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Abstract

In this paper we propose the sparse supervised topic model (SSTM), a graphi-
cal model that learns topic structures of a given document collection and also a
sparse linear prediction model for response vairables associated with documents.
Our model jointly learns the topics and the classifier and encourages a sparse clas-
sifier by concentrating all the relevant information for prediction into a small set
of topics. Experimental results show that our proposed SSTM model has good
interpretability on both classification and regression tasks while still achieves rea-
sonable performance in terms of prediction accuracy.

1 Introduction

Topic models build interpretable topic structures on collections of documents. Commonly used
topic models such as Latent Dirichlet Allocation (LDA, [3]) model a collection of documents by
representing each document as a mixture of topics where each topic is represented by its own distri-
bution over the words. However, apart from the raw documents, various forms of side information
are usually available in practice and can be incorporated into the model. Examples of these include
document categories for news articles and rating scores for movie reviews. Such side knowledge
could provide useful information for both topic learning and supervised prediction.

There has been extensive study in incorporating side information (response) in supervised topic
modeling. Supervised LDA (sLDA, [2]) captures a real-valued linear regression response for each
document. The goal is to infer the latent topic representations which is representative of documents
as well as predictive for predictions tasks. This idea has been generalized from regression tasks
to multi-class classification by multi-class sLDA [16]. The multi-class sLDA replaces the linear
response in sLDA with label responses drawn from a softmax regression. The other extended vari-
ant of topic models with classification is discriminative LDA (DiscLDA, [7]) which introduces an
auxiliary parameters for discrimination built upon the original LDA model. Moreover, DiskLDA op-
timizes conditional likelihood instead of likelihood or Bayesian posterior, both of which might not
be optimal for classification or regression tasks. The idea of using side information was also pushed
to the boundary by incorporating the notion of max-margin into the modeling. MedLDA [17] learns
both the latent topic representations and supervised classifiers in max-margin sense.

Although the aforementioned supervised topic models give promising performance in practice, the
supervised models produced are usually not interpretable because they generally output a large num-
ber of latent topics. Ideally, we would like to have a sparse prediction model where only a small
number of relevant topics are used to form each prediction.

The notion of sparse topic model has been well studied in [19, 13]. Sparse topical coding (STC, [19])
learns a unsupervised latent topic representations by relaxing normalizing constraint for probabil-
ities to proportions, which allows it to control the sparsity by using l1 regularization. In [13], it
further reduces the training complexity and provides a linear-time convergence algorithm. These
approaches are under the unsupervised learning setting and aim to model sparse topic representa-

1



tions for documents. This is different from our goal of the project which aims to find a few topics
relevant to the response of each document.

An ad-hoc approach to solve the sparse supervised topic model is as follows. First, use the typical
unsupervised topic model1 to model the documents and then apply any classifier with l1 regular-
ization [14] to select the topics to achieve a sparse model. We call this the pipeline approach.
In this project, we aim to jointly solve the latent topic modeling problem and the sparse regres-
sion/classification problem rather than addressing them by the ad-hoc two-step approach. We unify
these two steps with a Bayesian graphical model. To the best of our knowledge, there is no thorough
study on jointly solving latent topic model and sparse prediction models. A key challenge is that we
need to assume a Laplacian prior to impose a sparse structure, but this prior is not conjugate with
most likelihood choices and this makes our problem non-trivial. In this project, we would use the
data augmentation trick presented in [11] to get around this problem.

2 Sparse Supervised Topic Model

Suppose V is the vocabulary size. LetD denote the number of documents andK denote the number
of topics. For each topic k, we use a topic distribution vector φk ∈ ∆V−1 to represent the word
distribution for the kth topic. Here ∆V−1 is the probability simplex of a V -dimensional vector. To
faciliate a Bayesian treatment, we impose a Dir(β) prior on each topic distribution vector φk.

Our proposed Sparse Supervised Topic Model (SSTM) is a Bayesian graphical model. Under SSTM,
each document d is generated based on the following procedure:

1. Draw a topic mixing distribution vector θd according to a Dirichlet prior with parameter
α: θd|α ∼ Dir(α).

2. For the n-th word in the document d:

(a) Draw a topic assignment zdn2 according to θd: zdn|θd ∼ Mult(θd)
(b) Draw the word wdn according to the corresponding topic distribution βzdn .

