An Introduction to Probabilistic Graphical Models

Michael I. Jordan
University of California, Berkeley

June 30, 2003

Chapter 12

Hidden Markov Models

In this chapter we finally relax the assumption of independent, identically distributed (IID) sam-
pling that we have labored under until now. A hidden Markov model (HMM) is a graphical model
that is appropriate for modeling sequential data; i.e., data sets in which successive samples are no
longer assumed to be independent.

An HMM is a natural generalization of a mixture model; indeed, it is perhaps best viewed as
a “dynamical” mixture model. To reflect this point of view, we adjust our terminology somewhat,
referring to the “mixture components” of the mixture model as “states.” To see exactly what kind
of generalization is involved, let us recall the process of generating IID data under a mixture model,
using the new language (cf. Figure 12.1(a)):

e At each step, a state is selected according to the distribution p(z). This selection is made
independently of the choice of states at other steps.

e Given the state, a data vector is chosen from a distribution p(z|z).

Within the HMM framework we no longer assume that the states are chosen independently at each
step, but rather we assume that the choice of a state at a given step depends on the choice of
the state at the previous step. Thus we augment the basic mixture model to include a matrix of
transition probabilities linking the states at neighboring steps. If there are M states, then this is an
M x M matrix, whose (7, j)th entry represents the probability of transitioning from the ith state at
a given step to the jth state at the following step. The process of generating data under the HMM
is suggested in Figure 12.1(b), where we have drawn arrows between the probability distributions
labeled by the states to suggest the transition probabilities. Other than the introduction of a state
transition matrix, the HMM is the same as the simpler mixture model in particular, given the
state at a given step a data vector is generated from a distribution that depends only on that state.

As in any mixture model, the states underlying the data generation process are assumed to
be “hidden” from the learner. We envision an HMM-based learning system observing the pattern
of data in Figure 12.1(a)-one data point at a time-and interpreting the sequence in terms of the
hypothesized states and state transitions of Figure 12.1(b). Just as in the simpler mixture model,
the fact that the data form clusters is grist for the HMM mill, allowing the learner to differentiate
the states. But while the clustering of the data is necessary for an HMM-based learner to be

4 CHAPTER 12. HIDDEN MARKOV MODELS

(@) (b)

Figure 12.1: (a). A sample point is generated from a mixture model by first selecting a mixture
component and then generating a data point from that mixture component. (b) An HMM general-
izes the mixture model by allowing the choice of the mixture component at a given step to depend
on the choice of the mixture component at the previous step. The arrows in the diagram represent
these transitions between the mixture components.

justified in a given problem, it is not sufficient—there should also be regularities in the transitions
between clusters.

The inference problem for HMMs involves taking as input the sequence of observed data and
yielding as output a probability distribution on the underlying states. Given the dependence
between the states, this problem is substantially more complex than the analogous inference problem
for mixture models. Nonetheless, it is readily solved. Guided by Bayes rule, we will uncover a simple
recursion that neatly computes the desired posterior probabilities. In fact, this algorithm marks an
important milestone for us—it begins to suggest the general machinery for propagating probabilities
on graphs that we will be our focus in much of the remainder of the book. With HMMs we begin
our study of inference in graphical models in earnest.

12.1 The graphical model

The graphical model representation of an HMM is shown in Figure 12.2. As the diagram makes
clear, the HMM can be viewed as a linked sequence of mixture models, with the linking occurring
at the level of the mixture components, or “states.” We denote the state at time ¢ as g;, and let y;
represent the observable “output” at time ¢.!

!Throughout the chapter we refer to ¢ as a temporal variable for concreteness; the HMM model is of course
applicable to any kind of sequential data.

12.2. THE PARAMETERIZATION S

Yo Y V> Yr

Figure 12.2: The representation of a HMM as a graphical model. Each vertical slice represents a
time step. The top node in each slice represents the multinomial ¢; variable and the bottom node
in each slice represents the observable y, variable.

We represent the state at time ¢ as a multinomial random variable ¢;, with components qé, for
i=0,...,M. Thus g} is equal to one for a particular value of i and is equal to zero for j # i. As
for the output variables y;, these variables are always observed in the HMM setting and thus they
play a minimal role in the inference problem. We will accordingly leave their type undefined for
now (the reader can think of them as multinomial or multivariate Gaussian for concreteness).

