Distributed Inference of Overlapping Communities

Xun Zheng Jingwei Zhuo
Machine Learning Department Computer Science Department
Carnegie Mellon University Carnegie Mellon University
xzhengl@andrew.cmu.edu jzhuol@andrew.cmu.edu
Abstract

Overlapping community detection plays a key role in statistical network modeling.
Despite the importance, popular models such as mixed membership stochastic
blockmodels (MMSB) [2] are often not applicable to real world massive networks
due to limited speed and memory of a single computing node. In this project, we
develop distributed inference for models that can discover overlapping communi-
ties in real networks. Specifically, we address three key challenges in distributed
network inference: 1) reduce O(N?) pairwise parameters to O(NN) by choosing
constrained variational formulation described in [7]; 2) minimize communication
cost between processes using a vertex-cut algorithm to partition the network; 3)
synchronize global states between processes via a protocol designed for continu-
ous aggregation and synchronization. Experimental results demonstrate our abil-
ity to tackle large scale network inference tasks.

1 Introduction

Statistical network modeling focuses on discovering hidden structures and properties from the net-
work. A key problem among them is to identify communities from unlabeled data, where clusters
are characterized by link patterns, i.e., dense internal connections and sparse external connections.
The intuition behind is that the nodes in the same community have similar characteristics hence are
more likely to connect to each other than the nodes in different communities. Classical methods
in community detection such as [16, 12] assumes each node engages only in a single community.
However it is evident that this assumption is rather unrealistic. Study on real data [19] provides evi-
dence that overlapping communities exist in many social networks, making overlapping community
detection preferred over single membership approach.

A number of methods [2, 3, 5, 17] have been proposed to address the overlapping community detec-
tion problem. In this project, we focus on mixed membership stochastic blockmodels (MMSB) [2],
a probabilistic model that posits each node as a mixture of memberships. In particular, we con-
sider a variant named assortative mixed membership stochastic blockmodel (a-MMSB) that cap-
tures assortativity by explicitly parameterizing intra-community and inter-community connectivity.
Posterior inference in MMSB is intractable due to the normalization constant, hence approximate
algorithms such as mean-field variational inference [11] comes into play. However, existing varia-
tional method [2] is hardly applicable to massive real-world networks because of the inefficiency:
for N nodes and K communities, the time complexity per iteration is O(N2K?) since it iterates
over O(N?) node pairs and each update has quadratic complexity in K. Moreover, the memory
complexity is O(N2K) since each pair (either link or non-link) is associated with a variational pa-
rameter of size K. For a toy network with 10000 nodes and 100 communities this already implies 40
GB of memory. Hence this method is clearly infeasible for real-world networks where N typically
scales from tens to hundreds of millions.



To address this issue, stochastic variational inference (SVI) [9] has been applied to MMSB in [8],
which achieved O(N K ) instead of O( N2 K?) per iteration complexity by 1) reducing the parameter
space from O(K?) to O(K) using explicit inter-community linking probability € ; and 2) sampling
random pairs of nodes to perform stochastic updates. However this method is inherently sequential,
making it unable to utilize more computational resources. For instance it takes roughly 40 hours to
infer Google webpage dataset with N = 875,000 and K = 1,000. Thus the biggest reported result
on N = 3.7 Mand K = 1,000 presumably takes weeks to converge, which is clearly undesirable
for large scale network analysis. On the other hand, spectral methods have been successfully applied
to overlapping community detection as well. In [10], a tensor decomposition approach with a prov-
able consistency guarantee is introduced and efficiently parallelized. However the time complexity
of O(K?3) already precludes its application to large number of communities. Indeed, the biggest
experiment reported in [10] is conducted with K = 500, whereas in real applications the ability to
model tens of thousands of communities is always preferred.

