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1 Introduction

In recent years, information-theoretic clustering algorithms have been proposed which assign data
points to clusters so as to maximize the mutual information between cluster labels and data [1} [2].
Using mutual information for clustering has several attractive properties: it is flexible enough to fit
complex patterns in the data, and allows for a principled approach to clustering without assuming
an explicit probabilistic generative model for the data.

Recently, 3] showed examples in which maximizing mutual information leads to poor performance
when the clusters are unbalanced, even in very simple cases. This occurs because algorithms that
maximize mutual information are biased toward splitting the data into equal-sized clusters, and this
causes the algorithms to perform poorly in the large data limit. They propose to instead minimize the
conditional entropy of the cluster labels given the data, where conditional entropy is estimated using
a nearest neighbor-based approach. They show that minimizing this objective instead of maximiz-
ing mutual information tends to select clusters with large gaps separating them rather than simply
selecting approximately equal-sized clusters.

In terms of computation, [2] formulate the mutual information maximization problem as a semidef-
inite program, and additionally use a low rank inement heuristic to obtain low rank solutions. [3]
apply a similar approach to minimizing conditional entropy, involving a relaxation of the discrete
cluster variables resulting in a semidefinite program, which is then converted to a candidate solution
by rounding with respect to random projections, taking a similar approach to [4].

The main contributions of this work are to:

1. further motivate conditional entropy minimization as a clustering objective using the prin-
ciple of Minimum Description Length (MDL).

2. propose a principle for estimaing the number of clusters based on MDL.

3. propose a novel approach, CHMin, for minimizing the conditional entropy using kernel
density estimation and gradient descent.

4. draw atheoretical connection portraying CHMin as a refinement of the K -means algorithm.

5. empirically study the performance of CHMin on some simple synthetic and real datasets.



2 Definitions and Preliminaries

In the following, x1,...,2, € RY are the data points and 41, ...,y, € {1,..., K} are the asso-
ciated clustering variables. We first define our kernel-based density estimators. We use the usual

density estimator for X:
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The estimator for joint density of (X,Y") (where Y has support {1, ..., K})is:
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Let Cy, = {i : Y; = k}, the indices of points assigned to cluster k, and define ny, = |Cy|.
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We estimate the densny of Y by its empirical distribution p(y) :=
The conditional density estimator of X given Y is

p(z,y)
Ty -
Plaly) = p(y)
We then define the estimated entropy of X:
. 1 &
H(X):=—— log(p(z;
(X) n;ﬂ og(p(x4))

H(Y) and H(X|Y) are defined analogously (using f(y) and j(z|y) respectively).
Finally, we define

H(Y|X):=H(Y)+HX|Y) - (X)
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3 Conditional Entropy Minimization and Minimum Description Length
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In this section, we first show that conditional entropy minimization can be seen as a special case of
model fitting using Minimimum Description Length (MDL). When using MDL, we select between
competing models based on which model allows us to compress the data to the smallest number of
bits, providing a trade-off between improving model fit and minimizing model complexity[3].

We represent the data using a two-part coding scheme, in which we encode a point hypothe-
sis (or probability distribution) H € 7H using L(H) bits, and then encode the data D given
hypothesis H, requiring L(D|H) bits. We refer to H, the set of hypotheses under consideration,
as the model. For example, H may consist of all mixture distributions of K Gaussians. More
generally, the following discussion applies to mixtures of any parametric family of distributions
where the number of parameters needed to encode each cluster is fixed (for example, for mixtures
of Gaussians, each cluster is encoded by its mean and covariance parameters). Moreover, we use
the same parametric family when estimating entropy - that is, instead of using kernel density to
estimate empirical distributions, we estimate density within each cluster as a distribution from the
same parametric family (e.g. a Gaussian distribution), fitted using maximum likelihood. We also
assume that the number of clusters K is fixed.

Given data X, under MDL we select the point hypothesis H = (Y, ) which minimizes
the total description length L(H) + L(X|H), where Y contains the cluster assignments and
= (u1,...,px) contains the cluster parameters, e.g. cluster centers in a Gaussian mixture model.



Theorem 1. Under the above conditions, minimizing description length L(H ) + L(X |H) is equiv-
alent to minimizing estimated conditional entropy H(Y | X).

