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Abstract

Online social networks contain a wealth of information about users that can be
harnessed to provide users with personalized content. While most websites now
personalize content, it is still not uncommon to have them characterize us incor-
rectly. We seek to extend previous work that focuses on better predicting latent
user attributes for users in the Twitter social network with a flexible graphical
model proposed by El-Arini et al that allows a user to understand why the sys-
tem has characterized them in a particular way. We seek to add information about
which ‘elite users’ someone follows into this model because we hypothesize that
this information helps reveal a user’s long-term preferences better than more tran-
sient actions. To investigate this claim, we collected data via the Twitter API
and implemented a Markov Chain Monte Carlo (MCMC) sampler to infer user
attributes. Through experiments on both simulated and real data, we assess the
model’s ability to correctly assign user attributes and to relate actions to particu-
lar user attributes. We report successful associations of actions to attributes, with
some ability to predict attributes, and see that both of these tasks are enriched
by including ‘follower’ information. In future work, we seek to scale our imple-
mentation to larger data sets and to make further modifications to the underlying
graphical model structure to seek more accurate user characterization.

1 Introduction

Inferring user attributes from online social network activity remains as an important and challeng-
ing problem, particularly in networks such as Twitter, where users do not provide much personal
information in a user profile. Richer and more accurate systems to determine user attributes could
improve recommendation systems, promotional advertising, and personalization of the online expe-
rience for each user. Many previous social network analysis studies have focused on Twitter due to
an easy-to-use API for accessing the abundant publicly available information. In particular, previous
work has focused on inferring user attributes from public user behavior on Twitter, using features
such as words used in tweets, tweet length and frequency, retweets, hashtags, friend connections,
user profile information, profile picture, and more (see project proposal for citations).

Many previous studies used simple supervised learning techniques to infer user attributes. However,
one of the key challenges when attempting to train a supervised classifier is the collection of labeled
data sets to use for training. Some studies looked for user-provided information (which is sparse on
Twitter), while others leveraged information from linked profiles on other social network sites, and
a few even resorted to hand-labeling data. Even so, labeled data sets are typically small and quite
possibly biased due to collection techniques. As an alternative, some authors have used unsupervised
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techniques such as topic modeling to group and classify users, assigning labels based on the content
of tweets, retweets, or hashtags. While topic models have produced some interesting results in the
area, recent work by El-Arini et al. [EAPH12] argues that there are some advantages to more general,
customizable graphical models over topic models.

In this project our focus will be in augmenting the graphical model presented by El-Arini et
al. [EAPH12] (hereafter referred to as the ‘badge model’) which allows for multiple labels (called
‘badges’) for each user which are learned from user profile text combined with user behavior. We
find this approach promising because: (1) it outperforms other approaches in user attribute assign-
ment, (2) it is more flexible than either supervised classifiers or LDA models, and (3) there are
many opportunities to experiment with the model and potentially improve upon its performance
with modifications. Our goal is to improve performance by incorporating network topology infor-
mation (‘following’ actions) into the model.

1.1 Survey of Work

The work by El-Arini et al [EAPH12] seeks to assign user attributes on Twitter by predefining a
list of user attributes, such as ‘Apple fanboy’, ‘vegetarian’ or ‘hipster’, which are called badges.
In general a particular user’s badges are latent, although some users are assumed to voluntarily
associate themselves with a certain badge by explicitly mentioning it in their Twitter profile. This
association has enabled the authors to produce a graphical model in which the user’s actions are
observed, where the authors defined actions as retweets and hashtags. Using self-assigned badges
(from profile information), the model learns relationships between user behavior and badges, and
can then suggest new badges for users based on their behavior. Users can have many different
badges, and the model is able to specifically associate each badge with the behavior that produced it,
offering a new level of transparency to the user. The authors extended the model into an application
[EAXFG13] which builds on the previous paper by attempting to describe documents (in this case,
news articles) by the badges of users who share the articles on Twitter.