In this project we address large scale overlapping community detection by parallelizing SVI al-
gorithm for MMSB on multiple machines. Most existing distributed approach for latent variable
model inference [1, 20, 4, 14] resort to data parallelism, i.e., partition the data into multiple ma-
chines and synchronize the shared parameters across different machines using a special component
parameter server. However certain properties of MMSB and network data in general make it dif-
ficult to directly apply any of the existing approaches. In particular, we state three key challenges
encountered in distributed network inference: 1) Excessive pairwise parameterization. In original
mean-field variational approximation for MMSB [2, 8], both link and non-link pairs are associated
with variational parameter of size K. This suggests that even if the input network is sparse, the
resultant parameterized network is dense. It poses difficulty on distributed inference not only be-
cause there are too many parameters to estimate but also because different network partitions will
share enormous amount of parameters, hence requiring heavy synchronization. 2) Efficient network
partitioning. In distributed settings, one important factor of efficiency is minimizing the communi-
cation cost, or equivalently the amount of shared parameters between different machines. Existing
approaches to distributed inference typically assumes data is trivially separable and distributes the
workload by randomly partitioning the data. However for networks random partitioning will result
in a great amount of shared nodes/edges, thus increased communication cost. 3) Parameter synchro-
nization. It is now well accepted that the performance of traditional bulk-synchronous systems (e.g.,
[17]) is mostly determined by the slowest computing node, which is also known as the “curse of the
last reducer”. To avoid the inefficiency we need asynchronous communication between machines to
keep shared parameters up-to-date. However implementing asynchronous parallel scheme is highly
non-trivial, since it usually involves complicated resource management and access control.

In the following report, we introduce the MMSB model and its variational inference problem in
Section 2. Section 3 describes the solution to efficient network partitioning that reduces the amount
of communication between machines. We explain the overall architecture for distributed network
inference and the asynchronous communication protocol in Section 4. Section 5 demonstrates some
experimental results conducted on real networks and finally Section 6 concludes.

2 Stochastic VI for MMSB

In this section we introduce MMSB model, stochastic variational inference algorithm, and the link-
based approach that leads to parsimonious pairwise parameterization.

2.1 Mixed membership stochastic blockmodel

Mixed membership stochastic blockmodel (MMSB) [2] is a popular model used in overlapping com-
munity detection. Unlike traditional community detection models where each node is assigned with
one class label, MMSB posits each node to be a mixture of memberships, thus allowing the dis-
covered communities to be overlapping. In particular, we consider assortative MMSB (a-MMSB),
which is a variant of conventional MMSB.



Let K be the number of communities in the network. Let y,; be the binary indicator of connection
between node a and node b, in other words y,, = 1 if a and b are linked, otherwise y,;, = 0. Let
Br € (0,1) be the intra-community strength parameter that controls how dense the connections
are within community k. Each node is associated with a mixture coefficient § € A, where A
is a (K — 1)-simplex; and each directed pair (¢« — b) is associated with a community indicator
Zasb €{1,2,..., K}

The generative process for a-MMSB works as follows:
1. For each community &, draw an intra-community strength parameter 35, ~ Beta(n).
2. For each node a, draw a mixture coefficient 6, ~ Dirichlet(a).
3. For each pair (a, b):
(a) Draw a community assignment z,_,;, ~ Multinomial(6,).
(b) Draw a community assignment z,., ~ Multinomial(6;).

Br  if zasp = Zacb,

(c) Draw connection y,;, ~ Bernoulli(p) , where p = { )
€  otherwise.

Given the generative procedure, our goal is to infer the posterior p(6, 3, z|a,n,y). Since exact
inference is intractable, we resort to variational approximation.

2.2 Stochastic VI for MMSB

The classical mean-field approximation gives the following factorized distribution:

a(B,0,z) = Hq (Onlvn) T T a(zasblba—sb)a(zacsldacs) Hq Brl k), (1)

= a<b k=1

where the variational parameter -y is associated with nodes, ¢ is associated with pairs, and A is the
variational parameter for inter-community connectivity 3. The problem with this formulation is
there are O(IN?) pairwise parameter ¢, each with size K. Even if the original network is sparse (i.e.
only a few links, which is also commonly observed in real networks), the number of parameter still
depends quadratically on the number of nodes. For real networks quadratic complexity in data size
is prohibitive since it can easily exceed any storage size. Not only so, dense parameterization poses
difficulty on network partitioning and subsequent distributed inference, since it results in too many
shared variables to synchronize.

