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Abstract

Most recent efforts in computer vision harness the ever increasing availability of
information on the Internet. In this work, we are interested in developing a frame-
work that automatically mines images from the Internet and develop “knowledge”
from those images. We adopt CNNSs to discover the high level concepts in images,
and use introspection with NLP techniques to describe those concepts in words.
Finally, we show that the system can successfully discover some interesting rela-
tionships between concepts.

1 Introduction

There is consensus in the community that using the crowd for labelling, such as the ImageNet
database [S] and Visipedia [[14]], has its limits. The problem can be best addressed using unsupervised
knowledge discovery from the web-scale data. We are interested in developing a framework that
automatically mines images from the Internet, and try to develop “knowledge” from those images.
A simple type of knowledge lies in relationships between images, such as “hoof is a part of horse”,
or “lemon is yellow”. Given a scalable framework that has millions of images and is continously
gathering more, we hope it could provide an ever-increasing knowledge base and aid further efforts
in computer vision.

Deep learning has emerged as one of the best approaches for many machine learning problems,
specifically in computer vision. Since the release of the work by Krizhevsky et al. [L1], the perfor-
mance of most standard benchmarks in vision has improved. Deep learning frameworks have the
ability to represent extremely complicated functions in an elegant framework. An important prop-
erty of the deep network is that it can represent the functions that a shallower network may need
exponentially more parameters to represent. [[1] An interest feature of the deep networks is that they
can learn all representations automatically. In vision, this is everything from simple edge and texture
detectors to high-level visual concepts, such as a human face. This property is very appealing for
a knowledge discovery framework, since it makes no modeling assumptions on the data. Further-
more, since the network combines those representations in order to make a prediction and learn new
concepts, there is an inherent structure of the visual knowledge present in the network that this work
will try to extract and improve. The representation the convolutional neural networks learn has been
shown to take visual classes which are very convoluted at the image level, and mostly separated in
the higher layers [[18]. This props for the use of high-level similarity metrics in the hidden layers.
Interestingly, unlike the mixture-of-linear-classifiers framework of NEIL [4]] that has to explicitly
cluster the visual classifiers to address the multimodel appearances of the concepts, deep networks
automatically capture the “polysemy” of the word concepts, and will for example automatically
learn the difference in appearance between the fruit “apple” and the corporate logo “Apple”. Ex-
tracting and utilizing these automatic visual clusters has the potential to discover interesting visual
clusters automatically.

While there still remains unanswered theoretical questions about deep learning, such as the optimal
network structure, the convolutional neural nets (convnets) are currently state-of-the art in many
vision problems. There exists approaches to visualize different hidden layers in the network by



“running the network backwards” (deconvolutional nets) [[18] in order to hallucinate an highest
scoring input for a given neuron. Other approaches may search over all training images in order to
find the image, or image patch that gives the highest score for a particular neuron [[11]].

In order to autonomously absorb new knowledge to the knowledge base, we will let the system
gather data from a list of proposed concepts on its own, and learn the concepts in those images.
Specifically, we will train the system using a set of images where each image is associated with
some textual description. When the system sees a new image, it will summarize this new image
in words using high-level concepts based on the knowledge it has discovered so far. Furthermore,
we use the existing corpus, and the high-level feature embedding, which is optimized to maximize
separation between visual concepts, and learn new concepts from clusters in this space. The concepts
can be new, in the sense that 1). it is a combination of old concepts, 2). it is something that is
already in the knowledge base but just has not been noticed yet. Then, the system queries Google
using either more keywords from the proposed list or from the discovered cluster, and acquires more
images with similar ideas. The main goal of this project is a long term one, in this paper we present
a proof-of-concept that demonstrates what kind of concepts can be learned and how the system
works. Specifically, we determine the higher level meanings in images and describe them in words.
For example, after seeing women and men, the system can recognize the general notion of “face”.

