Canonical Autocorrelation Analysis and Graphical
Modeling for Human Trafficking Characterization

Qicong Chen Maria De Arteaga
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
gicongc@cs.cmu.edu mdeartealandrew.cmu.edu
William Herlands

Carnegie Mellon University
Pittsburgh, PA 15213
herlands@cmu.edu

Abstract

The present research characterizes online prostitution advertisements by human
trafficking rings to extract and quantify patterns that describe their online oper-
ations. We approach this descriptive analytics task from two perspectives. One,
we develop an extension to Sparse Canonical Correlation Analysis that identifies
autocorrelations within a single set of variables. This technique, which we call
Canonical Autocorrelation Analysis, detects features of the human trafficking ad-
vertisements which are highly correlated within a particular trafficking ring. Two,
we use a variant of supervised latent Dirichlet allocation to learn topic models over
the trafficking rings. The relationship of the topics over multiple rings character-
izes general behaviors of human traffickers as well as behaviours of individual
rings.

1 Introduction

Currently, the United Nations Office on Drugs and Crime estimates there are 2.5 million victims
of human trafficking in the world, with 79% of them suffering sexual exploitation. Increasingly,
traffickers use the Internet to advertise their victims’ services and establish contact with clients.

The present reserach chacterizes online advertisements by particular human traffickers (or trafficking
rings) to develop a quantitative descriptions of their online operations. As such, prediction is not the
main objective. This is a task of descriptive analytics, where the objective is to extract and quantify
patterns that are difficult for humans to find.

Such characterizations are important to law enforcement agents who track and apprehend human
traffickers. We hope this research will deepen their understanding of how each network operates
including who are their victims, who are their clients, and where they operate. Additionally, this re-
serach seeks to broaden the general knowledge on human trafficking since there is scant quantitative
information regarding the market and its victims[8]].

We focus on two machine learning techniques: Canonical Correlation Analysis (CCA) and Super-
vised Latent Dirichlet Allocation (SLDA). The output of both methods are intuitive to interpret for
non-machine learning experts, making them ideal for projects involving law enforcement. While the
variant of CCA we developed, Canonical Autocorrelation Analysis (CAA), characterizes relation-
ships amongst features in each trafficking ring, SLDA discovers topics which describe how features
relate across groups of trafficking rings.



Below we provide a brief description of the data followed by a review of related works, descriptions
of our proposed methodological innovations, results and conclusions.

2 Data

The Auton Lab has scraped 13,907,048 ads from a large advertising website for prostitution. Each ad
has 34 features including physical descriptions and location information of those advertised, contact
details, and meta-information about the ad itself. These features were extracted using image and
natural language processing.

We clustered the data into non-overlapping clusters by identifying phone numbers in the ads which
occurr over multiple ads. Additionally, using a list of 1,700 phone numbers linked to human traffick-
ers provided by a non-profit organization, we partioned the data into clusters of ads linked to human
trafficking (“positive” ads) and clusters of ads not linked to human trafficking ("negative” ads).

2.1 Preprocessing

One challenging aspect of the dataset is that features may have multiple values assigned to them.
For example, there may be multiple women advertised in a single ad. To address this possibility for
categorical features, we assign one bit to each possible value in order to record the number of times
this value appears in the current ad. For example, for hair color we assign one bit to each possible
hair color and count the number of times each of these appears in an ad. For numeric features, we
assign three bits to record minimum, mean and range of all values in each feature. For example, if
there are n values for height, we calculate the minimum, mean and range of these n values.

Since CAA only operates on one cluster at a time (see section .T)) we remove features that are null
over all ads within that cluster. This reduces the dimentionality of the sparse feature matrix.

For sLDA, we assign one bit to each categorical feature rather than each possible value of it. In this
case the feature takes the dominant value, i.e. the value of most counts. Additionally, we mapped all
numeric features to categorical features. Instead of calculating the exact minimum, mean, and range
of numeric features, we recorded the level (none, below 25%, 25% to 50%, 50% to 75% and above
75%) to which the minimum, mean, and range belongs.