Proof. By assumption, encoding the cluster parameters p requires a fixed number of parameters, so
we can ignore this cost. It remains to encode the cluster assignments Y, requiring L(Y") bits, and to
encode the data given ths model, requiring L( XY, 1) bits.

We first compute L(X|Y,u). By Shannon’s source coding theorem, the optimal expected
code length is achieved by assigning a code length of — log(p) to an outcome with probability p
(and an analogous fact holds for continuous distributions with p as the density, by discretizing the
space of outcomes to small intervals). As such, given hypothesis H = (Y, i), the optimal code
requires p(z;|y;) bits to represent x;. This results in a code length of

LX|Y,p) = — Z log p(xily:)
i=1

= H(X[Y)

Next, we compute L(Y"). To encode the cluster assignments Y, we encode each y; with respect to
the empirical distribution of Y, which by Shannon’s source coding theorem results in a code length
for y; of —log p(y;), and summing over i, the code length is

- Zlogf)(yi) =H(Y)

Note that a recipient of a message with Y encoded in this way can infer which y; are in the same
cluster based on which y; are encoded using the same code word, but they cannot infer how these
code words correspond to the actual clusters parametrized by 1, . .., ug. As such, we additionally
need to send an additional log(K!) bits to encode which of the K'! possible permutations of the
code words correspond to 1, ..., i respectively. However, since K is fixed, this is a constant
and can be ignored.

Combining the above results, we find that the overall description length is:
L(H)+ L(X|H) = H(Y) + H(X|Y) + const
O

One benefit of viewing conditional entropy minimization in the MDL framework is that we can
select the number of clusters K in a principled manner based on MDL. We will show that selecting
the optimal model in this way amounts to minimizing conditional entropy plus a regularization-like
term that penalizes the number of clusters K.

In the MDL approach to model selection, we define models #;,Hs,..., each of which is a
set of point hypotheses. We select the best model by encoding the data with respect to each model
and selecting the model that gives the best compression. In our case H is the set of partitions into
K clusters. As before, the description length for model H  is given by selecting point hypothesis
H € Hg to minimize L(H) + L(X|H). However, the number of clusters K is no longer fixed.

Theorem 2. 7o select the number of clusters K by MDL, we minimize

A(Y|X) + log*(K) + Kd(log(2B) + % log(n)) + log(K")

Proof. Encoding the data requires encoding the number of clusters K, the cluster parameters p, the
cluster assignments Y, and the data X given Y and p.

To encode K, we use Rissanen’s “universal code for the natural numbers,” which was shown
by Rissanen to achieve close to the shortest possible code length for large natural numbers [6].
Define the log™ function as log™(n) = log,(n) + log, log,(n) + . . ., where only the positive terms
are to be included in the sum. Then this code length of K is

L(K) = log™ (K) + log, (Ko)



where K is a constant (equal to ), 27 log™(n)y,

Next, we compute L(u). Since the p; are continuous, we need to discretize them before en-
coding them: following [6], we use a precision of 1/4/n, the asymptotic error of estimating each
parameter: this choice was shown to be optimal for regular parametric families in [6]. Assuming
that each parameter p; has dimension d and that the cluster centers are in a bounded range
|i| < B, the parameters consist of K d numbers, each taking one of 2B+/n possible values after
discretization, so the code length is:

L(p) = Kdlog(2Bv/n)
= Kd(log(2B) + % log(n))

Combining this with the previous theorem, the overall description length is:
N . 1
L(X|H)+ L(H)=H(Y)+ H(X|Y) +log"(K) + Kd(log(2B) + 3 log(n)) + log(K!) + const
N 1
= H(Y|X) +1log"(K) + Kd(log(2B) + 3 log(n)) + log(K!) + const

In conclusion, we minimize H(Y|X) plus a regularization term, log*(K) + Kd(log(2B) +
1log(n)) + log(K!), which acts as a penalty for larger values of K. By Stirling’s formula
log(K!) = O(K log K), so for K < n, the total penalty grows as O(Kdlogn), which is asymptot-
ically the same as the penalty in Bayesian Information Criterion (BIC). O

4 Conditional Entropy and the K-Means Algorithm

In this section, we draw a connection between minimizing conditional entropy and the K-means

algorithm. To do this, we construct an upper bound for H (X]Y). We then show that when a
Gaussian kernel is used, this upper bound becomes the usual K-means objective, and hence the K-
means algorithm can be seen as a way to minimize an upper bound on the estimated conditional

entropy H(X|Y). This will allow us to obtain an upper bound on H (Y| X) as well.