Closely related to the badge model are topic models, which have been applied in the past for user
personalization. The field of topic models emerged with a classical paper by Blei et al. [BNJ03],
presenting the Latent Dirichlet Allocation (LDA) model which uses the distribution of words within
each document as a sample in the vocabulary space in order to describe the document. In recent
years, there have been many important additions to the original LDA model. Blei and Lafferty
[BL06] and Li and McMallum [LM06] relaxed the original limitation that the topic proportions in
a document are uncorrelated and suggested, respectively, the Correlated Topic Model and Pachinko
Allocation. Arora et al. [AGHM12] assigned each topic a unique anchor word unique to only that
topic, and presented an algorithm that guarantees the convergence of the topic model parameters in
a practical, scalable polynomial-time. Ramage et al. [RH09] proposed a supervised variant of LDA
algorithm called Labeled LDA (or L-LDA) for credit attribution in multi-label corpora. Unlike LDA,
L-LDA requires the topics to relate to explicit, observed tags by learning correspondence between
tag-topic relations. By learning topics that are restricted to the ones in the label set only, L-LDA
guarantees learning of features of word distributions relevant to each topic, rather than learning
random groupings of words that are sometimes hard to interpret, which is sometimes a problem
with LDA. In a following paper, Ramage et al. [RDL10] apply L-LDA over Twitter by mapping
the Twitter feed into other dimensions using a scalable L-LDA which was then used to characterize
users by the type of content they typically shared.

Important information that is generally publicly available about Twitter users includes who ‘follows’
the user, and who the user ‘follows’. While friendship/neighbor relationships can provide some
information on local structure of network, much work has focused on studying ‘influential users’
in the network and the impact they have on a person who follows them. For example, Cha et
al. [CHBG10] quantify user influence on Twitter. Watts et al. [WHMW11] further classified users
into regular and ‘elite’ users and looked at flow of information among the types of users. Others
leveraged network topology information in making predictions, such as Zheleva et al. [ZGS10] who
used Markov Random Fields to infer hidden attributes by considering both friendships and group
memberships. Kwak et al. [KLPM10] discusses how a large proportion of tweets involve current
news and investigate the follower-following topology with regards to information diffusion across
the network.
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Variable Distribution Meaning

λ
(u)
i Bernoulli(b(u)i γTi + (1− b(u)i )γFi ) Observed labels in user profile

a
(u)
j Bernoulli(1− (1− φbg,j)

∏
i:b

(u)
i

=1
(1− φijsij)) Observed actions of user

b
(u)
i Bernoulli(ωi) The badge assignment for the user
φij Beta(αφ, βφ) Rate of action j given badge i
φbg Beta(αφ, βφ) Rate of action j for other reasons
sij Bernoulli(ηi) Sparsity mask for φij
ηi Beta(αη, βη) Controls sparsity of sij

ωi Beta(αω, βω) Prior on b(u)i

γTi Beta(αT , βT ) Prior (true positive rate for λ(u)i )

γFi Beta(αF , βF ) Prior (false positive rate for λ(u)i )

Table 1: Meaning of variables in the model

Figure 1: Graphical model plate diagram. b(u)i is the latent badge, λ(u)i = 1 indicates whether the
user’s profile has a given label, and a(u)j = 1 indicates that the user performed the action j.

2 Model

2.1 Model description

The plate diagram in Figure 1 shows the structure of the graphical model. Notice that the observed
variables are λ(u)i and a(u)j , while the rest are latent. Table 1 gives a brief summary of the variables
in the model, their distributions, and the meaning of the variable/reason for inclusion in the model.
While we originally planned to modify this model further, we succeeded only in implementing
the basic badge model without extensive modification. While the reader can refer to the original
paper [EAPH12] for more details on the model we implemented, the plate diagram and summary
of variables presented here along with the description of the model in section 1.1 should give the
reader a general idea. This model is flexible and provides identifiability that would not be attained
by other unsupervised approaches such as topic models (see El-Arini et al for further explanation
and comparisons of this model to L-LDA).

2.2 Inference

In order to perform inference on this graphical model, we followed the suggestions in El-Arini et
al to use a collapsed Gibbs sampler, interleaving Metropolis-Hastings steps for variables that are
more difficult to sample directly. Collapsed Gibbs sampling marginalizes out many of the variables,
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reducing the total number of variables to be sampled, so we are left having to sample only four
variables using expressions that depend only on the hyperparameters but not on the values of the
prior variables themselves. As we worked through the derivations presented in the appendix to the
El-Arini paper, we found the motivation behind using Metropolis-Hastings to sample three of the
variables due to the complicated and potentially numerically unstable calculations needed to sample
directly. Therefore, we sample b(u)i as a regular Gibbs sampling, but sample the three other variables
(λ(u)i , φij , and φbg) using Metropolis-Hastings steps. The predictions of badges and associations of
badges with specific actions are determined by examining sample averages that represent estimates
of the expected value of posterior distributions.