From the graphical model we can read off various conditional independencies. The main condi-
tional independency of interest is that obtained by conditioning on a single state node. Conditioning
on g; renders g;1 and gy41 independent; moreover it renders ¢, independent of g,, for s < ¢ and
t < w. Thus, “the future is independent of the past, given the present.” This statement is also true
for output nodes ys and y,, again conditioning on the state node ¢;.

Note that conditioning on an output node, on the other hand, does not separate nodes in the
graph and thus does not yield any conditional independencies. It is not true that the future is
independent of the past, given the present, if by “present” we mean the current output.

Indeed, conditioning on all of the output nodes fails to separate any of the remaining nodes.
That is, given the observable data, we cannot expect any independencies to be induced between
the state nodes. Thus we should expect that our inference algorithm must take into account
possible dependencies between states at arbitrary locations along the chain. In particular, learning
something about the final state node in the chain, ¢r (e.g., by observing yr), can change the
posterior probability distribution for the first node in the chain, go. We expect that our inference
algorithm will have to propagate information from one end of the chain to the other.

12.2 The parameterization

We now parameterize the HMM by assigning local conditional probabilities to each of the nodes.
The first state node in the sequence has no parents; thus we endow this node with an unconditional
distribution 7, where 7* £ p(gf, = 1). Each successive state node has the previous state node in the

6 CHAPTER 12. HIDDEN MARKOV MODELS

chain as its (sole) parent; thus we need a M x M matrix to specify its local conditional probability.
We define a state transition matriz A, where the (i, j)th entry a;; of A is defined to be the transition
probability p(q{ 1= 1|g: = 1). Note that we assume that this transition probability is independent
of t; that is, we assume a homogeneous HMM. (All of the algorithms that we describe are readily
generalized to the case of a varying A matrix, however this case is less common in practice than
the homogeneous case).

Each of the output nodes has a single state node as a parent, thus we require a probability
distribution p(y;|q;). We again assume this distribution to be independent of t. We make no
further assumptions regarding the form of p(y:|q;) for now; for the purposes of developing the
HMM inference algorithms we need only be able to evaluate p(y;|q;) for a fixed value of y;.

The joint probability is obtained as always by taking the product over the local conditional
probabilities. Thus, for a particular configuration (q,y) = (g0, ¢1,-- -, 97, Y0, Y1, - - -, yT), We obtain
the following joint probability:

T-1 T
p(a,y) = plao) H p(qe411qt) Hp(yt|Qt)- (12.1)
t=0 t=0

To introduce the A and 7 parameters into this equation, we adopt a notation in which state variables
can be used as indices. Thus, when ¢; takes on its ¢th value and ¢;11 takes on its jth value, we let
g;,q:41 denote the (4, j)th entry of the matrix A. Formally, this interpretation is achieved via the

following definition:
M

A i
g = [lag]®%+ . (12.2)
ij=1
Recall that only one of the components of g; is one, and thus only one factor in the product on
the right-hand side is different from one; this picks out the appropriate entry in the matrix A.

Similarly, we define 7y, via:
M

g 2 H (]9 (12.3)
i=1
which has the effect of picking out the appropriate entry in the m vector. We use the simple
shorthand forms ag, g, , and my, throughout the chapter, although the expanded forms in Egs. 12.2
and 12.3 will also prove useful when we discuss parameter estimation.
Plugging the definitions into the joint probability, we have:

T-1 T
p(q.y) = mgq H Aqr,qt+1 Hp(yt|Qt)' (12.4)
t=0 t=0

This is the parameterized probability distribution in which we wish to do inference.

12.3 The inference problem

There are quite a number of inference problems that are of interest in the setting of the HMM. The
general inference problem involves computing the probability of a hidden state sequence g given an

12.4. INFERENCE 7

observable output sequence y. Various marginal probabilities are also of interest, in particular the
probability of a particular hidden state ¢; given the output sequence.