3. Draw a response yd based on the empirical topic assignments z̄d = 1
m

∑m
n=1 zdn and the

model η. Furthermore,

• For the regression task we adopt a linear regression model yd ∼ N (η>z̄d, σ
2)

• For the classification task we adopt a probit regression model p(yd = 1|η, z̄d, σ2) =
Φ(σ−1η>z̄d), where Φ(·) is the CDF of standard Gaussian distribution.

Finally, To enforce sparsity on the prediction model, we impose a Laplace prior on η, i.e.,
η ∼ Laplace(0, ν2).

We summarize the generative process as a plate diagram in Figure 1. Let Y = {yd}d, W =
{wdn}dn denote the response variable and words of all documents. Let Φ = {φk}k and Θ = {θd}d
denote the collection of all topic distribution vectors φk and document topic mixing vectors θd.
Suppose Z = {zd}d is the collection of word topic assignments for all documents. Based on the
described generative process, the posterior distribution of the proposed SSTM is,

p(Θ,Φ,Z,η|α,β, ν2,Y,W) ∝ p(η|ν2)

K∏
k=1

p(φk|β)

D∏
d=1

(
p(θd|α)p(yd|η, z̄d, σ)

N∏
n=1

p(zdn|θd)p(wdn|φzdn)

)
.

Again, we reiterate that our proposed model differs from existing models since 1) it models the
conditional distribution of the response using a sparse combination of topics Z and 2) the notion of
sparsity comes from a Laplacian prior which is generally avoided in most methods due to its lack
of conjugacy with other distributions. To our knowledge, no existing method achieves this notion of
sparsity when predicting responses by using a unified generative model.

1Could use either typical topic model or sparse topic model.
2zdn is a K-dimensional indicator vector. (ie., only one element is 1, all others are 0)
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Figure 1: Sparse supervised topic model

3 Parameter inference and prediction of SSTM

In this section, we develop (partially) collapsed Gibbs samplers to infer parameters of both the re-
gression SSTM (SSTMr) and classification SSTM (SSTMc) models. For both SSTMr and SSTMc,
the collapsed posterior distribution of η and Z are well-known [12, 6]:

p(η,Z|W,Y) ∝ p(η|ν2)

K∏
k=1

B(ck + β)

B(β)

D∏
d=1

p(yd|η, z̄d)
B(hd +α)

B(α)
, (1)

where B(x) =
∏

i Γ(xi)

Γ(
∑

i xi)
is the multivariate Beta function; cjk is the number of times the jth word

is associated with the kth topic and ck = {cjk}Vj=1; hkd is the number of times words are associated
with the kth topic in the dth topic and hd = {hkd}Kk=1.

3.1 Representation with data augmentation

Because the Laplace prior on η is not conjugate with the likelihood model, we employ the idea of
data augmentation to rewrite the Laplacian prior as a mixture model, with the help of an auxiliary
variable λ.
Theorem 1 (Data augmentation for Laplacian prior, [10]). Suppose η ∼ Laplace(0, ν2). Then the
prior distribution for each ηj can be written as

p(ηj |ν2) =
e−|ηj |/ν

2ν
=

∫ +∞

0

e−η
2
j/2λ

√
2πλ

· e
−λ/2ν2

2ν2
dλ =:

∫ +∞

0

p(ηj , λj |ν2)dλj . (2)

For Probit regression, we employ the following data augmentation trick from [1] to enforce a Gaus-
sian posterior distribution on classification models η:
Theorem 2 (Data augmentation for Probit regression, [1]). Suppose p(y = 1|η,x, σ2) =
Φ(σ−1η>x). Consider a data augmentation variable γ ∈ R and define likelihood φ(η,γ|x, y)
as

φ(η, γ;x, y) := I(yγ > 0) · N (γ;η>x, σ2). (3)
The likelihood p(y|η,x, σ2) can then be expressed as

p(y|η,x, σ2) =

∫ +∞

−∞
φ(η, γ;x, y)dγ. (4)