3 Implementation

3.1 Data

Twitter offers data for non-commercial purposes mainly through two channels: The Stream API and
the REST API. We used the Python package Twython to connect to both of the APIs and collect
data. First, we connected to the Stream API, which simply gives a stream of current tweets, limited
to 1% of the Twitter volume, that we treat as a random sample of live Twitter activity. We limited
this stream to English language tweets, but otherwise set no restrictions. We did not actually gather
the full text of each tweet, but instead gathered the user name and id, the user profile text, and any
hashtags or retweets the user put in the tweet. After collecting 200, 000 random tweets, we analyzed
the text in the user profiles and selected badges out of the most commonly used words that we also
felt would be unique (we avoided words like ‘enthusiast’, which occurred frequently, but do not
uniquely characterize users). The badges selected for our experiments were: ‘rock’, ‘conservative’,
‘texas’, ‘pop’, ‘feminist’, ‘photographer’, ‘beer’ and ‘and’. The badge ‘and’ was selected so that
we could see what happened when the badge really was not meaningful.

Once we had the list of badges, we chose 18, 425 unique users who carry the badges in their profile
description and queried the Stream API, asking specifically for those users’ tweets. We followed
this set of users for 6 days, while sending queries to the REST API in order to get more specific user
information such as ‘Who does this user follow?’. Since the REST API requests are rate-limited,
we needed several days to collect the follower information for all of the users. The process provided
us with 1, 669, 470 unique tweets and 241, 311 unique actions. For experiments, we narrowed this
down to actions which are not too sparse, and only included the users who performed actions during
collection. We stored the data in text files and processed it using Python. To scale our work to larger
data sets, we would move to a database format instead, and find an alternative way to extract the
popular celebrities each user follows, as the REST API was a considerable bottleneck.

3.2 Code

In implementing the sampler, we performed several steps to ensure the numerical accuracy of our
results. For the sampling of b(u)i , we needed to normalize the values calculated before performing
the actual sampling, so we used logarithms of the probabilities to avoid underflow, and subtracted
the maximum log probability from both values before normalizing. Similarly, we used logarithms
whenever possible in the Metropolis-Hastings steps to avoid underflow problems and to make the
calculation of beta and gamma functions more stable.

We originally implemented the sampler in the R language. Unfortunately, once the code was com-
pleted, we realized that it was very slow, and further research confirmed that for sequential tasks
such as MCMC samplers, R is notoriously slow. Due to lack of time to rewrite the entire sampler in
another language, we attempted to optimize the R code in several ways. First, we used R’s sparse
matrix package to handle the action matrix, which is a large matrix of binary values and is indeed
very sparse. Second, we used R’s vectorization capabilities to eliminate loops and use vector or
matrix operations whenever possible. Third, we used parallel processing when possible, though
there were very few steps where we could do this due to the nature of Gibbs sampling. Finally, we
rewrote two of the most time-expensive functions in C++ and called these functions from within
the R code. While these optimizations did speed up the code considerably, we were still unable to
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(a)λ (c)λmixed (e)barranged

(b)a (d)amixed

Figure 2: Artificial data input and output

run the sampler on our full set of collected data in time for this paper, and instead experimented on
smaller subsets of our collected data.

4 Experimental Results

We performed several experiments to determine whether the sampler is working properly and to de-
termine whether the results are meaningful in context. While we were restricted to smaller data sets
than originally intended due to implementation problems, we still found some interesting results that
we think would scale nicely to the larger data set. In all experiments, the number of badges/labels is
8, but the number of users and actions varies depending on the experiment (all on the order of 500).

4.1 Artificial data model validation

In order to confirm that we implemented the sampler correctly, we applied it to an artificial data set
that has 10 badges, 100 users, 200 actions, and designed λ, and a matrices as in Figure 2 (a) and
(b). Then we mixed column of each matrix (as shown in (c) and (d)) and ran our algorithm. In order
to interpret the results easily, we re-arranged the columns of the b matrix according to the order
of how we mixed λ to get barranged, which is the result of badge assignment (shown in Figure 2
(e)). It clearly assigned badges that have same pattern as ground-truth λ matrix. From this artificial
experiment, we were able to verify that in the simple scenario simulated the sampler is performing
as intended.