It is also of interest to compute various probabilities conditioned on partial output sequences.
In particular, consider the “on-line” problem in which a sequence of outputs y; arrives and it is
desired to compute the probability of the state at time ¢ immediately, without waiting for future
data. Computing this probability, p(q|vo, - - -, y:), is generally called the filtering problem.? Another
inference problem involves the calculation of p(q|yo, . .., ys), where ¢ > s. This is referred to as the
prediction problem. Finally, the problem of calculating a posterior probability based on data up to
and including a future time, i.e., p(q|yo, ..., yu) for t < u, is referred to as the smoothing problem.

Let us consider the problem of computing the posterior probability p(qly) where y = (yo, ..., yr)
is the entire observed output sequence at our disposal. Let g be an arbitrary fixed state sequence
whose probability we wish to compute. By definition we have p(qly) = p(q,vy)/p(y). The numerator
is readily calculated by substituting ¢ and y in Eq. 12.4. What about the denominator p(y)?

Calculating the denominator involves taking a sum across all possible values of the hidden
states:

T-—1 T
@) =Y wlao) [agnaen: [[2utlarm). (12.5)
q q1 qar t=0 t=0

This sum should give us pause. Each state node ¢; can take on M values, and we have T state
nodes. This implies that we must perform M’ sums, a wildly intractable number for reasonable
values of M and T'. Is it possible to perform inference efficiently for HMMs?

The way out of our seeming dilemma lies in the factorized form of the joint probability distri-
bution (Eq. 12.4). Each factor involves only one or two of the state variables, and the factors form
a neatly organized chain. This suggests that it ought to be possible to move these sums “inside”
the product in a systematic way. Moving the sums as far as possible ought to reduce the compu-
tational burden significantly. Consider, for example, the sum over gp. This sum can be brought
inside until the end of the chain and applied to the two factors involving gr. Once this sum is
performed the result can be combined with the two factors involving gr_1 and the sum over gr_;
can be performed. We begin to hope that we can organize our calculation as a recursion.

12.4 Inference

To reveal the recursion behind the HMM inference problem as simply as possible, let us consider an
inference problem that is seemingly easier than the full problem. Rather than calculating p(q|y) for
the entire state sequence ¢, we focus on a particular state node ¢; and ask to calculate its posterior
probability, that is, we calculate p(q;|y). This posterior probability also has p(y) in its denominator,

2Why “filtering”? The terminology arises from the interpretation of the outputs y; as providing “noisy” information

about the underlying “signal” ¢;. The inference problem is then one of “filtering” the noise from the signal. In the
linear stochastic systems setting in which this terminology originally arose (cf. Chapter 15), the calculation of
quantities such as p(g¢|yo, ..., y¢) often had a frequency domain interpretation in which some frequencies are passed
and not others. In such a setting the terminology is rather natural. While recognizing the possible unnaturalness of
the terminology outside of the linear systems setting, we bow to its wide usage and adopt it here.

8 CHAPTER 12. HIDDEN MARKOV MODELS

OO0

Vi Y+l

Figure 12.3: A fragment of the graphical model representation of an HMM.

and in fact we can easily adapt our algorithm for computing p(¢;|y) to compute p(qly) or marginals
over substrings of ¢ (see Exercise ?77).

We thus turn to the calculation of p(¢|y). To make progress, we need to take advantage of the
conditional independencies in our graphical model, breaking the problem into pieces. To do so we
condition on a state node (see Figure 12.3). We reverse the terms ¢; and y via an application of
Bayes rule, conditioning now on ¢;, and use conditional independence:

_ pylg)p(ar)
plaly) = o) (12.6)

_ P, yila)p(etas - - yrla)p(gr) (12.7)

p(y)

Finally, we regroup the terms and make a definition:

p(yﬂa <o Uty qt)p(yH-la s 7yT|qt)

plaly) = (12.8)
p(y)
o
_ (Qt)B(Qt) ’ (12‘9)
p(y)

where
a(gr) = p(yo, - e, qr) (12.10)
is the probability of emitting a partial sequence of outputs yg, ..., y; and ending up in state ¢;, and
Blat) = p(Yr+1,- - yrigr) (12.11)
is the probability of emitting a partial sequence of outputs y441, ..., yr given that the system starts

in state ¢;.

