
. L 0o0
Solution: Qe as a projection :
e Convex problem: Q,,z unique
a=0 uniform
e Theorem: 0
LV) ViE
Qure oo exp{) |

admissible Q

o; > 0 Lagrange multipliers

e finding Q,, : start with ¢; = O and follow gradient of unsatisfied
constraints

© Eric Xing @ CMU, 2014 52

Solution to MED ot

e Theorem (Solution to MED):

Posterior Distribution:

Q(W) = Z(loi)QO(W) exp { Z@z’yi[f(xﬁ w)]}

Dual Optimization Problem:
D1: max —logZ(a)—U*(a)

s.t. a;(y) >0, Vi,

U*(-) is the conjugate of the U(-), i.e., U*(a) = supg (3, , 0i(y)éi — U(E))

e Algorithm: to computer ¢, , t=1,..T

e start with ¢, = O (uniform distribution)

e iterative ascent on J(a) until convergence

© Eric Xing @ CMU, 2014 53

Examples: SVMs -

e Theorem

For f(x) =w™ + b, Qy(w) = Normal(0, I), Qy(b) = non-informative prior,
the Lagrange multipliers « are obtained by maximizing J(«) subject
to 0<o, <C and 2., oy, = 0, where

1
J(a) = Z [th + log(1 — @t/c)] 5 Z asatysytxgxt
s,t

t

e Separable D ==y SVM recovered exactly

e Inseparable D == S\/M recovered with different
misclassification penalty

© Eric Xing @ CMU, 2014 54

SVM extensions

e Example: Leptograpsus Crabs (5 inputs, T,,;,=80, T,=120)

1 L I3)

0.9t r i
o8] \ SVM

Max Likelihood Gaussian

0.7t
\MRE Gaussian

1-false negatives

0 01 02 03 04 05

false nnsitives

© Eric Xing @ CMU, 2014

(3) Structured Prediction PR

e Unstructured prediction
P

S
o N
e Structured prediction

° fspeecitagging e
X = Doyouwantsugarinit?” =" Y = <verb pron verb noun prep pron>

e Image segmentation

X = 221 X222 s Y = Y21 Y22

X1 Xi2 ... Y11 Y2) \\(\

© Eric Xing @ CMU, 2014 56

OCR example
y

f.rF“EﬂE' = brace

Sequential structure

@A
- HEEEE

Classical Classification Models

e |[nputs:
e aset of training samples D = {(Lyi) MY, where
X = {;I‘}.;I.‘?. .o ..Ifﬂ_rand y; € C = {_(.].(3. .(‘L}
e Outputs:
e a predictive function h(x): y* = h(x) = argmax F(x, y)

Y

F(x,y) = w'f(x,y)
e Examples:

1
e SVM: max 5w w+CZg%, s.t. wlAf(y) >1—&, Vi, Vy.

w
¢ 1=1

e Logistic Regression: max £(D; w) Zlogp vilx;)

exp{w £ (x,y)}

where ylx) =
p(ylx) >, exp{w T f(x,y/)}

© Eric Xing @ CMU, 2014

58

Structured Models ot

h(x) = argmax F(x,y)
yeYV(x) X
N discriminant function
space of feasible outputs

e Assumptions:

F(x,y) =w ' f(x,y) =Y w' f(xp, yp)
p

e Linear combination of teatures

e Sum of partial scores: index p represents a part in the structure

e Random fields or Markov network features:

© Eric Xing @ CMU, 2014 59

Discriminative Learning Strategies

e Max Conditional Likelihood
e We predict based on:

. 1
—argma = e f (X,
y"Ix=argmax p,(y|x)) xp{gwc (X yc)}

e And we learn based on:

W*l{yiixi}:arg mV%XH pw(yi |Xi) :H Z(V\::- X_)GXD{ZWC fc(Xi’yi)}

e Max Margin:
e We predict based on:

y" [x=argmax Y w,f (x,y,)=argmaxw’ f(x,y)
y = y

e And we learn based on:

W*l{yi’xi}:arg mV?X(min WT(f(wai)_ f(%xi))j

yzy', Vi

© Eric Xing @ CMU, 2014

60

E.g. Max-Margin Markov sect
Networks o5

e Convex Optimization Problem:

N
: 1
PO (M>N) : min —||wl||* + C ;
N iy Wl +O 3 e
st Vi, Yy £yi: W Afi(y) > Al(y) — &, & >0,

e Feasible subspace of weights:

Fo = {W : WTAfi(y) & A&,(y) — &5 Y YY & yi}

e Predictive Function:

ho(x; w) = arg max F(x,y;w)
yeY(x)

© Eric Xing @ CMU, 2014 61

OCR Example

e \We want:
argmax,,..q W' f(EXZrgd . word) = “brace”

e Equivalently:
wT f(“brace”) >wTf(IEIME “aaaaa”)
wT f(“brace”) > wTf(“aaaab”)

wT f(“brace”) > wT f(22227")

© Eric Xing @ CMU, 2014

62

0000
o000
. . ::o
Min-max Formulation °
e Brute force enumeration of constraints:
min 1|\w\|2
2

w f(x,y*) > w'f(x,y) + e(y*y), Vy
e The constraints are exponential in the size of the structure

e Alternative: min-max formulation
e add only the most violated constraint

y' = arg max[w ' f(x;,y) + £(y:,¥)]
YFZY*

add to QP : w ' f(x;,y;) > w ' f(x;,y) + £(yi,y)
e Handles more general loss functions

e Only polynomial # of constraints needed
e Several algorithms exist ...

© Eric Xing @ CMU, 2014 63

Results: Handwriting Recognition

Length: ~8 chars g 30
Letter: 16x8 pixels §
10-fold Train/Test S 2>
5000/50000 letters 2 5o
600/6000 words 3

g 15

>
Models:)

O raw B quadratic O cubic

pixels

h

kernel

kernel

lpetter

Multiclass-S error reduction over multiclass

M3 nets 5

)
O
|_

0
Crammer & Singer 01

MC-SVMs

aase

64

Discriminative Learning Paradigms

IEE
‘@ Wy
PN] PN
] - [l 1]
. an =
b ¥ . £ L 4
~ \ Bain - A -
TN N % @ (] .
0y ¢ b s W - wwJ L \ 7
7 . “) o - - - - -
—~ o e B N wt @ @ Saw e ae ae eaw
) [0, THE 40 YHERF « ¥ EH. N -]]]]
~ Lol () \ Y]] N u
y () ha N]]

i) '- s Ll Yy = arg max F(X; y, W)i
eV(x) |

m T

. 1 2 ' : 1 2 .
min - Sliwl +Ci§1£z min - Sliwl +07§1&
Yy w x +b)>1 &, Vi @ WT[f(X@ —f(x' y)] > eyt y) — &, Vi,Vy £y

M E Dw,iffﬁ‘fjf;f?ii\ o e I MED-MN
THAL —> = SMED + Bayesian M3N
y = sign((f(x, W))C:?(;v));

min KL(Q/|Qo) ,
@ ’ See [Zhu and Xing, 2008]
V)G > &, Vi

© Eric Xing @ CMU, 2014 65

Summary

e Maximum margin nonlinear separator
e Kernel trick
e Project into linearly separatable space (possibly high or infinite dimensional)
e No need to know the explicit projection function

e Max-entropy discrimination
e Average rule for prediction,

e Average taken over a posterior distribution of w who defines the separation
hyperplane

e P(w) is obtained by max-entropy or min-KL principle, subject to expected
marginal constraints on the training examples

e Max-margin Markov network
e Multi-variate, rather than uni-variate output Y
e Variable in the outputs are not independent of each other (structured input/output)
e Margin constraint over every possible configuration of Y (exponentially many!)

© Eric Xing @ CMU, 2014 66