Fortunately [7] introduced an approximation to avoid this issue by making slightly different varia-
tional assumptions compared to the classic mean-field assumptions. Since it can clamp the non-link
pair parameters into nodes, we choose this “link-based” variational formulation instead of the classic
mean-field approximation. Unlike (1), variational distribution in link-based approach is factorized
as

N
Q(ﬁa 0, Z) = H Q(enh/n) H Q(Za—>ba Za<—b|¢ab)

n=1 (a,b)€links

K
[T  4Gassltasn)a(zacsldacs) [T a(Belre) 2
k=1

(a,b)€nonlinks

with the constraints

bobi= 7 S, 3)

(a,b)€link(a) I=1

where d,, is the degree of a. The main difference lies in the indicator variables z and their variational
parameters ¢. The variational distribution of z is decomposed into two categories. For links (y,, =



(a) (b) () (d) (e

Figure 1: Original network (a), classic variational parameterization (b) and link-based variational
parameterization (c). In (b) and (c) dark solid lines denote the link parameters ¢, With y,, = 1,
light solid lines denote the non-link parameters ¢,_,;, with y,;, = 0. Filled nodes denote the new
variational parameters associated with the nodes. (d), (e): Refer relationship between shards, gener-
ated by random assignment and PDS algorithm. We focus on one partition and its refer set (dark).
PDS only interacts with two partitions whereas random assignment requires all-to-all connection.

1), it is a joint distribution of z,_,; and 2z, and controlled by a mixed parameter ¢,;. For non-links
(Yap = 0), it is a product of two independent distributions as the original mean-field assumption.
The constraints of the non-link parameters ¢,_,; and ¢,.; introduces dependency on interaction
parameters, therefore reducing them into a node parameter ¢, 5. It not only reduces the number
of variational parameters from O(N?) to O(N), but also makes it easy to partition for distributed
inference: the resultant parameterized network is as sparse as the original network. Figure 1 (a),(b),
and (c) illustrates the different parameterization schemes.

Given the variational distribution, one can follow the standard procedure to obtain the evidence
lower bound and coordinate ascent algorithm. We defer the detailed derivation to Appendix A.

3 Network partitioning

The first step in data-parallel distributed inference is to partition the data into smaller blocks. How-
ever, one of the major difference between network model and other latent variable models, e.g.,
topic models, is that the data is not clearly separable. In other words, it is impossible to partition
the network data into non-overlapping shards. Thus our goal is to find a partition that minimizes the
overlapping region between shards. Since the parameterized network has the same structure as the
original network, also considering that the number of nodes are usually much smaller than number
of edges in real networks, vertex-cut algorithms are preferred over edge-cuts since it keeps edges
local while sharing the nodes between shards.

Assume we create L partitions, denoted by Gy, . .., G. For the shared node appeared in multiple
partitions, we impose the relation that the node is “owned” by one partition and the node in other
partitions is “borrowed” from the master partition. By doing so, we establish a connection between
the partitions. More formally, for partition G;(V;, E;), we define V; = M, | J B;, where M, denotes
the nodes owned by this partition, and B; denotes the nodes borrowed from other partitions. We use
master(u) = i to denote that node u is owned by partition ¢, then M; = {u : u € V;, master(V;) =
i} and B; = V; — M,. We can further define the refer set A; = {G; : u € M;,u € G;,j #1,j =
1,..., L}, which denotes the partitions that borrow nodes from G;.

An efficient network partition should meet certain criteria: 1) The communication between different
partitions should be minimized; 2) The scale of each partition should be balanced; 3) The commu-
nication pattern for different partition should be similar. Formally, 1) | A;| is as small as possible for
any i; 2) G; has almost the same size. 3) A; has almost the same size; By constructing A; as the
perfect difference set [15, 6] and using a simple greedy algorithm for partition, we can meet all the
criteria.