3.2 Collapsed Gibbs sampling for SSTMr

Incorporating data augmentation variables {λk}Kk=1, the posterior can be written as

p(η,λ,Z|W,Y) =
1

Z(W,Y)

K∏
k=1

p(ηk, λk|ν2)
B(ck + β)

B(β)

D∏
d=1

p(y|η>z̄d, σ2)
B(hd +α)

B(α)
. (5)

We now give a collapsed Gibbs sampling algorithm to infer parameters in SSTMr. The algorithm
samples each parameter from its posterior distribution conditioned on the other sampled parameter
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values. The Gibbs sampler is collapsed in the sense that the topic dictionary Φ and mixing vectors
Θ are integrated out when computing the conditional distribution of Z.

Update of Z: Fix document d and word n. The conditional distribution of p(zdn = k) can be
expressed as

p(zdn = k|Z−,η, wdn = t) ∝
(ctk,−n + βt)(h

k
d,−n + αk)∑V

j=1 c
j
k,−n + βj

exp

(
− η2

k

2σ2n2
d

+
ηk(yd − η>z̄d,−n)

σ2nd

)
.

(6)
Here c··,−n, h··,−n and z̄·,−n denote topic counts without the nth term in the dth document. nd
indicates the number of words in the dth document.

Update of η: The conditional distribution of η is

p(η|Z,λ,Y) ∝ exp

(
−

D∑
d=1

(yd − η>z̄d)2

2σ2
−

K∑
k=1

η2
k

2λk

)
. (7)

Consequently, η|Z,λ,Y ∼ N (µ,Σ) where

µ = Σ

(
D∑
d=1

ydz̄d
σ2

)
, Σ =

(
diag(λ−1

1 , · · · , λ−1
K ) +

D∑
d=1

z̄dz̄
>
d

σ2

)−1

.

Update of λ: Given the regression model η, the conditional distribution of each augmented variable
can be expressed as

p(λk|ηk) = GIG(λk; p, a, b) = GIG(λk;
1

2
,

1

ν2
, η2
j ), (8)

where GIG(x; p, a, b) = C(p, a, b)xp−1 exp(− 1
2 ( bx + ax)) is a generalized inverse Gaussian distri-

bution [4] and C(p, a, b) is a normalizing constant. Subsequently, λ−1
k follows an inverse Gaussian

distribution:
p(λ−1

k |ηk) = IG(λk;
1

ν|ηk|
,

1

ν2
), (9)

where IG(x; a, b) =
√

b
2πx3 exp(− b(x−a)2

2a2x ) for a, b > 0. Note that λ−1
k can be sampled from an

inverse Gaussian distribution in O(1) time [8].

3.3 Partially collapsed Gibbs sampling for SSTMc

Incorporating data augmentation variables {λk}Kk=1 and {γd}Dd=1, the collapsed posterior distribu-
tion of η and Z can be expressed as

p(η,Z,λ,γ|Y,W) =
1

Z(Y,W)

K∏
k=1

p(ηk, λk|ν2)
B(ck + β)

B(β)

D∏
d=1

φ(η, γd; z̄d, yd)
B(hd +α)

B(α)
.

(10)

We now give a Partially Collapsed Gibbs (PCG) sampling algorithm to infer parameters in SSTMc.
The sampling algorithm is partially collapsed in the sense that when computing the conditional
distribution of p(zdn) the augmented variable γd is integrated out. [15] shows that the partially
collapsed sampling approach improves convergence rate of the Gibbs sampling algorithm. Note that
the inference rule of augmented variable λ is exactly the same with the one in SSTMr.

Update of Z: The conditional distribution of zdn = k can be expressed as

p(zdn = k|Z−,η, wdn = t) ∝
(ctk,−n + βt)(h

k
d,−n + αk)∑V

j=1 c
j
k,−n + βj

Φ
(
η>z̃n,kd

)ỹd (
1− Φ

(
η>z̃n,kd

))1−ỹd
,

(11)
where ỹd = (1 + yd)/2 ∈ {0, 1} and z̃n,kd = z̄d,−n + ek/nd. Note that in Eq. (11) we integrate out
the data augmentation variable γd in order to obtain a partially collapsed Gibbs sampler.
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Update of η: The conditional distribution of η is

p(η|Z,λ,γ) ∝ exp

(
−

D∑
d=1

(γd − η>z̄d)2

2σ2
−

K∑
k=1

η2
k

2λk

)
. (12)