3 Literature Review

3.1 Canonical Correlation Analysis

Canonical Correlation Analysis is a statistical method useful for exploring relationships between two
sets of variables. It is used in machine learning, with appplications to multiple domains. Previous
applications to medicine, biology and finance include [4], [12]] and [13]. In [7] the algorithm is
explained in detail, together with some applications to learning methods. In particular, they analyze
Kernel CCA, which provides an alternative in cases where the linearity of CCA does not suit a
problem. Other relevant references for both the theoretical developments and the applications of
CCA include [[11], [14] and [5].

A modified version of the algorithm that will be particularly useful for this research was proposed
by Witten et al. [13]. Sparse CCA, an L, variant of the original CCA, adds constraints to guarantee
sparse solutions. This limits the number of features being correlated. Their formulation of the
maximization problem also differs from the traditional CCA algorithm. We will use this version
since it is more suitable for our needs.

The work that most resembles our research is [6]. Using the notion of autocorrelation, they attempt
to find underlying components of fMRI data that have maximum autocorrelation, and to do so they
use CCA. The type of data they work with differs from ours in that their features are ordered (both
temporally and spatially). For autocorrelation, they take X as the original data matrix and construct
Y as a translated version of X, such that Y; = Y, ;. Since our data is not ordered we cannot follow
the same procedure, and must instead develop a new autocorrelation technique.



3.2 Supervised Latent Dirichlet Allocation

Topic models provide upsupervised methods to learn themes in a collection of documents. These
themes, or topics, are defined by words which occurr with some probability in the documents[1]].
Latent Dirichelt Allocation (LDA) is a common technique which employs a heirarchical Bayesian
model to analyze documents represented by a bag of words[2]]. While words are observed variables,
all other parameters are infered from data. In addition to discovering topics, LDA determines the
distribution of topics over each document. Given its intuitive appraoch to topic modeling, LDA has
spawned a range of extensions which are beyond the scope of the present research[1]].

Supervised LDA (sLDA) is one variation of LDA which leverages labels, or response variables,
associated with each document in the topic modeling. The response variable is incorporated as an
observed variable for each document, drawn from a Bayesian prior[9]]. Topics can be learned through
variational expectation maximization as detailed in [9]. Alternatively, Gibbs sampling can be used
to learn topics[3], a technique we employ in section 4.2} Additionally, extensions of sSLDA have
incorporated different priors, such as Dirichlet-Multinomial priors over the response varaible[10].

4 Methodology

4.1 Canonical Autocorrelation Analysis

Given two matrices X and Y, CCA aims to find linear combinations of its columns that maximize
the correlation between them. Usually, X and Y are two matrix representations for one set of
datapoints, each matrix using a different set of variables to describe the same datapoints.

We use the formulation of CCA given by [13]. Assuming X and Y have been standarized and
centered, the constrained optimization problem is:

mazyou! XTYo 3 <1l <1 Julls < e [olly < e (D

When ¢; and ¢y are small, solutions will be sparse, and thus only a few number of features are
correlated.

Our goal is to find correlations within the same set of variables. Therefore, both our matrices X and
Y are identical. Currently, none of the variants of CCA we were able to find is suited to do this,
and applying Sparse CCA when X = Y results in solutions v = v. We develop a modified version
of the algorithm capable of finding such autocorrelations by imposing an additional constraint on
equation [I] to prevent the model from correlating each variable with itself. Using the Lagrangian
form, the problem can be written as follows:
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This will penalize vectors u and v for having high values for the same entry, which is precisely what
we are trying to avoid. With proper factorization, this can be turned into a Sparse CCA maximization
problem. First, notice that u” X7 Xv — MuTv = uT(XTX — A)v. Therefore, the Canonical
Autocorrelation Analysis problem can be written as:
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Finding the singular value decomposition (SVD) of X, we have:

X = usv’T
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Now, setting X .o = [V (S — AI)]T and Yy,e,, = V7T, the problem becomes:

newYnewV  Jull} L PIE <1 Jully < e folly < e “)

T
MATy, U Xy



phone 1 phone & phone 7

T T T T T T T T T T T T
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

lamada lambda lamoda

Figure 1: Relative sparseness vs. penalty parameter

This problem can be solved using Sparse CCA, and since the solutions obtained with this method
are independent of the factorization of X1, Y;,..,, solving this is equivalent to solving the CAA
maximization problem.