A perfect difference set (PDS) P of order L is V1 < ¢ < L, da,b € P, such thata — b = 1
mod L. That is, every number form 1 to L can be expressed as the modulo of the difference of two
numbers in P. With one PDS P, we can construct A; = {G; : j = (k+14) mod L,k € P}, which
satisfies all the requests over the refer set. If we choose P such that 0 € P, the cardinality of the



Algorithm 1 PDS+greedy online algorithm

Input: Network G = (V, E); Partition number: L = p? + p + 1, p is the prime number.
Output: K partitions: G1, ..., G,
Construct basic PDS P of order L, such that 0 € P
Construct the refer set A;,i =1,..., L
for each link (u,v) € G(V, E) do
switch (link (u, v))
case both u and v unobserved:
assign (u, v) to random chosed partition G;, and master(u) = i, master(v) = i;
case u observed and v unobserved:
assign (u,v) to partition G; € Graster(u) U Amaster(u) Which minimizes the number of
links associated with u and v in that partition, and master(v) = ;
case both u and v observed:
assign (u,v) to partition G € Apqster(u) U Amaster(v) Which minimizes the number of
links associated with u and v in that partition.
end switch
end for
Output K partitions G, ..., G,

resulting A; will be the smallest. Figure 1 (d)&(e) compares the refer sets generated from PDS with
those generated from naive random edge assignment. There are two advantages of PDS: 1) For any
two partitions, there is only one direct connection while for random assignment there are two; 2)
There are fewer total number of connections. This results in less communication between different
machines when we perform inference in parallel. However a minor limitation of PDS is that it exists
only for some specific order L = p? + p + 1 where p is the prime number.

With the nice property of PDS, we can use a simple greedy online algorithm to partition the network.
The basic idea is that for every link (u,v), we assign it into the partition that has smallest degree
of node u and v. This is not the optimal solution, and the result depends on the order of input
links. However in practice it achieves reasonable results. The algorithm is described in Algorithm 1.
Since each A; is equivalent to the other A; where j # i, and the greedy assignment strategy is
independent from specific partition number ¢, this algorithm will generate the balanced partitions
G, ..., G, where GG; has almost the same size.

Given the partition of data, the variational parameters can be partitioned as well: A is defined as the
global parameter which is shared by all the nodes and links. ¢g; for any (a,b) € E is the local
link parameter. For each partition ¢, v, for any a € B, are defined as the local “borrowed” node
parameters and -y, for any b € M; are local “owned” node parameters.

4 Distributed SVI for MMSB

In this section we describe our methods on distributed inference for overlapping communities.

4.1 Parameter placement

Most of the parameter server approaches are based on key-value
store, and hash functions are commonly used to index in to the keys.
This results in uniform distribution of the keys, and hence nice load
balancing of the servers. However, for distributed network infer-
ence, such uniform distribution of keys results in too many connec-
tions between machines, as shown in Figure 1 (d). Instead, we can
place the parameters (i.e. the network) according to the network
partition results. By doing so, we not only maximize the data lo- Figure 2: Parameter place-
cality, but also reduce the amount of communication as well as the ment using PDS partitions.
number of machines need to connect to.




Algorithm 2 Distributed SVI for MMSB

Server:
Partition G into L = M blocks G;(V;, E;) and send partition information to workers.
repeat
Receive 07 or O\, perform gradient descent using (8)
until receive terminating signal
Client-foreground:
Receive partition information, load data.
repeat
Perform updates (4), (5), (7), (10)
Update own +y using (6)
Send borrowed 9+ to its master
Send O\ to server
until converged
Client-background:
repeat
Fetch fresh values of borrowed v and A from servers
until receive terminating signal

4.2 Updates in a machine

Let link;(a) = {(a,b) : b € V;,(a,b) € E;} and link(a) = {(a,b) : (a,b) € E}. For simplic-
ity let dy) be the cardinality of link;(a) and d, be the cardinality of link(a). As a result of the
network partitioning, for each worker, only “own” parameters are updated directly, otherwise the
gradients are send to the owners of the parameters, who performs gradient descent upon receiving
the gradients.