Consequently, η|Z,λ,γ ∼ N (µ,Σ) where

µ = Σ

(
D∑
d=1

γdz̄d
σ2

)
, Σ =

(
diag(λ−1

1 , · · · , λ−1
K ) +

D∑
d=1

z̄dz̄
>
d

σ2

)−1

. (13)

Update of γ: The update rule of γ is very simple. Suppose ϑd follows a normal distribution with
zero mean and σ2 variance. Then

γd ∼
{
N(0,∞)(η

>z̄d, σ), if yd = 1;
N(−∞,0)(η

>z̄d, σ), if yd = 0,
(14)

where N(a,b) is the truncated normal distribution between a and b.

3.4 Prediction

To apply the learned classification/regression model η one needs to sample topic assignments zd for
a new document d. To do this, we use a point estimate of the topic dictionary Φ̂ and then sample zd
from its posterior distribution, integrating out the topic mixing vector θd. Similar approaches were
also taken in [17, 18] to perform prediction. More specifically, the MAP estimator of Φ̂ has the form
φ̂k,t ∝ ctk + βt for k ∈ [K] and t ∈ [V ]. Afterwards, each column in Φ̂ is normalized so that the
probabilities sum to one. Given the estimate Φ̂, the latent topic assignment for each word zdn can
be sampled from a categorical distribution as p(zdn = k|zd,−n, Φ̂, wdn = t) ∝ φ̂k,t(hkd,−n + αk).

4 Experiments

In this section we report experimental results of our proposed SSTM model and its competitors on
real world document datasets. We first briefly introduce the datasets we used and implementation
details of the algorithms. Quantitative results for classification and regression then follow. Finally,
representative words in the learned topics are presented to provide an intuition of the objective of
our proposed algorithms.

4.1 Datasets and implementation details

For the classification task we use the BBC news dataset [5]. The dataset consists of 2225 news
articles and 9636 terms built from the BBC news website corresponding to news in five topical areas
from 2004 to 2005. The five topics include business, entertainment, politics, sports and technology.
For the regression task we use the movie rating dataset [9] which is originally created for sentiment
analysis. The dataset contains 30286 terms over 5006 movie review documents, each rated according
to preference ranging from 0 to 10.

For each dataset we divide the documents into two groups of roughly equal size and use one for
training/validating and the other one for held-out testing. We run 5-fold cross-validation to screen
parameters on the training/validating dataset for all algorithms and use the parameter setting that
gives the best classification/regression performance for cross-validation. For a total of 50 parameter
settings the parameter screening step is completed within two days on a Opterion 6380 server with
four 16-core CPUs and 256G RAM.

We compare the performance of our proposed SSTM model with a pipeline algorithm and also
sLDA, a supervised topic model with dense prediction weights [2]. For the pipeline algorithm, we
first run vanilla LDA using collapsed Gibbs sampling and then run `1 regularized logistic regression
for binary classification and LASSO for linear regression, built on learnt latent topic representations.
The sLDA model is also trained using collapsed Gibbs sampling. All training and testing routines
are implemented in C++.
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Figure 2: Classification error vs. number of topics (K) under 10% (left) and 15% (right) constrained
sparsity level.
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Figure 3: Classification error vs. resulting sparsity level for K = 30, 50, 100.

4.2 Prediction error

We first compare the classification error of SSTM, sLDA and the pipeline algorithm on the BBC
news dataset in Figure 2 to perform binary classification. We divided the documents associated with
the five different subjects into a positive group (all entertainment and sports) and a negative group
(all politics, technology and business). The number of topics (K) ranges from 10 to 100 and we
constrain the sparsity level of SSTM and the pipeline method. By saying an output classifier has
10% sparsity we mean that at most 10% of the weights are nonzero.

Figure 2 shows that our proposed SSTM model consistently outperforms the pipeline one in terms
of classification error. On the other hand, the dense supervised LDA result outperforms both SSTM
and pipeline algorithm by a large margin. This is not surprising, because sLDA used far more topics
than SSTM and the pipeline method and as a result its model interpretability is sacrificed.