This is not convex on A and is very sensitive to variations of this parameter. For choosing the proper
A, an evaluation metric for relative sparseness was developed. Vectors u and v are considered to
have relative sparseness if entries with high values in v do not coincide with entries with high values
in v. This can be measured with r(u,v) =1 — Y, |u;v;].

Figure [1| shows some examples of how the relative sparseness varies with respect to A for the three
largest clusters in the dataset. The practitioner can then determine the minimum acceptable relative
sparseness and the optimal )\ is found through a grid search.

Once the desired relative sparseness, g, is determined, the grid search will return the smallest A
for which the solutions u and v satisfy r(u,v) > rg. The smallest X is considered the best option
because as A increases the algorithm gives up correlation in order to have a lower penalty cost, and
we are interested in the maximum correlation within our relative sparseness constraint.

4.2 sLDA

As described in Section [3.2] topic modeling provides another means of characterizing the human
trafficking clusters[2]. We focus on an sLDA model illustrated in Figure Q] [9]. The generative
process of this graphical model is specified by:

1. Draw topic proportions 64|« ~ Dirichlet(c)
2. Draw word proportions ¢y, |n ~ Dirichlet(n)
3. For each word w in document d:

(a) Draw topic assignment z|6; ~ Multinomial(f;)
(b) Draw word w|z, ¢, ~ Multinomial(¢,).

4. Draw cluster label y4|z4 ~ Normal(b” 2y + a, 02)

The sLDA model is modified for the context of the present reserach by considering each advertise-
ment to be a document. Each feature extracted from the ads is considered a word. As described
in section [2, we encode the numeric features discretely. This dramatically reduces the number of
words, making the learning process feasible, allowing documents to share words indicating intuitive
feature ranges. In SLDA each document has an associated observed response variable which is sam-
pled from a gaussian linear distribution with its center decided by the current topic distribution of
the document. Here, the response variable is the phone number, or equivilently, the cluster to which
the ad belongs. Topics retain the equivilent interpretation as under standard sLDA applications: they
represent ordered collections of features which describe documents.
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Figure 2: sLDA graphic model

Gibbs Sampling is used to learn the ad-topic distribution € and topic-word distribution ¢. The
conditional distribution used to sample topic is defined by Equation 3|
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An obvious disadvantage of this model inference approach is that the origninal dense implementa-
tion has a high order of complexity up to O(# Rounds X # Docs x #W ords x #T opics). However,
to guarantee precision, we beleive this implementation is warranted.

5 Experimental Results

5.1 Canonical Autocorrelation Analysis

Canonical Autocorrelation Analysis was applied to the three largest clusters in the data. Three
important conclusions can be drawn from the results: i. The method succesfully finds solutions with
relative sparseness. ii. Good linear correlations between the projections are obtained. iii. The results
contain information which is potentially useful for law enforcement agents.

The threshold was set to r = 0.7. Figures [3| and E] show scatterplots with u” X7 in the x-axis
and Xv in the y-axis. For phone number 1, which has 429 ads related to it, a strong positive
correlation (r2 = 0.99) between restriction of chinese men and restriction based on age was
found. The correlation coefficient vectors are: u = [0,0.99,0,0,0,0,0,0,0,0,0.08,0,0], v =
[0,0,0,0,0,0,0,0,0,0.09,0.99,0, 0], where the third entry corresponds to restriction of chinese
men and the two later ones correspond to restrictions by age. For phone number 6, which has 1815
associated ads, a weaker correlation was found (72 = 0.56), this time between phone numbers with
Florida Area Code, and the posts being in Illinois. In this case, the correlation coefficient vectors are
u = [-0.13,0,0,0,0,-0.99,0,0,0,0,0,0,0,0], v = [-0.99,0,0,0,0,-0.13,0,0,0,0,0,0,0,0].
The third cluster analyzed, phone number 7, showed a strong correlation (r?> = 0.94), in
which three features characterize the cluster: phone numbers with Florida Area Code, those
with Rhode Island Area Code, and the fact that posts are/are not in Illinois, with v =
[-0.18,0,-0.98,0,0,0,0,0,0,0,0,0,0,0,0], v = [-0.98,0,0,0,—0.18,0,0,0,0,0,0,0,0,0,0].
In this cluster, the first coefficient corresponds to FL. Area Code, the third one to RI Area Code, and
the fifth one to ads being posted in Illinois (remember from the preprocessing, features vary from
one cluster to the other).