4.2 Associating badges with actions

Here we analyze the output of the sampler for various conditions with a focus on determining which
actions were associated with each badge. We looked at a matrix Actionfreqij = φij × sij , which
shows the probability of action j taken from badge i including the sparsity mask. We constructed
distribution of actions using values of Actionfreqi,: for each i and generated word clouds for each
badge. First, we used only hashtags (#) and retweets (@) as the observed actions. Selected word
cloud examples for badge ‘and’, ‘rock’, ‘conservative’, and ’feminist’ are shown in Figure 3. The
word cloud for badge ‘and’ demonstrates actions that are common to randomly assigned users.
While we gathered data, the most dominant action taken among a broad portion Twitter users was
#blacklivesmatter, as we gathered data when the Ferguson grand jury was deliberating. For badge
‘rock,’ actions of hashtags and retweets showed noisy patterns, likely due to multiple interpretations
of the word. For the ‘conservative’ badge, related actions were distinct compared to other badges.
The profile of Twitter accounts robfit, and idkspokesperson are shown in Figure 4 and appear to
have ‘conservative’ properties. For the ‘feminist’ badge, #blacklivesmatter was the one and only
dominant action taken, perhaps because feminists are concerned with social justice.

In Figure 5 we add the ‘following’ action (indicated in {·}). It appears the word clouds are nearly
taken over by the ‘following’ actions, which supports our hypothesis that a ‘following’ action takes
an important role in explaining each badge, perhaps mores than ‘hashtag’ or ‘retweet’ actions, al-
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(a) ’and’ (b) ’rock’ (c) ’conservative’ (d) ’feminist’

Figure 3: Wordclouds for selected bages. (Actions of hashtags and retweets)

(a) (b)

Figure 4: Profile of Twitter account (a) robfit, and (b) @IDFSpokesperson

though this should be taken with a warning: the ’following’ part of the matrix was less sparse than
the ’hashtag’ or ’retweet’, as this is a simple action for users to share. When we look at each word
cloud in detail, we can observe differences from Figure 3. For ‘and,’ we cannot relate the dominant
action taken among Twitter users with the most prevalent current event of the time (Ferguson). This
makes sense because while many tweeted about Ferguson, few changed their ‘following’ behavior
based on it. Therefore we see the cloud dominated by some of the most popular twitter accounts.
For badge ‘rock,’ we see more badge-related actions compared to Figure 3. Perhaps rock lovers are
more likely to follow a rock star than mention the word ‘rock’ in a profile. For the ‘conservative’
badge, we see following cnn which makes sense for this group. It was interesting to see how follow-
ing SportsCenter and kingjames (Twitter account for LeBron James, a basketball player) appeared
together, though it is unclear why this is related to conservatism. For the ‘feminist’ badge, the word
cloud is similar to Figure 3 (d) but arguably more informative. #blacklivesmatter was one of the
dominant actions, but other actions such as following {jimmyfallon} and {rihanna} also shown to
be popular actions taken among users with ‘feminist’ badge.

Further, we wanted to determine the extent to which an action of following a certain person can
explain the badge of that person by examining whether we can infer profile words by observing
actions taken by the user. We chose actions {cnn} and {taylorswift113}, and obtained a list
of users who took each action. Then, we observed the distribution of these users’ actual profile
words or badges, shown in Figure 6. In both cases, the word ‘and’ dominates but is not mean-
ingful in this context. For (a) {cnn}, after ignoring ‘and’, we see that badges ‘conservative’ and
‘photographer’ are the most frequently used profile words for users who follow {cnn}, so users
taking action of {cnn} are likely to have profile words ‘photographer’ or ‘conservative.’ For (b)
{taylorswift13}, we can again ignore ‘and’, and see that ‘rock’ dominates the profiles of people
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(a) ’and’ (b) ’rock’ (c) ’conservative’ (d) ’feminist’

Figure 5: Wordclouds for selected badges with actions of hashtags, retweets, and following. The
”follow” action is indicated by {·}.