2 Related Work

A popular approach to mine visually salient patches from a set of images, aims to find discriminative
patches in the data [[15]. This approach, for example used to find iconic architectural landmarks for
various cities [6], is a clustering approach, but still only works directly on patches of pixels, and thus
cannot represent the complex invariations that a deep network can. A deep network has the ability
to find interesting representations that are important for the data in a discriminative manner.

In the AlexNet paper [L1], similar images are found by extracting the last hidden layer of their
network, and using Euclidean distance between these vectors for different images. These image
similarities are able to capture various invariances of the data, and are much more interesting than
a simple kernel that compares pixel values directly. In this work we hope to explore this property
further in order to discover interesting relationships.

The work of Chen et al. on NEIL [4] was a seminal work in this direction, but the work makes
significant modeling assumptions and has to manually build all visual knowledge from its linear
classifers. The method requires every single concept to be manually fed into the model in terms of
words, such as “horse”, or “apple”. Furthermore, the ability to recognize image attributes is based
on a hard-coded list of such attribute-concepts. The hope is that a deep learning framework can learn
the representations and relationships in a model free manner. This is an example of extrospection, the
act of being given the visual knowledge in a supervised manner. We will aim to do this unsupervised.

Many previous works in computer vision have demonstrated effective ways to annotate an image.
Socher and Fei-Fei [16] used a semi-supervised learning algorithm to perform this task using few
labeled data. Specifically, they mapped both the textual words and image segments into a low di-
mensional latent meaning space using kernelized canonical correlation analysis. If the word and
image segment are close in this space, then they are likely to share the same sematic concept. In
testing, the learned mapping can be used to annotate new images. Blei and Jordan [2] developed the
correspondence latent Dirichlet allocation model that finds conditional relationships between latent
variable representations of set of image regions and sets of words. Under this model, the regions of
the image can be conditional on any set of factors, but the caption words must be conditional on the
factors that are present in the image. Thus, the model is better able to find correspondence between
words and regions, compared to other related but simpler methods, such as Gaussian-multinomial
mixture model and Gaussian-multinomial LDA. These techniques successfully combines the in-
formation in an image with a document to annotate the image. In contrast, we are interested in
summarizing a group of similar images using their associated documents, under the assumption that
these documents may just loosely relate to the image cluster.



3 Visual Knowledge

What does it mean to learn knowledge from a set of images? If we have a system that understands
images, we can expect it to possess the following abilities:

o Generate keywords from an image, i.e., RV*M*3 5 T+ {a}

Generate an image using keywords, i.e., {w} > I € RNXMx3

Extract relationships, such as C; C Cs or Cy ~ Cs

e Able to compute image similarities, i.e., [; X Is — R

Here, I is an image, and {w} is a set of words, and C is a concept. We are interested in creating
such an automatic framework for understanding various aspects of images without making any ex-
plicit modeling assumptions. The goal is to continously feed the framework with random concepts,
and allow the framework to learn these concepts, refine them, and discover new concepts from its
knowledge. The framework should have a large collection of visual concepts, and be able to de-
scribe those concepts in words. Furthermore, the framework should discover relationships between
concepts automatically.

There are two methodologies to knowledge discovery. One is through extrospection, where the
learner is given some examples and told to learn their appearance. The other is through introspec-
tion, where the learner tries to make sense of the data and knowledge from what it already knows.
In this work, we are interested in the second approach. We start with a deep convolutional neural
network initialized using a large database of annotated images, the ImageNet [5]. To initiate the
autonomous learning process, we need to explicitly show a few concepts to the learner at the be-
ginning. Specifically, we pick a word or a combination of words that capture a concept, and let
the system search the Internet to gather a few thousand weakly label images, which could be loosly
related to the concept. To learn the visual appearance of the concept, an output neuron is added to
the label layer, and the existing network is fine-tuned to learn the weights of the new data using a
variant of the classic backpropagation algorithm [9]]. By storing images for each concept, we follow
the approach of NEIL [4] and create a co-occurrence matrix for all concepts we have learned so far.
This co-occurrence matrix can be used to mine object-to-object, object-to-scene, object-to-attribute,
and scene-to-attribute relationships from the data. Examples of such relationships are “eye is a part
of dog”, or “water is blue”. Here, we assume the system can classify a concept as an object, a scene,
or an attribute.

