
An Introduction to Probabilistic Graphical ModelsMichael I. JordanUniversity of California, BerkeleyJune 30, 2003

2

Chapter 12Hidden Markov ModelsIn this chapter we �nally relax the assumption of independent, identically distributed (IID) sam-pling that we have labored under until now. A hidden Markov model (HMM) is a graphical modelthat is appropriate for modeling sequential data; i.e., data sets in which successive samples are nolonger assumed to be independent.An HMM is a natural generalization of a mixture model; indeed, it is perhaps best viewed asa \dynamical" mixture model. To re
ect this point of view, we adjust our terminology somewhat,referring to the \mixture components" of the mixture model as \states." To see exactly what kindof generalization is involved, let us recall the process of generating IID data under a mixture model,using the new language (cf. Figure 12.1(a)):� At each step, a state is selected according to the distribution p(z). This selection is madeindependently of the choice of states at other steps.� Given the state, a data vector is chosen from a distribution p(xjz).Within the HMM framework we no longer assume that the states are chosen independently at eachstep, but rather we assume that the choice of a state at a given step depends on the choice ofthe state at the previous step. Thus we augment the basic mixture model to include a matrix oftransition probabilities linking the states at neighboring steps. If there are M states, then this is anM �M matrix, whose (i; j)th entry represents the probability of transitioning from the ith state ata given step to the jth state at the following step. The process of generating data under the HMMis suggested in Figure 12.1(b), where we have drawn arrows between the probability distributionslabeled by the states to suggest the transition probabilities. Other than the introduction of a statetransition matrix, the HMM is the same as the simpler mixture model|in particular, given thestate at a given step a data vector is generated from a distribution that depends only on that state.As in any mixture model, the states underlying the data generation process are assumed tobe \hidden" from the learner. We envision an HMM-based learning system observing the patternof data in Figure 12.1(a){one data point at a time{and interpreting the sequence in terms of thehypothesized states and state transitions of Figure 12.1(b). Just as in the simpler mixture model,the fact that the data form clusters is grist for the HMM mill, allowing the learner to di�erentiatethe states. But while the clustering of the data is necessary for an HMM-based learner to be3

4 CHAPTER 12. HIDDEN MARKOV MODELS
x

x
x

x
x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x
x

x

x
x

x

x

y

y

2

1

(a)

x

x
x

x
x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x
x

x

x
x

x

x

y

y

2

1

(b)Figure 12.1: (a). A sample point is generated from a mixture model by �rst selecting a mixturecomponent and then generating a data point from that mixture component. (b) An HMM general-izes the mixture model by allowing the choice of the mixture component at a given step to dependon the choice of the mixture component at the previous step. The arrows in the diagram representthese transitions between the mixture components.justi�ed in a given problem, it is not suÆcient|there should also be regularities in the transitionsbetween clusters.The inference problem for HMMs involves taking as input the sequence of observed data andyielding as output a probability distribution on the underlying states. Given the dependencebetween the states, this problem is substantially more complex than the analogous inference problemfor mixture models. Nonetheless, it is readily solved. Guided by Bayes rule, we will uncover a simplerecursion that neatly computes the desired posterior probabilities. In fact, this algorithm marks animportant milestone for us|it begins to suggest the general machinery for propagating probabilitieson graphs that we will be our focus in much of the remainder of the book. With HMMs we beginour study of inference in graphical models in earnest.12.1 The graphical modelThe graphical model representation of an HMM is shown in Figure 12.2. As the diagram makesclear, the HMM can be viewed as a linked sequence of mixture models, with the linking occurringat the level of the mixture components, or \states." We denote the state at time t as qt, and let ytrepresent the observable \output" at time t.11Throughout the chapter we refer to t as a temporal variable for concreteness; the HMM model is of courseapplicable to any kind of sequential data.