For (a,b) € E;, we have a closed form update for local link parameters:

(bfzb,k: oc exp {Ey, [log Our] + Eq, [log Opi] + Eqy, [log Bi]} - “4)

Following the constraints, update for owned node parameters a € M;

-t Z(a,b)elink’j(a) ¢ab,k

Pak = Fo ; (5)
Yok = Tor + POV ks (6)

where
e = ou + Z Gabk + (N —1—da)dy 1 — %t;kla @)

(a,b)elink;(a)

and learning rate p; = (7 + t)", where & is the decay parameter, T is the rate, and ¢ is the iteration
number.

For community k, we have the following stochastic update for global parameters

Moo = Moo+ PeXkos (8)
Mer = Aq PN ©)
where
Mo =m0+ D babk— Mg (10)
(a,b)EE;
2
- — .2 — —(i-1) _
Ny = 1o + (Z %,k) - Z (Gap)” | /2 Z GarPhr  —Apa- (D
acV; a€V; (a,b)EE;



Table 1: Datasets used in the experiments.

dataset #node #link description

Youtube 1,134,890 2,987,624 Youtube online social network
web-Google 875,713 5,105,039 web graph from Google
LiveJournal 3,997,962 34,681,189 friendship network in LiveJournal

4.3 Asynchronous communication protocol

The server-client protocol is described in Algorithm 2. We simulate Hogwild! [18] in distributed
environment by separating the foreground and background roles of client processes: the foreground
role focuses on computing the gradients while the background role do best-effort asynchronous fetch
to keep foreground computation consistent with other clients.

An advantage of this method is that the communication and computation is completely overlapped.
In other words, no time is spent on waiting for remote responses. This is crucial in large scale in-
ference since I/0 waiting directly implies the waste of enormous amount of CPU cycles. Another
advantage comes from the dedicated background synchronizer. In practice a dedicated synchro-
nizer will synchronize the variables in a speed faster than the inference procedure happening in the
foreground. This indicates that the parameters are mostly up-to-date. Also thanks to the efficient
network partitioning, the synchronizer only need to establish connections with a few other machines.
[1] reports the advantage of sparse connections over all-to-all connections in the cluster computing
environment.

S Experiments

In this section we demonstrate the performance of the distributed SVI. We first examine the benefit
of the graph partitioning algorithm, and then the convergence speed and memory footprint of the
distributed SVI on real networks. We use three real world network data’ listed in Table 1.

Experiment settings: In the vertex-cut experiments we first convert the directed graph into undi-
rected ones and removed all the duplicated edges, so as to accommodate subsequent processing for
MMSB, which is designed to model undirected networks. For distributed SVI experiments, follow-
ing the settings in [7], we set the hyperparameters to « = 1/K, 1 = 1, and non-link probability ¢ =
le-30. We fix the SVI forgetting rate x, = 0.5 and k) = 0.9, and tune the learning rate T using
cross validation.

5.1 Vertex-cut algorithm

We report the efficiency of the PDS vertex-cut algorithm. Since p is required to be 1 or a prime
number, we chose p = 1,2, 3,5, that is, partition into M = 3,7,13,31 shards respectively. We
compare PDS algorithm with the baseline method that randomly assigns edges to different partitions.
Since both of the algorithms can handle provided datasets within several seconds, we do not report
the speed of the cut algorithm.

Figure 3 shows the replication factor, which is the total number of nodes generated by the algorithm
divided by the network’s original number of nodes. If the vertex-cut algorithm is inefficient, then it
will generate more “ghost” nodes, i.e., higher replication factor, hence more synchronization burden
to the subsequent distributed inference algorithm. As we can see from Figure 3, in all three datasets
the PDS algorithm results in much fewer duplication compared to random edge assignment method.
In addition, with increasing number of partitions the replication factor only increases slightly com-
pared to the rapid increase of random edge assignment. This is a desired property since it allows the
use of more computing nodes with higher marginal benefits, whereas inefficient cut algorithms will
cancel out the benefit of additional computing resources by making the problem equally larger.

"http://snap.stanford.edu/data/



5 8 10

3.75

25 5
o 11 l ‘al NN I iskl
. . - .ml N
M=3 M=7 M=13 M= M=3 M=7 M=13 M=31 M=3 M=7
(b)

Replication factor
Replication factor
IS
Replication factor

31 M=13 M=31

(a) (©)

Figure 3: Duplication factor of PDS algorithm (blue) and random edge assignment (green) on three
datasets: (a) Youtube; (b) web-Google; (c) LiveJournal. We can observe the advantage is salient on
larger datasets and more partitions.