12.4. INFERENCE 9

Given that the sum of p(g|y) over the possible values of g; must equal one, we use Eq. 12.9 to
obtain:

p(y) = ala)Blar)- (12.12)

qt

That is, we can obtain the likelihood p(y) by calculating «a(q;) and B(q;) for any ¢ and summing
their product.
We make one additional definition: y(g;) will denote the posterior probability p(q;|y). Thus:

v(q) £ (a)Blar) (12.13)
p(y)

where p(y) is computed once, as the normalization constant for a particular (arbitrary) choice of t.

We have reduced our problem to that of calculating the alphas and the betas. This is a useful
reduction because, as we now see, these quantities can be computed recursively.

Let us first consider the alpha variables. Given that «(q;) depends only on quantities up to
time £, and given the Markov properties of our model, we might hope to obtain a recursion between
a(qy) and a(qi11). Indeed, referring to Figure 12.3 to justify the conditional independencies we
need, we obtain:

a(gi1) = P(Yos-- - Yit1. Git1) (12.14)
= p(Yo,. - Yt+1/qt+1)p(qr+1) (12.15)
= p(Wos - Ytlg+1)P(Ye+1/qe+1)p(qr+1) (12.16)
= p(Wos-- Yt @+1)P(Yr+1]q141) (12.17)
= Zp(yoa e Yt Gt Q1) P(Ye1 | Gri) (12.18)
qt

= Zp(yoa o Yt G 1) p(G) p(Yer 1) (12.19)
qt

= > .- wila)p(ars1la)p(@)p(yeralaes) (12.20)
qt

= Zp(ym o Yt) P(Ge1 | ae) P (Y1 | Q1) (12.21)
qt

= Z (qt)ag,qp1P(Yt+11qe+1)- (12.22)

qt

Throughout this derivation the key idea is to condition on a state and then use the conditional
independence properties of the model to decompose the equation. This is done in Egs. 12.16 and
12.22, both of which can be verified via the graphical model fragment. The second key idea is to
introduce a variable, in this case ¢q;, by marginalizing over it (cf. Eq. 12.18). Once ¢, is introduced
the recursion follows readily.

The computational complexity of each step of the alpha recursion is O(M?); in particular, for
each of the M values of ¢;11, we require M multiplications to compute the inner product of a(q;)

10 CHAPTER 12. HIDDEN MARKOV MODELS

with the appropriate column of the A matrix. To compute all of the alpha variables from ¢ = 1 to
t = T thus requires time O(M?T).

Note that the algorithm proceeds “forward” in time. The definition of alpha at the first time
step yields:

a(g) = p(yo,q0) (12.23)
= p(Yolq0)p(q0) (12.24)
= p(Yolgo)my,- (12.25)

and these values are used to initialize the recursion.

For the beta variables we obtain a “backward” recursion in which $(¢;) is expressed in terms
of B(gi11), where once again the various steps are justified by making reference to the graphical
model fragment in Figure 12.3:

Blar) = pyit1:--- yrla) (12.26)
=) pWrsre -y e |ar) (12.27)
qt+1
= Zp(yt+1a---ayT|Qt+laQt)p(Qt+1|Qt) (12.28)
qt+1
= ZP(%H, syl 1)PWer 1] e 1)(gi 1] ar) (12.29)
qt+1
= ZB(Qt+1)GQt,Qt+1p(yt+1|Qt+1)- (12.30)
qt+1

Note that the beta recursion is a backwards recursion; that is, we start at the final time step T and
proceed backwards to the initial time step.

As for the initialization of the beta recursion, the definition of S(g7) is unhelpful, given that it
makes reference to a non-existent yr,q, but we see from applying the recursion once to compute
B(qr_1) that this value will be calculated correctly if we define 5(g7) to be a vector of ones.
Alternatively, computing p(y) at time T', we have:

ply) = Y aldr)Blah) (12.31)

= Y aldh) (12.32)

= p(y), (12.34)

and we see that the definition makes sense.
If we need only the likelihood p(y), Eq. 12.31 shows us that it is not necessary to compute the
betas; a single forward pass for the alphas will suffice. Moreover, Eq. 12.12 tell us that any partial

12.5. AN ALTERNATIVE INFERENCE ALGORITHM 11

forward pass up to time ¢ to compute «(q;), accompanied by a partial backward pass to compute
B(q:), will also suffice. To compute the posterior probabilities for all of the states ¢;, however,
requires us to compute alphas and betas for each time step. Thus we require a forward pass and a
backward pass for a complete solution to the inference problem.