Using the output of a classifier Pr(C'J(»i)), where C'j(.i) is the occurrence of concept j in image 7, we

can define the probability Pr(C’](.z), C ,g‘)), which is the probability that both concepts j and k£ occur
in image 4, and then marginalize over images to find probability Pr(C;, C},). Similar to set overlap,
we can determine if the concepts overlap, or if one concept almost exclusively occurs with another
concept using similarity and part relationships. The entire pipeline is shown in Figure/I}
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Figure 1: The computational pipeline.



Given this ever increasing framework, we can start to make use of the high-level representations that
are learned by the network, which are the high-level layers that contain visually salient concepts,
such as the face of a cat [12]]. While in the standard image space, it might be challenging to compare
two images, the task becomes easier in the high-level feature embedding. Figure [2]illustrates this
point. To compare that both of them have an area of something blue (water), if we are in the
standard image space, we would have to consider a large number of patches since these concepts are
not localized. However, in the high-level feature space, these properties have proven to be localized,
therefore we can use simpler similarity kernels to compare them [18]].

Figure 2: Image-level similarity. "Both images contain something blue”

In this framework, we use two approaches. The simpler approach hypothesizes that each neuron
in the highest hidden layer corresponds to a visual concept. To introduce a simple notation, our
network maps an image I; to a feature vector x1, which is the vector of the neuron activations
during inference.

O(): I =z €RE (1)

We follow some prior work in visualizing these layers [8]], and get a collection of images from
the dataset that has the highest score for this neuron.
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Here, 7 is a set of images, and ® (1) (4) is the output of the j-th neuron. Using the textual descriptions
of these images, we try to extract common concepts from these images. This allows us to use words
to identify a visual concept that has been extracted from the data. It might be a new concept, such
as a forest, even though the concept of forest has not been introduced to the framework. Or this
might be a visual cluster that is more specific to the concept than the one originally introduced to
the network. For example, we might learn to associate keywords such as “steve jobs”, “apple” and
“mac” to the visual cluster corresponding to the “Apple” logo, even though we only introduced the

word “apple” to the network.

The more interesting approach, instead of picking just a single neuron, which corresponds to picking
an indicator function over all the responses in a given hidden layer, we consider a random subset of
the neurons, along with a similarity kernel. Furthermore, instead of doing this only once, we employ
a mode-seeking algorithm by finding a random subspace, picking the best examples, and updating
the projection as the mean of the examples. This is hypothesized to converge towards an interesting
concept in the network. At each iteration we perform the following steps:
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where w is a weighting vector. Given we have associated each neuron, or combination of neurons
with some keywords, for a new image, we can find the keywords that are close to it in the neuron
activation space. In section ] we elaborate on this idea and extend it to more interesting concepts.



We shall do the above procedure in a loop. It allows us to discover new concepts from the data
and find names for them. These concepts can then be added to the co-occurrence matrix. Further,
when a visual concept has been learned, we can revisit the concept learning process and refine our
knowledge of that concept. An interesting advantage of this approach is that this combines visual
knowledge with word knowledge and has the potential to learn a great number of classifiers through
zero-shot or one-shot learning by making use of the sub-concepts [7]].

4 Approach

4.1 Discovering Clusters

We take advantage of the fact that it is easier to separate concepts in the high-level feature space.
To discover clusters in our visual knowledge base, we maximize a kernel density estimate with a
mode-seeking algorithm, specifically mean-shift. This contrasts with other clustering algorithms in
the sense that we simply want to discover a single cluster for computational reasons, in order to try
to capture some part of the space. Since there is no single optimal answer when looking for some
properties of the visual knowledge space, we actually prefer to simply find a local optimum. Given
a fixed similarity kernel that compares the images in some way, the kernel density estimate is as
follows:

£6) o = S Klxoxi) ©

maxy f(x) has a known solution using the mean-shift algorithm, which corresponds to finding a
mode of the kernel density estimate.