12.2. THE PARAMETERIZATION 5
q qπ

A A

q q q q
1 2 T0

y
1 2 T0

y y yFigure 12.2: The representation of a HMM as a graphical model. Each vertical slice represents atime step. The top node in each slice represents the multinomial qt variable and the bottom nodein each slice represents the observable yt variable.We represent the state at time t as a multinomial random variable qt, with components qit, fori = 0; : : : ;M . Thus qit is equal to one for a particular value of i and is equal to zero for j 6= i. Asfor the output variables yt, these variables are always observed in the HMM setting and thus theyplay a minimal role in the inference problem. We will accordingly leave their type unde�ned fornow (the reader can think of them as multinomial or multivariate Gaussian for concreteness).From the graphical model we can read o� various conditional independencies. The main condi-tional independency of interest is that obtained by conditioning on a single state node. Conditioningon qt renders qt�1 and qt+1 independent; moreover it renders qs independent of qu, for s < t andt < u. Thus, \the future is independent of the past, given the present." This statement is also truefor output nodes ys and yu, again conditioning on the state node qt.Note that conditioning on an output node, on the other hand, does not separate nodes in thegraph and thus does not yield any conditional independencies. It is not true that the future isindependent of the past, given the present, if by \present" we mean the current output.Indeed, conditioning on all of the output nodes fails to separate any of the remaining nodes.That is, given the observable data, we cannot expect any independencies to be induced betweenthe state nodes. Thus we should expect that our inference algorithm must take into accountpossible dependencies between states at arbitrary locations along the chain. In particular, learningsomething about the �nal state node in the chain, qT (e.g., by observing yT), can change theposterior probability distribution for the �rst node in the chain, q0. We expect that our inferencealgorithm will have to propagate information from one end of the chain to the other.12.2 The parameterizationWe now parameterize the HMM by assigning local conditional probabilities to each of the nodes.The �rst state node in the sequence has no parents; thus we endow this node with an unconditionaldistribution �, where �i , p(qi0 = 1). Each successive state node has the previous state node in the

6 CHAPTER 12. HIDDEN MARKOV MODELSchain as its (sole) parent; thus we need a M �M matrix to specify its local conditional probability.We de�ne a state transition matrix A, where the (i; j)th entry aij of A is de�ned to be the transitionprobability p(qjt+1 = 1jqit = 1). Note that we assume that this transition probability is independentof t; that is, we assume a homogeneous HMM. (All of the algorithms that we describe are readilygeneralized to the case of a varying A matrix, however this case is less common in practice thanthe homogeneous case).Each of the output nodes has a single state node as a parent, thus we require a probabilitydistribution p(ytjqt). We again assume this distribution to be independent of t. We make nofurther assumptions regarding the form of p(ytjqt) for now; for the purposes of developing theHMM inference algorithms we need only be able to evaluate p(ytjqt) for a �xed value of yt.The joint probability is obtained as always by taking the product over the local conditionalprobabilities. Thus, for a particular con�guration (q; y) = (q0; q1; : : : ; qT ; y0; y1; : : : ; yT), we obtainthe following joint probability:p(q; y) = p(q0) T�1Yt=0 p(qt+1jqt) TYt=0 p(ytjqt): (12.1)To introduce the A and � parameters into this equation, we adopt a notation in which state variablescan be used as indices. Thus, when qt takes on its ith value and qt+1 takes on its jth value, we letaqt;qt+1 denote the (i; j)th entry of the matrix A. Formally, this interpretation is achieved via thefollowing de�nition: aqt;qt+1 , MYi;j=1 [aij]qitqjt+1 : (12.2)Recall that only one of the components of qt is one, and thus only one factor in the product onthe right-hand side is di�erent from one; this picks out the appropriate entry in the matrix A.Similarly, we de�ne �q0 via: �q0 , MYi=1 [�i]qi0 (12.3)which has the e�ect of picking out the appropriate entry in the � vector. We use the simpleshorthand forms aqt;qt+1 and �q0 throughout the chapter, although the expanded forms in Eqs. 12.2and 12.3 will also prove useful when we discuss parameter estimation.Plugging the de�nitions into the joint probability, we have:p(q; y) = �q0 T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt): (12.4)This is the parameterized probability distribution in which we wish to do inference.12.3 The inference problemThere are quite a number of inference problems that are of interest in the setting of the HMM. Thegeneral inference problem involves computing the probability of a hidden state sequence q given an