12.5 An alternative inference algorithm

The alpha-beta algorithm is not the only way to compute the posterior probabilities of the states. In
this section we describe an alternative approach in which the backward phase is a recursion defined
directly on the 7(g;) variables. An interesting feature of this algorithm is that the backward phase
makes no use of the observations y;; only the forward phase uses the observed data. We can throw
away the data as we filter.

The algorithm differs from the alpha-beta algorithm only in the backward phase. In the for-
ward direction we run the alpha algorithm as before, calculating the filtered quantities a(q;) =
(Yo, - Yt: Gt)-

To uncover a backward recursion linking the ; variables, we refer once again to the graphical
model fragment in Figure 12.3. Our goal is to compute v(q:) = p(q¢|yo,- .., yr). As in our earlier
calculations, our main tool for computing such quantities recursively is to condition on a state
variable; such conditioning breaks the problem into two pieces. In particular, we condition on gz
and obtain:

p(qilgi+1, 90, - - yr) = p(ail g1, Yo, - ye)- (12.35)
This shows that we can get a conditional probability that depends on all of the data via a conditional
probability that depends only on the partial sequence up to ¢. Moreover, the left-hand side can be
readily converted into 7(g;) by multiplying by p(gi+1|yo,-..,yr) which is y(g;+1) by definition
and summing over ¢;y1. The details are as follows:

@) = Y plasaslyos - yr) (12.36)
qt+1
= ZP(Qt\QtHyoa o yr)P(Ge1 Yo, - -5 yT) (12.37)
qt+1
= ZP(Qt\QtHa Yos - - Yt)P(qe+11Y0s - - - YT) (12.38)
qt+1
qta gt+1, Y0, - - - ayt)
= Z D)p(Qt+1|yo, e YT) (12.39)
Qe Qtp qt; 4t+1, Y05 - - - Yt
p(qt; Yo - - - y1)P(gi+1]qr)
Qet1 qtp qt> Yo, - - - Yt)P\qt+119¢
a(qt)a ,
- Z Iy (gr41) (12.41)
Z qt)a(It,Qt+1

gt+1

We see that this recursion makes use of the alpha variables, which therefore must be computed
before the gamma recursion begins. The gamma recursion is initialized with v(g7) = a(qr).

12 CHAPTER 12. HIDDEN MARKOV MODELS

Note that the data y; are not referenced in the gamma recursion; the alpha recursion has
absorbed all of the necessary data likelihoods.

12.6 The £(q, q;11) variables

The alpha-beta or the alpha-gamma algorithm provide us with the posterior probability of the
hidden states of the HMM. These quantities are the direct analogs of the posterior probabilities h;
that we studied in the simpler mixture setting. Moreover, they play the same role in estimating the
parameters of the output distribution as we will see in Section 12.8 they are the expected sufficient
statistics for these parameters. To estimate the transition probability matrix A, however, we need
something more. It is clear intuitively, and justified in Section 12.8, where we write out the complete
log likelihood, that what is required is the matrix of cooccurrence probabilities p(gs, ¢i41|y). In this
section we show how to calculate these posterior probabilities.
Let us define

E(qe, gr1) = p(ae gri1|y)- (12.42)

There are several ways to calculate this quantity. One way is to return to first principles and
develop recursions for the &(q, q;+1), following much the same procedure as we followed for the
singleton probabilities y(g;). This is indeed a rather useful exercise (which we ask the reader to
carry out in Exercise ?7), not only because it reinforces the Markovian calculations that we have
engaged in, but because it provides a stepping-stone to the general “junction tree algorithm” that
we discuss in Chapter 17. That algorithm provides a general framework from which to derive all of
the recursions that we describe in this chapter. Moreover, if we have an algorithm for calculating
&(q¢, gr+1) in hand, we can also obtain the singleton probabilities via v(q;) = thﬂ (G, qran)-