—a?
Theorem 3. When using a Gaussian kernel function K (x) = ez, the estimated conditional

entropy H(X|Y') satisfies:

1
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H(X|Y) < log(h) + L log (2m) 2h2 Z Z

k=11€Cy

Consequently, minimizing the K-means objective Zszl Y icc, (T — ur)? is equivalent to minimiz-
ing an upper bound for I;T(X|Y)

Proof. We estimate H (X|Y') as
H(X|Y) = —begp x;i|y:)

Estimating p(z;|y;) using kernel density estimation on the points assigned to the same cluster as y;:

n

H(X|Y) = Z Hus =y} K (F)
= log(h —*Zlog Zl{yz:yj}K(xi;xj))

tg=1



The argument of log is an average over terms of which n,, terms are nonzero. Hence, by Jensen’s

inequality on the convex function f(z) = — log(z) we interchange the log and the averaging:
lew 1 &« T; — X
H(X|Y) <log(h) = > 7= Hus =y} log(K (=)
i=1 Y j=1
Now using the Gaussian kernel K (z) = 127Te =
H(X]Y) < log( 1§n: ! i}{ 10 (2m) — (T iy
N ; 1) - =
<log(h n <, < Yi yj g 9 A
log(h) + 10 (2 +1§n: 21{ 1(5”1_ 1)2)
= 7'[' P =
g g( n 1y, 4 Yi yy h

1
= log(h) + log (2m) Z - Z Wy =y, H( z;)?
=1 "

The double summation sums (z; —x)? for exactly the ordered pairs (¢, j) where i and j are assigned
to the same cluster. Rearranging to sum over clusters:

H(X|Y) < log(h) + log (2m) 2h2 Z Z — ;)2 (D)

1,j€ECK
To compare this to the K-means objective let uy be the centroid of cluster k, then:
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in the above the cross terms sum to 0 when summing over j for any fixed ¢. Thus this becomes:
> (wi— )’ =2 > (i — )
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substituting this into (T):

H(X|Y) <log(h)+ log (27) Z > (s
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We thus see that minimizing the K-means objective Zle Yico, (i — i )? is equivalent to mini-
mizing an upper bound on the conditional entropy estimator H (XY). O

An intuitive interpretation of this result comes by considering the equality conditions of the Jensen’s
inequality step: since f(z) = —log(x) is strictly convex, equality holds in the Jensen’s inequality
step iff (x; — x;)? is equal for all ¢,j in the same cluster. In other words, roughly speaking,
when the pairwise distances between points in the same cluster are around equal, minimizing the
K-means objective and H(X|Y) become roughly equivalent (however, this should be seen as an
approximation since the cluster assignments are not fixed). As the within-cluster pairwise distances
become more uneven, Jensen’s inequality becomes a more strict inequality, so the K-means
objective grows faster in relation to conditional entropy, suggesting that the K-means algorithm
differs from conditional entropy minimization in that K-means prefers tighter clusters in which the
pairwise distances are more evenly distributed.

We now consider minimizing the conditional entropy H (Y| X).

Corollary 1. Minimizing H (Y| X) is equivalent to minimizing

1 K 2 K N ng 1 K
JF%Z Z(%’*Hk) :*gzlog?Jr%Z Z(m -

k=1i€Cy k=1i€Cy



Proof. By definition:
H(Y|X)=H(Y)+ HX|Y) - H(X)

H (X) depends only on the data X and can be ignored. The result then follows from Theorem |3|in
addition to writing H (V) = — S5, ™ log ™.

n

O

S Gradient Descent for Conditional Entropy Minimization

Here, were derive a simple procedure for minimizing H (Y'|X)/H (V') by gradient descent. For now,
we relax the requirement that each label y; € [K], allowing y; € R¥. We describe in Section
how to transform y; back into a clusters label in [K]]. Since