(a) {cnn} (b) {taylorswift13}

Figure 6: Distribution of profile words of users who took a certain action

who follow {taylorswift13}. Comparing with the word cloud for ‘rock’, it appears the model is
truly learning relationships between actions and badges successfully.

4.3 Prediction of badges

While one of the strengths of the model is to associate actions with badges, we were also interested
in the predictive power of the model. We first analyzed the extent to which users are assigned badges
that directly correspond to labels in the user’s profile. By averaging the sampled b(u)i values for user
u and badge i over many trials, we obtain a proportion that shows how many times the badge was
assigned to the user during sampling which we threshold to determine which badges we officially
assign to a user based on the estimated mean of the posterior distribution. Table 2 shows the results
for several different runs of the sampler, confirming that the model does generally correctly assign
badges if the user has the word in the profile, though the sample size affects accuracy.

While the model can (and does) assign labels that are not explicitly in a user’s profile, we have
no way of assessing whether these badges are correct other than by inspection because there is no
ground truth. We did inspect some of the results by hand and found that often an assigned (but non-

Iterations Burn-in Includes followers? Number of users Number of actions p
30 20 No 295 189 93%
30 10 No 327 229 97%
40 20 No 295 189 98%
50 20 No 295 189 99%

100 10 Yes 400 336 99%
300 50 Yes 400 336 100%

Table 2: Percent of badges p predicted correctly (compared to observed labels) with threshold 0.9
for the posterior mean for the badges.
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Iterations Burn-in Includes followers? Number of users Number of actions Threshold p
40 20 No 295 189 0.8 5%
40 20 No 295 189 0.5 27%

100 10 Yes 400 336 0.8 19%
100 10 Yes 400 336 0.5 88%
300 50 Yes 400 336 0.5 11%
300 50 Yes 400 336 0.8 84%

Table 3: Percent of badges p predicted correctly compared to held-out labels.

labeled) badge did appear appropriate for the user in question. To quantify this, we took the existing
labels from user profiles and randomly deleted 1/20 of the labels for each badge, then determined
how well the sampler could assign badges reflecting the deleted labels, given only the user’s actions
and the association of actions with the badge due to other users who had the label in the profile.

The results are summarized in Table 3. The percentages represent how often the badge correspond-
ing to the removed label was assigned to the user. We determined badge assignment by thresholding
the posterior mean at two different levels, 0.8 and 0.5. An alternative approach would be to rank the
badges by posterior mean probability and select badges in order. While higher accuracy is desired,
several possible explanations exist for this behavior. First, randomly deleting some labels could have
complex impacts on the small data set, such as some users ending up with no labels or some actions
ending up with critically low numbers of occurrences. Second, the model is designed to keep the
association of actions with badges sparse, so we expect it to be fairly difficult for the model to as-
sign a badge to a user based on actions alone (and in fact this is confirmed by inspection). Third, the
badges we selected may not be distinctive enough to be selected consistently based only on actions,
or some of the users may not be very active, making prediction for those users nearly impossible.

5 Discussion

Based on experiments, we see our implementation of the badge model performed as expected in
relating actions to badges and performed similarly to the original badge model in predicting held-
out badges. Our results suggest that running the sampler for longer periods of time on larger data sets
would yield better results. In addition, we believe that collection of more data so that we could cull
specifically for very active users would also help to improve the model’s performance, particularly
in prediction tasks.

While the relationships between actions and badges discovered by this model are intrinsically inter-
esting, we are especially interested in the differences between the cases when including ‘following’
actions versus including only retweets and hashtags. Based on the experiments, it appears that
‘following’ actions certainly do provide more information that helps to explain badges. We posit
that this is because some attributes are more easily expressed through short-term actions (such as
retweets or hashtags) and some are expressed better through long-term actions (such as following
an elite user). Based on our work, a combination of this information offers the most promise for
making better predictions about user attributes in this type of model.

Some challenges that can be addressed in this area include expediting the collection of follower
information, as the rate-limited API makes the data collection quite slow, and this may be one
reason previous works have not generally used this kind of information. In addition, modifying the
model to account for the difference between short-term and long-term actions (perhaps by adding
additional nodes to the graph) could enhance the ability of the model to give appropriate weight to
the different kinds of actions. Finally, a challenge that we considered but were unable to address is
the same as presented by El-Arini et al, which is to find a better method for selecting badges so that
they are meaningful, descriptive, and account for similar categories of users.
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