The similarity between the characterization of the last two clusters motivated a manual inspection
to determine whether the phone numbers were linked. We found that indeed the phone numbers
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Figure 3: Correlation between projections for phone 1. Numbers next to the points indicate the
number of ads being mapped to that point.
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Figure 4: Correlation between projections for phone 6 and phone 7, respectively. Numbers next to
the points indicate the number of ads being mapped to that point.

co-occur in an ad. Since such explicit links are not always available to law enforcement agents,
establishing relations between phone numbers through data analysis allows law enforcement to con-
nect different cases and understand the structure of a trafficking ring. This represents a potential use
case for CAA that we plan to study further.

Ideally, it would have been desirable to obtain information on correlations between a larger subset
of features. Since each cluster only has approximately 15 non-null features and relative sparseness
is enforced, correlations are only obtained between two or three features. Were clusters to have
more features, this would not be a problem. However, it begs the question whether parameters can
be tuned to gain more insight with fewer features, or if there is a minimum (or range) number of
features for which the method works best.

5.2 sLDA

An sLDA model was learned via Gibbs Sampling using both positive and negative clusters as input
data. We used 188 positive clusters containing 9, 595 positive ads in total. We used the 20 largest
negative clusters containing 23, 829 negative ads. This provides a sufficient mix of positive and
negative ads within the limitations of our computing power. As the words in the SLDA model, we
used 264 features, extracted as described in Section 2]
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Figure 5: Distribution of clusters for each topic
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Figure 6: Proportion of positive ads and clusters for each topic

We set the number of topics, K, to 10, and set the hyperparameters o = 50.0/K, 8 = 0.001,a =
1,b = linspace(0, 1, K). 250 iterations were used to ensure mixing. For the cluster labels, y, we
arbitrarily mapped the phone numbers to the [0, 1] interval.

5.2.1 Topic Distributions

Figure [5] shows the topic distributions of the ten largest positive clusters and ten largest negative
clusters. We calculate topic distribution of each cluster by summing over the individual topic distri-
butions of each ad in the cluster and then normalizing by dividing by the size of the cluster. From
Figure [3] it is clear that the positive clusters are dominated by topics 0, 1, and 2 while negative
clusters are more uniformly distributed. Note that topic numbers are an arbitrary convention. Addi-
tionally, note that the two clusters previously linked by CAA have identical topic distributions (blue
and green lines).

Another perspective on this distribution can be seen in Figure[f] The blue line represents the number
of positive ads dominated by each topic divided by the total number of ads dominated by the topic.
An ad, d, is dominated by a topic, T, if 047 = max(64). The red dots represent the number of



HT Topic1
(Ethnicity,latin)
(Ethnicity,asian)
(Ethnicity,latina)
(Ethnicity,thai)
(Ethnicity,persian)
(Ethnicity,cuban)
(Ethnicity,colombian)
(Ethnicity,mexican)
(Ethnicity,puerto rican)
(Ethnicity,american)
(Ethnicity,welsh)
(Ethnicity,peruvian)
(Chest_min,x>56)
(Chest_mean,x>48)
(HairColor,auburn)
(Restriction,african american)
(SkinColor,brown)
(Perspective_1st_min,x<14)
(Perspective_3rd_min,x<5)
(Chest_mean,x<33.25)
(Height_ft_min,6<x<7)
(Height_in_min,3<x<6)