However, it is challening to come up with a kernel that captures something interesting. We propose to
pick arandom set of similarity kernels, and maximize the objective function under certain conditions
to find the best kernel in that region. Since the activations of the hidden layers of the network
are sparse, we know that the activations of single neurons in the hidden layers can correspond to
interesting concepts such as cat faces [12]]. We constrain the kernel to only compare a small number
of neurons. That is, the kernel is sparse. The optimization criterion is as follows:

1
rgixf(x; k) o Z K(x, %K) s.t. |kllo <T (6)

where K (x, x;; k) is a similarity kernel between x and x; with hyperparameters k.

For the scaled inner product kernel K (x,y;k) = x” Dyy (where Dy is a diagonal matrix with k
on the diagonal) we have the following optimization problem
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where w = % >, XiDx. This is optimized with an alternating scheme as follows:
k = argmaxw’k s.t. ||kllo <T (10)
k
k; = 1if \{wz<wj,]7éz}|§T (1

and maxy f(x; k) is as before. While it is hard to compare the clusters qualitatively, we observed
that these clusters capture more specific concepts than naively doing mode seeking in the feature
space, and tended to be more variable than for maximizing single neurons.

For the Gaussian similarity kernel K (x,y; k) = exp [—(y — x)” Dx(y — x)]| we have the follow-
ing optimization problem:

mﬁtxﬁ(x, k) = max exp [—(xi — %) Dy (x; — x)] st |kllo < T (12)
= maxexp [—(xi —x)T Dy (x; — x)} + Ak (13)
= maxexp [—w/]k] + A|k[1 (14)



where w/) = (x17) — x( ))2. We find the subgradient:

0
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Here we use subgradient ascent to optimize for k, and maxy f(x;k) as before.

To guide the subgradient ascent we can use an upper bound on f() using Jensen’s inequality and
only accept a subgradient step in each dimension if w'” k'@ — A|k'@)| > w k0) — \|k0)|, where
k’ is the new k. This helps the subgradient ascent step to ascend.

4.2 Naming Clusters

We’ve previously mentioned that we can use the image descriptions to extract concepts from a
cluster. In this section, we will describe a procedure to accomplish this.

First, all images are obtained from some web pages online. We assume the documents on most
web pages can relate to their images to some degree; hence it is natural to use them as the image
descriptons. To extract the useful content from raw html files, we use “boilerpipe” [[L0]. Once we
obtain a document from a html file, we only retain adjectives and nouns using WordNet [[13]] without
the stopwords.

We then concatenate all documents together to form a single document, and run latent Dirichlet
allocation (LDA) [3] on this document. We understand this approach has its drawbacks. However,
if we use the alternative approach, which is to run LDA on every single document, then it can
be difficult to weigh the keywords extracted from each individual document and identify the most
relevant ones. We calculate the importance of each word as the product of its topic weight and its
weight under this topic. We then sort the scores and return the top scoring words as the keywords.

Because the web pages are obtained randomly, we might encounter a cluster where most images are
not associated with the their documents. For example, the background images of blogs. Using the
words in the blogs cannot help much understand the images. Thus, we will need to rely on Google
reverse image search to find a best guess of an image, search Wikipedia for the most relevant page
about this guess, and then use this Wikipedia page as the image description. Though this approach
can work in practice, all experiments shown in section [5|use the original documents.

