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Abstract

The current work investigates the effect of context on the neural representation
of concepts, measured by MEG during reading of sentences in active and passive
voice. Two approaches to incorporating context are proposed — one by includ-
ing estimates of the functional connectivity of the MEG sensors, and the other
by creating a joint representation of the sentences using an HMM. The suggested
methods are evaluated against non-context models in two tasks — classifying sen-
tences as active or passive and identifying pairs of active and passive sentences that
exemplify the same concept. Both supervised and unsupervised learning frame-
works are presented, as well as the effect of the number of hidden states in the
unsupervised framework on the task accuracies.

1 Introduction

Attaining a comprehensive understanding of how concepts are represented in the brain is crucial
for implementing a computer program that understands simple language. Recent work [1-3] lays
the foundation for understanding and modeling concept representation by putting forth generative
theories of how single-word and simple phrasal concepts are formed. The natural next step is to
investigate and model context effects in language that may modulate the neural representation of
these concepts. The current work proposes two methods of incorporating context in models of
concept representation and evaluates their performance against non-context models.

The models we investigate are based on the neural activity during sentence reading recorded by
Magnetoencephalography (MEG). MEG is becoming increasingly popular in studying brain activity
in language comprehension because of its high temporal resolution that enables millisecond-by-
millisecond tracking of the evolution of neural representations. In line with neuroscience research,
we assume that the underlying true representation of a concept gives rise to the MEG activity. In
this way, we can think of the MEG activity as a function of the true representation of the concept.

However, the true concept representation is not available, so we must find an appropriate estimate.
There are several popular methods for approximating the representation of concepts. The simplest
one is to use the raw MEG recordings during the presentation of a concept as the estimate. The
drawback of this method is that it is not generative. Another approach is to model the representation
of concepts as a combination of the semantic features of the concept. For a single-word noun
concept, a semantic feature can be computed as the occurrence of the word within a large text
corpus that captures the typical use of this word in English text [1]. These semantic features are
motivated by the hypothesis that the neural basis of the semantic representation is related to the
distributional properties of nouns in a corpus of the language. While this approach is generative, it
uses a set number of semantic features. It is not clear exactly what semantic features and how many
of them may be relevant to the brain, so this approach may miss important underlying factors in the
representation.



The first method investigated by the current work not only integrates context into the concept rep-
resentation model, but also avoids the problem of semantic features while maintaining a generative
ability. This approach estimates the functional connectivity of the MEG sensors. The functional
connectivity encodes information about the state of the brain network and describes its evolution
through time. The brain state is modulated by past stimuli, and so the functional connectivity may
also be affected by the context created by these past stimuli. This work seeks to explore how usefully
functional connectivity can be used to quantify context effects.

Estimating functional connectivity as the concept representation is beneficial not only to neuro-
science, but also to machine learning. There exist multiple methods for inferring functional connec-
tivity [4-8] but there is no clear best method. Attempting to address the real-life problem of concept
representation will inform the algorithm we select for functional connectivity estimation.

The second proposed method incorporates context through a joint model of the stimulus sentence.
While others have considered words in the sentence as largely independent, the current study inves-
tigates the benefits of using such a joint model to examine the neural representation of concepts.

2 Methods

2.1 Dataset

The data used in this project was acquired by Tom Mitchell’s brain imaging group. This data set
includes MEG recordings from 306 sensors for 1 subject who read 480 sentences one word at a time
(each word presented for 300ms and followed by 200ms of rest). These 480 sentences include 15
repetitions of 16 pairs of propositions in both active and passive voice (one such pair is: A dog
found the peach” and "The peach was found by a dog”). Thus, the data set is a matrix of dimensions
number of sensors X sample instances for all 480 sentences.

This data was selected because it allows us to investigate the representation of two different sen-
tences (one active and one passive) that seem to illustrate the same concept. Given the nature of this
data, the following two tasks are of interest:

1. classify sentences as active or passive

2. identify pairs of active and passive sentences that exemplify the same concepts

While the identification task is more relevant to the goal of investigating concept representations,
conducting the classification task allows for a more complete picture of the kind of information that
is contained in context.

2.2 Models

To determine the effect of context on modeling concept representation, we need to compare the
performance of two models - one with and one without context. First, we describe the general
framework of our two models. We then define their supervised and unsupervised instantiations.

Note that because the active sentences have only five words while the passive ones have seven, we
consider only the first five words of all sentences in both the context and non-context models. If
the full passive sentences are used instead, the models would heavily favor active sentences in the
classification task, as five-state sequences are always at least as likely as seven-state sequences.