W DisiNet (M=7) usvi

Memory usage (GB)

,,,,,, —e—DistNet, K=500
——SVI, K=500
10

0 90 1000 1100 1200

web-Google, K=500 Youtube, K=1000

©

S0 w0 700
Time (sec)

(a)

Figure 4: Convergence speed and memory footprint of distributed SVI and serial SVI on (a) web-
Google and (b) Youtube dataset. We can observe faster convergence and lower memory consump-
tion. Red dotted line in (c) indicates the typical RAM size in common computing clusters.

5.2 Distributed SVI

We perform distributed SVI using 7 processes and compare this with the original serial algorithm [7].

Figure 4 (a)&(b) shows the convergence speed in terms of log likelihood on web-Google and
Youtube datasets. We can see that throughout the inference process distributed SVI exhibits faster
convergence. This is expected since it can update more parameters than the serial version at a time.
However also note that the speedup is not ideal. For instance in this experiment ideally distributed
version should be nearly 7 times faster than the serial counterpart, however the actual speedup is
around 3-5. Possible cause of the slow down include: 1) delayed synchronization of the parameters;
or 2) conflict gradients computed in different machines.

Figure 4 (c) compares the memory footprint of two methods. It is obvious that the single machine
SVI consumes a great amount of memory, even exceeding the typical RAM size of common com-
puting clusters nowadays. By contrast, although there are some overheads in duplicating nodes,
distributed SVI successfully reduces the memory consumption by efficient network partitioning.
This suggests our ability to handle large scale real world networks.

6 Conclusion

In this project, we develop efficient distributed stochastic variational inference for MMSB, which
enables large scale overlapping community detection. We tackle the problem by exploiting network
structure and locality, specifically by employing parsimonious parameterization as well as efficient
vertex-cut procedure. We implement a distributed asynchronous communication protocol for vari-
able synchronization, and experimental results confirm the effectiveness our approach.

During the project we find that parallel update of the node parameters results in worse convergence,
due to the conflicting information of the gradients computed in different machines. Recent work on
variable scheduler [13] introduced a mechanism for selecting a set of non-conflict variables to update
safely in parallel. This is an interesting future work that we expect can improve the convergence
speed significantly.



References

[1] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexander J.
Smola. Scalable Inference in Latent Variable Models. In WSDM, 2012.

[2] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed Membership
Stochastic Blockmodels. Journal of Machine Learning Research, 9:1981-2014, 2008.

[3] Brian Ball, Brian Karrer, and M. E. J. Newman. Efficient and principled method for detecting
communities in networks. Physical Review E, 84(3):036103, 2011.

[4] Jianfei Chen, Jun Zhu, Zi Wang, Xun Zheng, and Bo Zhang. Scalable inference for logistic-
normal topic models. In NIPS, 2013.

[5] Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M. Airoldi. A survey
of statistical network models. Foundations and Trends in Machine Learning, 2(2):129-233,
2010.

[6] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Power-
graph: Distributed graph-parallel computation on natural graphs. In Operating Systems Design
and Implementation (OSDI), 2012.

[7] Prem K. Gopalan and David M. Blei. Efficient discovery of overlapping communities in mas-
sive networks. Proceedings of the National Academy of Sciences, 110(36):14534-14539, 2013.

[8] Prem K Gopalan, Sean Gerrish, Michael Freedman, David M. Blei, and David M. Mimno.
Scalable inference of overlapping communities. In NIPS, 2012.

[9] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic Variational
Inference. Journal of Machine Learning Research, 14(1):1303—-1347, 2013.

[10] F. Huang, U. N. Niranjan, M. Umar Hakeem, and A. Anandkumar. Fast Detection of Overlap-
ping Communities via Online Tensor Methods. arXiv:1309.0787, 2013.

[11] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An in-
troduction to variational methods for graphical models. Machine Learning, 37(2):183-233,
1999.