12.4. INFERENCE 7observable output sequence y. Various marginal probabilities are also of interest, in particular theprobability of a particular hidden state qt given the output sequence.It is also of interest to compute various probabilities conditioned on partial output sequences.In particular, consider the \on-line" problem in which a sequence of outputs yt arrives and it isdesired to compute the probability of the state at time t immediately, without waiting for futuredata. Computing this probability, p(qtjy0; : : : ; yt), is generally called the �ltering problem.2 Anotherinference problem involves the calculation of p(qtjy0; : : : ; ys), where t > s. This is referred to as theprediction problem. Finally, the problem of calculating a posterior probability based on data up toand including a future time, i.e., p(qtjy0; : : : ; yu) for t < u, is referred to as the smoothing problem.Let us consider the problem of computing the posterior probability p(qjy) where y = (y0; : : : ; yT)is the entire observed output sequence at our disposal. Let q be an arbitrary �xed state sequencewhose probability we wish to compute. By de�nition we have p(qjy) = p(q; y)=p(y). The numeratoris readily calculated by substituting q and y in Eq. 12.4. What about the denominator p(y)?Calculating the denominator involves taking a sum across all possible values of the hiddenstates: p(y) =Xq0 Xq1 � � �XqT �(q0) T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �): (12.5)This sum should give us pause. Each state node qt can take on M values, and we have T statenodes. This implies that we must perform MT sums, a wildly intractable number for reasonablevalues of M and T . Is it possible to perform inference eÆciently for HMMs?The way out of our seeming dilemma lies in the factorized form of the joint probability distri-bution (Eq. 12.4). Each factor involves only one or two of the state variables, and the factors forma neatly organized chain. This suggests that it ought to be possible to move these sums \inside"the product in a systematic way. Moving the sums as far as possible ought to reduce the compu-tational burden signi�cantly. Consider, for example, the sum over qT . This sum can be broughtinside until the end of the chain and applied to the two factors involving qT . Once this sum isperformed the result can be combined with the two factors involving qT�1 and the sum over qT�1can be performed. We begin to hope that we can organize our calculation as a recursion.12.4 InferenceTo reveal the recursion behind the HMM inference problem as simply as possible, let us consider aninference problem that is seemingly easier than the full problem. Rather than calculating p(qjy) forthe entire state sequence q, we focus on a particular state node qt and ask to calculate its posteriorprobability, that is, we calculate p(qtjy). This posterior probability also has p(y) in its denominator,2Why \�ltering"? The terminology arises from the interpretation of the outputs yt as providing \noisy" informationabout the underlying \signal" qt. The inference problem is then one of \�ltering" the noise from the signal. In thelinear stochastic systems setting in which this terminology originally arose (cf. Chapter 15), the calculation ofquantities such as p(qtjy0; : : : ; yt) often had a frequency domain interpretation in which some frequencies are passedand not others. In such a setting the terminology is rather natural. While recognizing the possible unnaturalness ofthe terminology outside of the linear systems setting, we bow to its wide usage and adopt it here.

8 CHAPTER 12. HIDDEN MARKOV MODELS
A

q q

y y

t

t

t+1

t+1Figure 12.3: A fragment of the graphical model representation of an HMM.and in fact we can easily adapt our algorithm for computing p(qtjy) to compute p(qjy) or marginalsover substrings of q (see Exercise ??).We thus turn to the calculation of p(qtjy). To make progress, we need to take advantage of theconditional independencies in our graphical model, breaking the problem into pieces. To do so wecondition on a state node (see Figure 12.3). We reverse the terms qt and y via an application ofBayes rule, conditioning now on qt, and use conditional independence:p(qtjy) = p(yjqt)p(qt)p(y) (12.6)= p(y0; : : : ; ytjqt)p(yt+1; : : : ; yT jqt)p(qt)p(y) : (12.7)Finally, we regroup the terms and make a de�nition:p(qtjy) = p(y0; : : : ; yt; qt)p(yt+1; : : : ; yT jqt)p(y) (12.8)= �(qt)�(qt)p(y) ; (12.9)where �(qt) , p(y0; : : : ; yt; qt) (12.10)is the probability of emitting a partial sequence of outputs y0; : : : ; yt and ending up in state qt, and�(qt) = p(yt+1; : : : ; yT jqt) (12.11)is the probability of emitting a partial sequence of outputs yt+1; : : : ; yT given that the system startsin state qt.