HT Topic 2
(Ethnicity,asian)
(Ethnicity,latina)
(Ethnicity,colombian)
(Ethnicity,dominican)
(Ethnicity,persian)
(Ethnicity,thai)
(Ethnicity,latin)
(Ethnicity,brazilian)
(Ethnicity,cuban)
(Ethnicity,czech)
(Ethnicity,welsh)
(Ethnicity,african)
(Ethnicity,african american)
(Ethnicity,chinese)
(Age_min,x<22)
(Age_min,39<x<55)
(Height_ft_min,5<x<6)
(Perspective_1st,14<x<28)
(Waist_range < 6)
(HairColor,strawberry blonde)
(Height_ft_mean,4.6<x<5.2)
(HairColor,auburn)

Negative Topic 1
(Ethnicity,asian)
(Ethnicity,korean)
(Ethnicity,latino)
(Ethnicity,foreign)
(Ethnicity,japanese)
(Age_range,x<8)
(Age_mean,x<22.6)
(Age_min,x<22)
(Age_min,22<x<39)
(Age_mean,x>45)
(Age_mean,22.6<x<30)
(Chest_mean,33<x<39)
(Chest_min,32<x<44)
(Weight_mean,x<115)
(Hip_range,x<5)
(Weight_range,x<27)
(EyeColor,dark)
(Chest_range,x<8)
(Hip_min,32.0<x<44)
(Waist_range,x<6)
(Waist_mean,x<25.5)
(HairColor,dark brown)

Negative Topic 2
(Ethnicity,korean)
(Ethnicity,taiwanese)
(Ethnicity,latino)
(Ethnicity,african american)
(Ethnicity,asian)
(Ethnicity,chinese)
(Age_min,x<22)
(Age_min,22<x<39)
(Age_range,x<8)
(Age_mean,x<22)
(Chest_mean,33<x<39)
(Chest_min,32<x<44)
(Weight_mean,x<115)
(Height_mean,4.6<x<5.2)
(Chest_range,x<8)
(Hip_mean,33.3<x<40)
(Waist_min,x<28)
(HairColor,brown)
(SkinColor,dark)
(SkinColor,caucasian)
(EyeColor,brown)
(EyeColor,honey)

Figure 7: Top features for 4 representative topics (not ordered)

positive clusters with ads dominated by each topic divided by the total number of clusters with ads
dominated by the topic. Note that topics 4 through 8 dominated too few positive or negative clusters
to yield an accurate calculation. As before, Figure |§| illustrates that topics 0, 1, and 2 dominate
positive ads and clusters.

5.2.2 Significant Features

Here we qualitatively analyze the hidden topics to show how they may provide descriptive character-
izations of human traffficking. We extracted the top 22 non-State features with highest probabilities
in two topics dominated by positive ads and two topics dominated by negative ads. Figure7]shows
these features grouped by feature type to facilitate interpretation.

The features marked in pink show that human trafficking ads focus more on ethnicities than the
negative topics, especially exotic ethnicities such as Thai, Persian, and Cuban. Features marked in
red show that human trafficking ads are likely to exaggerate the body features of women advertised.
Finally, features marked in green indicate that human trafficking ads are unlikely to disclose the ages
of women in advertisements. These characterizations are natural for human traffickers who tend to
traffick women from foreign countries, many of whom are minors.

6 Conclusion

We analyzed a large corpus of online human trafficking and prostitution ads in order to obtain
descriptive characterizations of how human trafficking rings and individuals operate online. Two
methods were employed in order to provide a variety of perspectives on the data. CAA character-
ized individual trafficking clusters and provided results which enabled us to identify certain clusters
that were particularly closely related. SLDA found topics which described behaviors across various
human trafficking clusters. Analysis of the hidden topics revealed sets of features that were partic-
ularly relevant for understanding human trafficking ads. Together, we hope these methods can help
law enforcement better understand online human trafficking behaviors and how machine learning
techniques can aid in their daily operations.
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