H(Y|X)=-Exy [log W} and H(Y) = —Ey [logpy (y)],

given estimators px for px, py for py, and pxy for pxy, we estimate

AYIX) =~ log <p“(”)) and ()= =3 log (py (1)

P px ()

Using a kernel density estimates with bandwidth h and a symmetric kernel K}, Vk € [n],

d Dx Y(xiayi)>
AY|X)=—— DX Y%, %)
dy ¥ Z dyz ( px (i)

1 pxy (i, 41)
= gy ) = AR
and
d - 1 Kn(yi, y;
R :—*Zdyllog(PY b)) = 5; = nyh(yiyj;).
Hence,
d A(Y|X) __722:] L K@i 2) = Kn (i ;) 2
dys, i1 K@i, 25) Kn (i, y5)

Finally, using the quotient rule, we can compute the gradient as

HY|X) _ HY)V,HAYIX) - AY|X)V,H(Y)
“H(Y) (H(Y))? '

It should be noted that the majority of summands on the right hand side of Equation are 0 (be-
cause they do not contain yy). Hence, the gradient V, H (Y| X) can be computed using only O(n?)
(rather than O(n?)) estimates of the kernel and its derivative. This can be reduced to O(nlogn)
using a kernel of bounded support and a k-d tree representation of the kernel density estimate.

6 Empirical Results

We implemented the gradient descent algorithm described above in MATLAB and tested it on 6
datasets, alongside 5 other clustering algorithms. For all experimental results, it was assumed that
the number of clusters was known beforehand.



6.1 Clustering Algorithms

CHMin: Our conditional entropy minimization algorithm is based on the gradient descent steps
derived in Section [5| To ensure the values y; € RX are interpretable as cluster labels, after each
iteration of gradient descent, we rescale and project each y; onto the convex hull of the canonical
basis vectors (0,0,...,0,1),(0,0,...,1,0),...,(1,0,...,0,0). In practice, each y; converges to
one of the K vertices of this (K — 1)-simplex; we cluster each x; by the vertex to which y; is nearest.

Other Algorithms: K-means++ and 3 variants of Hierarchical Clustering (HC), with single, com-
plete, and average linkage.

Parameter Selection: The clustering algorithm has 4 free parameters: the kernel and bandwidth for
kernel density estimation, and the step size and initialization for the gradient descent.

Kernel: For the labels, we used a Gaussian kernel, which pushed labels towards vertices of the
(K — 1)-simplex to which they were constrained, [1_-] giving easy interpretation to estimated y values.

For the inputs x, we also generally used a Gaussian kernel which seems to work best for noisy data.
However, we found that, when clusters were sufficiently well separated, using bounded kernels (e.g.,
Epanechnikov, Uniform, etc.) seems to result in very fast convergence.

Bandwidth: We tried several approaches for automatically selecting bandwidth. Specifically, we
tried the LCV, HALL, ROT, and LOCAL criteria available in the MATLAB Kernel Density Estima-
tion Toolbox. E] For our experiments, we used ROT (rule of thumb), a normalization based on the
data’s covariance matrix, which is very fast and seemed to consistently perform well.

Step Size: We found that most sequences of step sizes decreasing sufficiently slowly to 0 gave
comparable results. In our experiments, we used a step size of o; = /i at iteration 1.

Initialization: Theorem 1 suggests using K -means to initialize our labels. Unsurprisingly, in prac-
tice, this work well for datasets such as Iris where K-means itself is able to coarsely pick out the
clusters. In other cases, such as Bars or Circles, the K-means labeling appears to be a sadde-point
and causes gradient descent to converge very slowly. Thus, for experiments, we first initialized with
K -means, and then restarted randomly if gradient descent failed to converge within 200 iterations.

6.2 Datasets

We tested CHMin on 3 synthetic datasets and 3 were real datasets from the UCI repository.

6.2.1 Synthetic Datasets

(a) (b) (©)

Figure 1: Realizations of the synthetic datasets (a) Gaussians, (b) Bars, and (c) Circles.