2.2.1 Hidden Markov Model

For our model that incorporates context, we use HMM to model the entire sentence. The dependen-
cies through time formally capture the information available from context.

We assume that the first word type j is distributed according to the probability mass function (p.m.f.)
p(S1 = 7). We assume that word type j follows word k according to a time-invariant p.m.f.
p(S; = j|Si—1 = k). We assume that for each word, the MEG data x; is generated according
to a multivariate Gaussian, X;|S; ~ N (us,, X5, ). we let MEG data x; € RY.
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Figure 1: HMM for MEG data based on words in sentence

The graphical model representation of the sentence and the data are shown in figure[I] In our model,
the parameters to learn are:

1. Probabilities a; = p(.S1 = j) for discrete initial p.m.f.
2. Conditional probabilities 6,5, = p(S; = j|S;—1 = k) for discrete transition p.m.f.
3. Means and covariances /; and X; for continuous emission p.d.f. f(X;[S; = j)

We further assume that }J; are diagonal matrices (i.e. corresponding to the assumption that the
MEG sensor readings are generated independently). We employ a Maximum Likelihood estimate to
compute o, 0, and use sample means and variances to estimate (; and >;. This assumption of
diagonal X, is to reduce the computational complexity and variance of the estimation.

2.2.2 Mixture of Gaussians

The model that we choose for comparison is a Mixture of Gaussians (MoG) model. This model
choice makes the same assumptions about how data is generated from each state as the HMM but
does not account for dependencies across time, which correspond to context. This makes the MoG
the most comparable choice to the HMM. Formally, we assume that the word types are distributed
as discrete p.m.f. p(S; = j), and each word is generated from each state according to multivariate
Gaussian X;|S; ~ N (us,, Xs,)-
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Figure 2: MoG model for MEG data based on words in sentence

The graphical model representation of the sentence and the data are shown in figure 2} The parame-
ters to learn in the MoG model are:

1. Probabilities a; = p(S; = j) for discrete p.m.f.
2. Mean and covariances p; and X; for continuous p.d.f f(X;|S; = 7).



2.3 Learning frameworks

While we do have exact knowledge of true word types for each word, we do not know if there may
be some better way to label the words for the two tasks of interest. Thus, we use both supervised
and unsupervised learning frameworks to investigate both the performance of the models and their
abilities to find the most informative labelings of “word type” for concept representation in sentence
reading.

2.3.1 Supervised Framework

In the supervised setting, each sentence is composed of W words w; of type s; € & =
{*det’, ‘N, ‘V’, ‘was’, ‘by’ } for i = 1, ..., W roughly corresponding to the part of speech of word
w;j.

Here, the different word types contain the following words:
1. ‘det’ = {‘a’, ‘the’}
2. ‘N’ = {‘dog’, ‘peach’, ‘student’, ‘school’, ‘hammer’, ‘door’, ‘doctor’, ‘monkey’}
3. V' = {‘found’, ‘kicked’, ‘inspected’, ‘touched’}
4. ‘was’ = {‘was’}
5

. ‘by’ — {‘by’}

According to this model, the true form of every active and passive sentence in the data set can be
described as follows:

Active sentences: det N V det N

Passive sentences: det N was V by

We use these five states for our supervised HMM model. However, we note that since the third
word of the passive sentence is always ‘was’, while the third word in active sentences is always ‘V’,
we train the MoG to differentiate between ‘was’ and “V’. In this case, the MoG model is a simple
Gaussian Naive Bayes classifier.

Both the HMM and Naive Bayes are trained on all but one sentence and tested on the held-out
sentence, in a leave-one-out fashion. Once the HMM is trained, we use the Viterbi algorithm to
estimate the most likely sequence of states for the test sentence. For the Naive Bayes, we use the
ratio between the log likelihoods of the features using the estimated parameters for the active and
passive sentences.

2.3.2 Unsupervised Framework

To examine the model itself, we turn to an unsupervised setting. Here, we vary the number of word
types s; up to S <= 16 since we only have 16 unique words in our experiment. For both context
and non-context models, we randomly initialize the state assignments s; for all words w; and can
alternate between updating the hidden assignments and learning the model parameters as described
in sections 2Z.2.Tland

The training for both models is done on all sentences using Expectation-Maximization (EM) for the
MoG model and using Gibbs sampling for the HMM. This choice of Gibbs sampling was made in
order to allow for easy extension to more sophisticated frameworks we will discuss in section [3
After training, the Viterbi algorithm is again used to estimate the HMM state sequence, and the
maximum likelihood estimate of each word is found individually for the MoG model state sequence.