[12] Can M. Le, Elizaveta Levina, and Roman Vershynin. Optimization via Low-rank Approxima-
tion, with Applications to Community Detection in Networks. arXiv:1406.0067, 2014.

[13] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A. Gibson, and Eric P. Xing.
Primitives for Dynamic Big Model Parallelism. In NIPS, 2014.

[14] Mu Li, Dave Andersen, Alex Smola, Junwoo Park, Amr Ahmed, Vanja Josifovski, James Long,
Eugene Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter
server. In Operating Systems Design and Implementation (OSDI), 2014.

[15] Jo Agila Bitsch Link, Christoph Wollgarten, Stefan Schupp, and Klaus Wehrle. Perfect differ-
ence sets for neighbor discovery: energy efficient and fair. In Proceedings of the 3rd Extreme
Conference on Communication: The Amazon Expedition, page 5. ACM, 2011.

[16] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(026113), 2004.

[17] M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis in networks.
Proceedings of the National Academy of Sciences, 104(23):9564-9569, 2007.

[18] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free ap-
proach to parallelizing stochastic gradient descent. In NIPS, 2011.

[19] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Communities Based on
Ground-truth. In ACM SIGKDD Workshop on Mining Data Semantics, 2012.

[20] Jun Zhu, Xun Zheng, Li Zhou, and Bo Zhang. Scalable Inference in Max-margin Topic Mod-
els. In Conference on Knowledge Discovery and Data Mining, 2013.



A Variational Inference for link-based a-MMSB

A.1 Evidence lower bound (ELBO)

The evidence lower bound (ELBO) of link-based a-MMSB is
LA, ¢,0) (12)
=E [10gp(ﬂ,0 Z,Yn,a)] = Eq(8,0, 2|\, 7, ¢, ¢)

K N
:ZEq[logp(ﬁkm ZEQ log q(Bk| k)] + ZE [log p(0n]c)] — ZEq[log q(0n|vn)]
k=1 k=1 n=1 n=1
+ Z E, [1ng(yab|zaﬂb> Za+bs 6)] +E, [Ing(zaﬁbWa)} +E, [Ing(zaebWb)]
a<b
— > Eqloga(zasb, zacslda)]
(a,b)€links

- Z {Eq [IOg Q(za—>b|¢a—>b)] + Eq [IOg Q(Za<—b|¢a<—b)]}

(a,b)E€nonlinks
where the factorized distributions are

q(0,|vn) ~ Dirichlet(vy,) (13)

q(Br|Ax) ~ Beta(Ax) (14)

q(Za—sb|Pa—sp) ~ MUltinomial(¢a—>b) (15)
Q(Zaeb|¢aeb) ~ Mlﬂtinomial(d)aeb) (16)

q(Za—bs Zacb|Pab) ~ Multivariate — Multinomial(¢pap) 17

A.2 Coordinate ascent algorithm

The natural gradient for each variational parameter is as follows:

Neg=ox+ D O+ Caap — Yy (18)
(a,b)€links(a)
Mo =10 + Z Pab — Moo
(a,b)€links

_ _ (19)
6>\Z,1 = 1o + Z Ga kP — )‘211
(a,b)€nonlinks
And the update equation is
%tz,k = 72}1 + Ptaﬁﬁf (20)
and Moo = Moo+ ptOAL g
k,0 k,0 t @1

t—
Mot = Akt + PO
pr is the learning rate: for stochastic variational inference, we can choose p; = (t + 7)~"; for batch

method, we can just choose p; = 1.
For (a, b) € links,

¢ab k = (yballf X exp {]qu [log oak] + ]qu [log obk] + ]qu [log ﬁk]} (22)
Notice that here we ignore ¢*! (k = 1) since we assume € — 0. And for (a, b) € nonlinks,

t
t o Z(ab )€Elinks(a) Zl 1¢kl - Z(a,b)elinks(a) (bab o at

a—b,k — da da — Ya,k (23)
K t t
t Z(a,b)elinks(b) Zl:l d)flkl; Z(a,b)elinks(b) ¢§’l§ —-t
a<bk — = = ¢b’k
db db

10