We also compare the classification error of SSTM and pipeline when K is fixed and the sparsity
level changes. In Figure 3 we plot the classification error of both algorithms forK = 30, 50 and 100
with sparsity level of the output weight vector ranging from 0 (completely sparse) to 1 (no sparsity
at all). Figure 3 shows that under most settings the joint SSTM model outperforms the pipeline one.
Furthermore, the third figure demonstrates a fast error decay of SSTM than the pipeline model. We
conjecture that information relevant to the prediction task is more concentrated in the topics learned
by SSTM and hence to achieve the same level of prediction error the pipeline solution uses far more
topics than the SSTM solution.

For the regression task, we report the mean square error (MSE) on the movie rating dataset for
SSTM, sLDA and the pipeline method in Figure 4. Similar to Figure 2, in Figure 4 the sparsity level
of output regression models are constrained while the number of topics changes. One difference is
that we use more topics for regression than classification because estimating movie ratings is related
to sentiment analysis and is much harder than news categorization. We can see that still in most
cases the SSTM model outperforms the pipeline method and in general supervised LDA with dense
regression models works much better.
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Figure 4: MSE (regression error) vs. number of topics (K) under 60% (left) and 60% (right) con-
strained sparsity level.

Relevant Topics Irrelevant Topics
ηj -1.25 -0.75 -1.16 -1.16 1.24 1.35 0 0

labour people year game film game people · · · on
elect user economics people best plays year · · · year
party security growth mobile award win on · · · time

tori site on technology music player uk · · · plays
govern software economy phone star england film · · · people
people year rate digit include against time · · · go

tax microsoft market year actor first work · · · company

Table 1: Table showing the top seven words of the 6 relevant topics (topics associated with non-zero
coordinates of η) as well as 2 arbitrarily selected irrelevant topics. The 6 relevant topics are (from
left to right) about politics, technology, business, technology, entertainment and sports.

4.3 Learned topics

We display the learned words and topics for the BBC dataset. The results shown in Table 1 are
the K = 50, ν = 0.05, σ = 0.5, α = ~.1, β = ~.1. These topics obtained a misclassification rate on
testing data of 0.03. The resulting η had only 6 non-zero coordinates, and we display their associated
topics. Of the five subjects in the BBC dataset, we have at least one topic dedicated to each subject.
As expected, the ηj’s for politics, technology and business topics are negative while the ηj’s for
entertainment and sports are positive.

We also included the top 7 words for two arbitrarily chosen topics associated with ηj = 0. Based on
the top 7 words, we do not strongly feel that these topics contain information useful for prediction.
Hence, our algorithm partitioned relevant and irrelevant topics. This is a encouraging result showing
that our algorithm automatically concentrated the most relevant words for prediction within a small
set of topics. We do not expect the naive pipeline approach to achieve such a sparse set of topics to
achieve the same prediction accuracy.

5 Discussion

In general prediction (giving accurate classification/prediction results) and feature selection (picking
variables/topics that are most relevant to a prediction task) are quite different and sometimes are
competing objectives. There might be concerns over our approach in that the performance on both
tasks (prediction and feature selection) could suffer by solving them jointly. However, if topics are
first obtained via unsupervised or supervised topic models without sparsity regularization, it could
be very hard to select a handful of highly relevant topics because there is no incentive for the first
phase of this type of naive approach to concentrate relevant information into a few topics. As a
result, many topics could end up relevant to the prediction task, as shown in the third plot in Figure
3.
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Another motivation for obtaining sparse weight vectors for supervised topic modeling concerns
model interpretability. Consider the case when there are thousands of topics used to train a linear
classifier. Though the model might perform well, there are too many topics used for prediction to
reasonably determine which topics are more important than others for the prediction task.

Finally, we remark that our model can be easily generalized to the multi-task setting where each
document has M labels for M different tasks and one wants to build M prediction models for each
task based on shared latent topic representations. Under such settings our proposed SSTM model
will output a specific small set of relevant topics for each task. On the other hand, this could be very
difficult for unsupervised or `2 regularized supervised topic models because there is no incentive
for these methods to concentrate information for different prediction tasks during the topic learning
phase.
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