2.4 Functional Connectivity

We determined that we would not use fused lasso [6] since it encourages matrices from neighboring
words to be the same. This is not what we want when using the matrices to help distinguish between
words, since we know a priori that neighboring words as well as contexts for neighboring time
intervals are likely to be different.



Instead, we estimate functional connectivity using cross-correlation [7] and causal Graph Processes
(CGP) based on Discrete Signal Processing on Graphs [8] and multivariate autoregressive models.
The functional connectivity matrix based on using cross-correlation is computed,
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The connectivity computed using CGP is the result of an optimization problem,
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This model imparts the functional connectivity matrix A with a physical meaning as a spatially
discretized approximation for a differential operator rather than as a measured statistic. We use an
order M = 2 model to estimate the functional connectivity matrix using this method.

X-corr autoreg
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Figure 3: Cross-correlation (x-corr) based and CGP (autoreg) based functional connectivity matrices

Figure [3] shows an example of functional connectivity matrices estimated using the two methods
described above. We note that cross-correlation is symmetric and not sparse, and represents indirect
interactions rather than direct ones. As expected, the functional connectivity based on CGP provides
sparser and more precise information. Note that only the relative values and not the absolute values
matter in our modeling.

Using the data Y € R306%2%0 from each word we estimate the functional connectivity C; €
R306x306 " To include the functional connectivity in our model, we then concatenate the vecotrized
data and the vectorized functional connectivity matrix to form our feature vector X; € R306+556x1



3 Results

3.1 Classifying Sentences as Active or Passive

In the supervised framework using the 5 states that roughly correspond to part-of-speech tags, we
compare the Leave-one-out Cross-validation (LOOCYV) classification accuracies of the Gaussian
Naive Bayes and the HMM. The classification accuracies of the Naive Bayes are obtained by com-
paring the results of the log likelihood ratio test, as described in section[2.3.1} with the true sentence
labels. The classification accuracies for the HMM are computed by calculating the Hamming dis-
tances between the predicted sequence for the training example and the true labeled sequence. Here,
the Hamming distance between two state sequences equals the number of states that differ between
these sequences.

Because there are 15 repetitions of each sentence, it is unclear how many repetitions (if any)
should be averaged together into a single test example. The respective accuracies for the number of
repetitions averaged together are displayed in Figure 4]

(a) Gaussian Naive Bayes (b) Hidden Markov Model
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Figure 4: LOOCYV classification accuracy verses number of repetitions averaged together into a
single test example.

In the unsupervised framework, we first obtain the predicted state sequences for all 32 sentences
from both the MoG and the HMM. Then, for each model we compute a distance matrix of the
pairwise Hamming distances between the 32 estimated state sequences. Lastly, we perform spectral
clustering on these distance matrices to automatically obtain two clusters for each distance matrix.
The classification accuracy is computed based on how many passive and active sentences were
correctly grouped into different clusters.

To address the question of what number of states is optimal for the classification task, we perform
the experiment outlined above for up to 16 states, as described in section[2.3.2]

Evaluating the significance of the classification accuracies is conducted through a permutation test.
In this test, we permute the correspondences between sentences and estimated state sequences and
perform the outlined experiment. We obtain classification accuracies for 1000 permutation trials.
The p-value of the original classification accuracy is computed by dividing the number of permuta-
tion trials that produce classification accuracies that are greater than or equal to the original by the
number of permutation trials. The results of the permutation tests for those numbers of states which
resulted in classification accuracies significantly different from chance are shown in Table



MoG HMM

accuracy | p-value | states | accuracy | p-value | states
raw MEG only 68.75% 0.056 12 71.88% 0.009 10
raw MEG + x-corr - n.s. - - n.s -
raw MEG + autoreg - n.s. - - n.s -

Table 1: Accuracies for classifying sentences as active or passive using the three types of features,
as described in section[2.4] Displayed are only those classification accuracies that are significantly
different from chance or approaching significance as determined by a permutation test (n.s. = not
significant) and a = 0.05.