A second approach to calculating £(g;, q;41) is to build on the recursions already developed for
the alphas and betas:

Elat, qe1) = (e g1 ly) (12.43)
_ p(Wlae, a+1)p(qe41|q0)p(ar)
p(y)
_ o Yl a)P (e a1)PYrras - -5 y7lde1)P(de | a)p(ar)
p(y)
_ o lg)p(Ye19641) 89041 0g0.g04 _ (12.44)
p(y)

This result can also be expressed in terms of alphas and gammas:

(qs)p(Ye+1]qi41)’Y(Qt+1)aqt,qt+1

o) (12.45)

(g, qre1) =

In either case we see that we can readily calculate the &(q, g11) variables once we have finished
the recursive calculation of the singleton probabilities y(q;).

12.7. NUMERICAL ISSUES 13

12.7 Numerical issues

To summarize, we have found that we can calculate all of the necessary posterior probabilities for
the HMM recursively. Given an observed sequence y, we run the alpha recursion forward in time.
If we require only the likelihood we simply sum the alphas at the final time step. If we also require
the posterior probabilities of the states, we proceed to either the beta recursion or the gamma
recursion.

Before these recursions are implemented on the computer, attention must be paid to numeri-
cal issues. In particular, the recursions involve repeated multiplications of small numbers and it
is generally not long before the numbers underflow. To avoid underflow it suffices to normalize.
We outline the basic ideas in Exercise 7?7, but in brief the procedure is as follows. The alpha vari-
ables, p(yo, - - -, Ys, qt), can be viewed as unnormalized conditional probabilities. Indeed, normalizing
means division by p(yo, . .., y:), which yields conditionals p(qg;|yo, ..., y:). Not only are these condi-
tionals scaled in a numerically sensible manner, but they also have a sensible semantics—they are
the filtered estimates of the states. In sum, one should always compute normalized alphas. In the
backward direction, if one uses the gamma recursion one is already on safe ground the gammas
are conditional probabilities and hence sum to one. Moreover, it is easy to verify that normalized
alphas can be used in Eq. 12.41 in place of the unnormalized alphas. Alternatively, if one uses
the beta recursion, it turns out that a numerically sensible solution (although one that is devoid
of probabilistic interpretation), is to use the normalization factors from the forward recursion to
rescale the beta variables (these rescaled betas will not sum to one). It turns out that the rescaled
variables are then used exactly as the original alphas and betas are used in the formulas for the
posteriors v(q;) and &(q¢, gi+1) (i-e., the normalization factors cancel). See Exercise 7?7 for further
discussion.

12.8 Parameter estimation

The parameters of an HMM are the transition matrix A, the initial probability distribution 7 and
the parameters that are associated with the output probability distribution. In this section we
discuss the problem of estimating these parameters from data.

Let § = (m, A,n) represent all of the parameters of the HMM model, where p(y;|q;,n) is the
output distribution. The likelihood is given by p(y|6), for a fixed observable sequence y. Taking
the logarithm of Eq. 12.5 we have the following log likelihood:

T—1 T
pl0) =1og > > "> " wlq0)] agrgess [[2(wilar, n). (12.46)
q q1 qar t=0 t=0

Our goal is to maximize this expression with respect to 6.

As with our earlier models, this is in principle just another optimization problem that can be
solved via standard numerical optimization methods. In practice, however, the EM algorithm is
generally used to estimate HMM parameters.

14 CHAPTER 12. HIDDEN MARKOV MODELS

12.8.1 EM algorithm

The EM algorithm for the HMM presents no new difficulties to surmount and we will make relatively
short work of the derivation. For concreteness we derive the algorithm for the case in which
the outputs y; are multinomial variables; it should be obvious how to change the derivation to
accommodate other output types (cf. Exercise 77).