Gaussians: 100 samples from each of 3 Gaussians in R3, with covariance 0.257 and means (0, 0, 1),
(0,1,0), and (1, 0,0). All algorithms should perform well given rather distinct, spherical clusters.

! Any kernel with unbounded support decreasing monotonically away from 0 should work for this purpose.
Details are available here: http://www.ics.uci.edu/~ihler/code/kde.html


http://www.ics.uci.edu/~ihler/code/kde.html

Dataset (# clusters) | CHMin | K-means++ | HC (single) | HC (complete) | HC (average)

Gaussians (3) 0.991 £ 0.008 0.998 0.767 0.984 0.994
Bars (2) 0.723 £0.013 0.520 0.502 0.524 0.524
Circles (2) 0.894 +0.019 0.671 0.501 0.677 0.605
Iris (3) 0.929 £ 0.031 0.893 0.680 0.840 0.906
Wine (3) 0.675 £ 0.0283 0.702 0.427 0.674 0.612
Wine5 (3) 0.704 £ 0.044 0.494 0.387 0.500 0.500

Table 1: Mean (+ standard deviation) of accuracy, for each algorithm on each dataset (# of clusters).
Hierarchical clustering algorithms are denoted HC (type), where type is the linkage procedure used.
Means and standard deviations were computed from 100 trials, with synthetic datasets resampled in
each trial. Boldface numbers indicate the best performing algorithm for each dataset.

Bars: 400 noisy samples (z;, ;) from each of two long, vertical lines, where each y; ~ Unif(0, 10),
T1,. .., Ta00 ~ N(0,0.3), and g1, . . . , Ta00 ~ N (1,0.3). We expect K-means to perform poorly
here because the variance in y is much greater than in x, while only = depends on the cluster.

Circles: 600 noisy samples (x;,y;) = (r; cos8;,r; sin6;) from two concentric circles, where 0; ~
Unif(0, 27), r1, ..., 7400 ~ N(1,0.25), and 7401, - - -, 7600 ~ N (2,0.25). Since the clusters are not
linearly separable, we expect K -means to perform poorly. In order to show that, unlike clustering
via mutual information maximization, CHMin does not force clusters to be of equals size, we drew
2/3 of our samples from the cluster of smaller radius.

6.2.2 Real Datasets

Iris: 50 samples of flower measurements from each of 3 species of irises.

Wine: 178 samples of each of 13 chemical properties from wines from 3 Italian wine cultivars. Due
to the large number of features relative to the sample size (for a nonparametric method), we expect
the kernel density estimation step may cause CHMin may perform poorly.

Wine5: A subset of Wine using the (arbitrarily chosen) first 5 features and all 178 data points. This
subset is used to study how the performance of CHMin scales with the dimension of the data.

6.3 Results

Of the five algorithms tested, CHMin performed best on 4 of 6 datasets. On the remaining two
datasets (Gaussians and Wine), K-means++ performed best. Since Gaussians is precisely the sce-
nario for which K-means is designed, this is unsurprising. We suspect the poor behavior of CHMin
on Wine is due to the poor dependence of kernel density estimation on dimension (the curse of di-
mensionality). This is supported by the fact that the performance of CHMin improved when the
number of features was reduced to 5, while performance of other algorithms fell sharply. For both
Gaussians and Wine, CHMin still performed competitively (within 3% of K-means).

7 Conclusions

In this work, we motivated estimated conditional entropy minimization as a clustering objective
using MDL, proposed a principle for estimaing the number of clusters based on MDL, proposed
CHMin for minimizing the conditional entropy objective via kernel density estimation and gradient
descent, related CHMin to the K -means algorithm, and tested CHMin on real and synthetic data.

Avenues for empirical future work include testing CHMin on larger datasets, combining CHMin
with dimension reduction techniques for high-dimensional datasets, testing how well our MDL cri-
terion (Theorem 3) can estimate the number of clusters, and comparing CHMin to more modern
nonparametric clustering approaches such as mutual information maximization, the mean shift al-
gorithm, the k-nearest neighbor approach of [3]], and spectral clustering. Theoretical extensions
might include weakening the assumptions of Theorem 2 to cover the nonparametric case and trying
to adapt error bounds for entropy estimation (see, e.g., [7]) to study the performance of CHMin.
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