3.2 Identifying Concept Pairs of Active and Passive Sentences

Because the identification task is likely to rely on finer distinctions between words than parts of
speech, we use the unsupervised framework to perform this task. In addition, for this task we
measure distance between sentences in a slightly different way because corresponding words in
matching active and passive sentence pairs are in different positions in the sentences. We use a bag-
of-words based representation, which is a vector of counts of the state sequence of a sentence, to
compute pairwise distances between sentences. For a sentence in question, we compute its distance
to every other sentence and sort this list of distances. We find the rank of the true match within this
sorted list. We repeat this process for each sentence and average the ranks to compute rank accuracy.

Lastly, we perform permutation tests to determine the significance of the rank accuracies. The results
of the permutation tests for those numbers of states which resulted in rank accuracies significantly
different from chance are shown in Table[2l

MoG HMM
rank accuracy | p-value | states | rank accuracy | p-value | states
raw MEG only - n.s. - 12.36 0.017 12
12.38 0.048 11
raw MEG + x-corr 12.53 0.054 10 1343 0.035 B
raw MEG + autoreg 11.94 0.036 9 - n.s -

Table 2: Rank accuracies for identifying a pair of active and passive sentences that exemplify the
same concept using the three types of features, as described in section Displayed are only
those rank accuracies that are significantly different from chance or approaching significance as
determined by a permutation test (n.s. = not significant) and o = 0.05.

4 Discussion

The LOOCYV classification results from the supervised framework show that as the number of repeti-
tions that are averaged into a single test example increases, the classification accuracy also increases.
This result is not surprising because the inherent noise in the MEG recordings is increasingly aver-
aged out. However, the interesting outcome is that the Naive Bayes needs 12 averaged repetitions to
reach the classification accuracy of the HMM with 4 averaged repetitions per test example. In addi-
tion, the HMM reaches 100 accuracy, whereas the Naive Bayes obtains only 93.75%. Considering
both of these results, we conclude that by using the joint model for this task, a neuroscientist can
collect three times as much data in the same amount of imaging time without compromising accu-
racy. Because imaging time requires a nontrivial amount of resources while variability in stimuli is
still strongly desirable, these results would be of interest to the neuroscience community.

Conducting the same task with the unsupervised framework replicates the supervised results that
the joint model can classify sentences more accurately. HMM'’s classification accuracy is not only
higher (71.88%) than the non-context model’s (68.75%), but also more significant as shown by
the permutation test. However, including the functional connectivity estimates does not result in
significant classification accuracies for any number of states. These results suggest that either the



functional connectivity estimates add noise to the raw MEG data or that the way we incorporate
them into the features is not sophisticated enough for the classification task.

The concept pair identification task reveals that the joint model continues to outperform the non-
context model. Similarly to the classification task, while using the raw MEG features results in
significant rank accuracies for the HMM, the same is much less the case for the MoG. Unlike the
previous task, the identification task seems to benefit from incorporating the functional connectiity
estimates into the features. Even though the cross correlation is a less sophisticated estimate of
functional connectivity than the autoregressive method, it seems to perform better on this task. While
it is difficult to draw conclusions about the benefit functional connectivity provides, these results
suggest that the functional connectivity carries some information that is not readily available in the
raw MEG data.

Lastly, another interesting outcome is the number of states that results in significant accuracies. It
is notable that they are between 9 and 12, which is neither close to the number of states in the part-
of-speech supervised framework (5) nor to the number of different words in the dataset (16). The
meaning of these states and their number remain puzzling and warrant further investigation.

5 Further Work

In continuing this work, we have additional data from 3 other subjects available. Performing these
analyses will likely show us more about the role of functional connectivity. What could be equally
revealing is to study more sophisticated methods of incorporating the functional connectivity in the
features for the models. Instead of using the functional connectivity directly as features, it may also
make sense to use certain types of estimates of functional connectivity as implicit estimates of a
highly structured covariance X in the Gaussian emission p.d.f.

It may be worth implementing a hierarchical Dirichlet process (HDP) to automatically estimate the
number of states for the HMM and a Dirichlet Process to similarly estimate the number of states
for the MoG model. In our current experiment, the number of unique words is limited to 16, but
the HDP would allow the model to apply to larger data sets with more and longer sentences with a
larger dictionary containing more unique words.

Most importantly, the estimated states in the unsupervised settings should be examined and under-
stood. What these states correspond to may be what opens up additional understanding of how the
brain comprehends and represents concepts through reading.

6 Conclusion

While incorporating an estimate of the functional connectivity into the concept representation model
is not definitively proven to be beneficial, the joint model is shown to outperform the non-context
model on both tasks. The proposed joint model is not only able to classify sentences as active or
passive significantly better than chance, but also group corresponding concept pairs of active and
passive sentences.
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