In the multinomial case, y; is an N-component vector such that yi is equal to one for a particular
component and zero for all other components. We use the symbol 7;; to denote the probability
that the jth component of y; is one, given that the ith component of ¢; is one; i.e., n;; = p(yi =
1|gi = 1,n). Using this notation we have:

pytlam) =]] (12.47)

as the general expression for the output distribution.
As usual we begin by writing down the complete log likelihood to discover the form of the M
step estimates as well as the sufficient statistics that are needed for the E step. We have:

T-1 T
logp(g,y) = log {qu T aaaess Hp(ytqt,n)} (12.48)
t=0 t=0
M T-1 M
= log 4 [][m H IT lai Mt+1H H ‘Ityt (12.49)
=1 t=0 1,7=1 t=01,7=1
T-1 M T M
= Zqﬂ log m; + Z Z tqt+1 loga;j + Z Z qtyt log ;. (12.50)
t=0 12,7=1 t=01,7=1

From this expression, we see that m;; = ZtT;()l q,ﬁ'q{+1 is the sufficient statistic for a;;, n;; =
Zt 0 qtyt is the sufficient statistic for n;;, and qé is the sufficient statistic for 7;. The maximum
likelihood estimates for the case of complete data are therefore given by:

Gij = —— (12.51)
Z]]gw:1mik

A Tij

iy = (12.52)
Z;Igvzlnik

T o= q. (12.53)

All of these estimates have natural interpretations. Note that m;; is the count of the number
of times that the process is in state i and transitions to state j. Dividing by), m;, yields the
proportion of those transitions out of state 4 that go to state j—a natural estimate of a;;. Similarly
the estimate of 7;; is given by the proportion of times that the chain is in state 4 and produces the

12.8. PARAMETER ESTIMATION 15

jth output value. Finally, for the estimate of m;, we obtain a singular distribution that puts all of
the probability mass at the observed initial state.?

We turn to the E step of the EM algorithm. Consider first the expectation of the sufficient
statistic n;; = Ztho qiy]. We have:

T
E(nijly,07) = Y E(gjly,0%)y] (12.54)

t=0
T . .

= Y plg; = 1y, 0Py (12.55)
t=0
T o

£ N v, (12.56)
t=0

where we introduce the notation ’yg in the last line. By definition ’yg is equal to y(q;), evaluated at
that value of g; such that ¢! = 1. Note finally that the dependence of ~} on () has been suppressed.
Similarly, for the sufficient statistic m;;, we have:

T-1

E(mily,0®) = " E(giq]ly,0W) (12.57)
t=0

T-1
= Y plgial 1y, 0%) (12.58)
t=0

lI>

T-1 B
> & (12.59)
t=0

where we let §i7jt+1 denote £(qgs, qry1) for (gi, qey1) such that ¢f = 1 and qz+1 =1.

In summary, the sufficient statistics are calculated via the recursive forward-backward procedure
from Section 12.4. We calculate the v variables via either Eq.12.13 or Eq.12.41. The £ variables
are then calculated via Eq. 12.44 or Eq. 12.45.

With the estimated sufficient statistics in hand, we substitute into the maximum likelihood
formulas (Egs. 12.51, 12.52, and 12.53), to obtain the M step of the EM algorithm (also known, in
the case of HMMs, as the “Baum-Welch updates”). We obtain:

T i T i
ﬁ(p+1) o tho %?yi - tho ’)’;yz{
ij - N T i - T i
D k=1 D1—0 ’Yiyf D=0t

®In a more general setting, in which we have multiple repeated observations from a single HMM (i.e., data that
are IID at the level of entire sequences), the estimate of m; becomes the proportion of times that the chain starts in
state ¢, and indeed the estimates in Eq. 12.51 and Eq. 12.52 also become averages over the multiple repetitions (cf.
Exercise 77).

(12.60)

16 CHAPTER 12. HIDDEN MARKOV MODELS

where we use the fact that Z,]CVZI yr =1,

&l(?ﬂ) Zt 0 51 t+1 _ Zt 0 51 t-'l—l’ (12.61)
Zk 1Zt 0 ftt+1 Zf 0 Vi

where by definition Zk 1 f, 1 = =}, and:

APt = i, (12.62)
The EM algorithm iterates between performing these updates (the M step) and the forward-
backward pass using the updated values (the E step).

12.9 Historical remarks and bibliography