In summary, since we can associate for each visual concept with some keywords, we could both map
an image to words, and synthesize an image from given words (by maximizing the image input given
anode). Furthermore, the natural structure of the network enables us to extract relationships between
the concepts, and by mining the co-occurrence matrix we can discover other concept relationships.
Finally, given our neuron responses we can construct similarity kernel. This address all of the
“knowledge” requirements described at the begining of section 3]

5 Experiments

To implement this deep learning framework, we use the CAFFE [9] toolbox with the AlexNet archi-
tecture [11]] pre-trained on the ImageNet database. Pre-training has proven to be an important way to
initialize the network which avoid local minima in the non-convex training phase. To add concepts
to the network, we iteratively add a batch of concepts to the network as new labels, and fine-tune
the network to learn the new labels. The network is fine-tuned using stochastic gradient descent
with momentum. Using the added data, we run the network and build a co-occurrence matrix of the
detections.

To test the framework, we learn the following additional 10 concepts shown in figure [3]in the ini-
tialized net, and observe what relationships we can extract if we have around 700 images obtained
from Google image search for each concept:

e beach, beach resort, cat, forest, man, pet, resort, swimming, woman, swimming hall



Figure 3: Examples of the test classes

We split the data equality into training and test. Using the AlexNet architecture this takes around 8
hours to train on a Tesla K40 GPU (by fine-tuning on top of the network pre-trained on ImageNet
but discarding all the previous label nodes), and yields a test set accuracy of 0.60. Furthermore, we
gathered another dataset of 10k images from Google image search with 1000 random classes. To
see if our framework allows us to refine already learned concepts, we find a cluster of images in both
the training dataset and the random dataset closest to the average of the training class in the feature
space. Using the clusters we train another CNN classifier. Training took around 9 hours on a Tesla
K40 GPU. We observe the following result

e Accuracy on test split before refining: 0.60

e Accuracy on test split after refining: 0.56

we see that finding a single cluster seems to be insufficient to refine the detector. We suspect that this
is due to the loss of variability in training data, and hope to be able to remedy this by using multiple
clusters.

We use the learned feature representation by extracting the “fc7” hidden layer activations from the
network, which forms a 4096 dimensional feature space for each image. We use the clustering
approaches described above to get the clusters in figure[d By varying the hyperparameters we get
different types of clusters, and using random restarts we get various clusters. Namely, by increasing
the sparseness of the kernel, we get more concrete concepts, at the cost of occasionally finding
concepts that is difficult to understand from visualizing the images. For example, using the inner
product kernel with no sparsity, we exclusively converge to faces, nature or cars in our training
data. By increasing the sparsity, we converge towards more interesting results. To avoid the issue of
setting the width parameter of the kernels, we set the 100 nearest neighbors to evaluate as non-zero.

We attempt to extract a name for a cluster using the documents it contains. To obtain a cluster, we
sample 100 representative images from an image category, and learn their appearance using a CNN
classifier (fine-tuned on the previous one). The test accuracy on the new classes was 0.58. Using
those new concepts, we attempt to discover relationships by running the detectors on the test dataset.
The top 10 relationships obtained from co-occurrence matrix are the following:

beach resort like resort

e resort like beach resort

face part of woman

mountains part of resort

e shiny part of circular

o blue part of swimming

e beach part of beach resort

® face part of man

where the concepts in italics are discovered by the network, and not a part of the 10 concepts intro-
duced into the network in the extrospection phase.

6 Conclusion

In this work, we explored the idea of using deep learning to discover visual knowledge through
introspection. We demonstrate the ability to find new concepts through learning similarity kernels
and clustering the data. The concepts that are being learned are only limited by the choice of kernel
and amount of data. We attempted to refine the existing classifers, but the resulting classifier did
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Figure 4: Example clusters found in the data, where the leftmost image of each row is the average
image of the cluster, followed by five random samples from the cluster. Finally there are the top five
keywords extracted from the documents using LDA.

not manage to improve on the baseline. We demonstrated how the discovered concepts could be
fed back to the pipeline and used to discover novel relationships. Finally, since this was done with
convnets, by iteratively adding concepts in an online manner with fine-tuning, and noting that the
convnet efficiently shares parameters between concepts, the framework is very scalable.
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