12.4. INFERENCE 9Given that the sum of p(qtjy) over the possible values of qt must equal one, we use Eq. 12.9 toobtain: p(y) =Xqt �(qt)�(qt): (12.12)That is, we can obtain the likelihood p(y) by calculating �(qt) and �(qt) for any t and summingtheir product.We make one additional de�nition:
(qt) will denote the posterior probability p(qtjy). Thus:
(qt) , �(qt)�(qt)p(y) ; (12.13)where p(y) is computed once, as the normalization constant for a particular (arbitrary) choice of t.We have reduced our problem to that of calculating the alphas and the betas. This is a usefulreduction because, as we now see, these quantities can be computed recursively.Let us �rst consider the alpha variables. Given that �(qt) depends only on quantities up totime t, and given the Markov properties of our model, we might hope to obtain a recursion between�(qt) and �(qt+1). Indeed, referring to Figure 12.3 to justify the conditional independencies weneed, we obtain: �(qt+1) = p(y0; : : : ; yt+1; qt+1) (12.14)= p(y0; : : : ; yt+1jqt+1)p(qt+1) (12.15)= p(y0; : : : ; ytjqt+1)p(yt+1jqt+1)p(qt+1) (12.16)= p(y0; : : : ; yt; qt+1)p(yt+1jqt+1) (12.17)= Xqt p(y0; : : : ; yt; qt; qt+1)p(yt+1jqt+1) (12.18)= Xqt p(y0; : : : ; yt; qt+1jqt)p(qt)p(yt+1jqt+1) (12.19)= Xqt p(y0; : : : ; ytjqt)p(qt+1jqt)p(qt)p(yt+1jqt+1) (12.20)= Xqt p(y0; : : : ; yt; qt)p(qt+1jqt)p(yt+1jqt+1) (12.21)= Xqt �(qt)aqt;qt+1p(yt+1jqt+1): (12.22)Throughout this derivation the key idea is to condition on a state and then use the conditionalindependence properties of the model to decompose the equation. This is done in Eqs. 12.16 and12.22, both of which can be veri�ed via the graphical model fragment. The second key idea is tointroduce a variable, in this case qt, by marginalizing over it (cf. Eq. 12.18). Once qt is introducedthe recursion follows readily.The computational complexity of each step of the alpha recursion is O(M2); in particular, foreach of the M values of qt+1, we require M multiplications to compute the inner product of �(qt)

10 CHAPTER 12. HIDDEN MARKOV MODELSwith the appropriate column of the A matrix. To compute all of the alpha variables from t = 1 tot = T thus requires time O(M2T).Note that the algorithm proceeds \forward" in time. The de�nition of alpha at the �rst timestep yields: �(q0) = p(y0; q0) (12.23)= p(y0jq0)p(q0) (12.24)= p(y0jq0)�q0 : (12.25)and these values are used to initialize the recursion.For the beta variables we obtain a \backward" recursion in which �(qt) is expressed in termsof �(qt+1), where once again the various steps are justi�ed by making reference to the graphicalmodel fragment in Figure 12.3:�(qt) = p(yt+1; : : : ; yT jqt) (12.26)= Xqt+1 p(yt+1; : : : ; yT ; qt+1jqt) (12.27)= Xqt+1 p(yt+1; : : : ; yT jqt+1; qt)p(qt+1jqt) (12.28)= Xqt+1 p(yt+2; : : : ; yT jqt+1)p(yt+1jqt+1)p(qt+1jqt) (12.29)= Xqt+1 �(qt+1)aqt;qt+1p(yt+1jqt+1): (12.30)Note that the beta recursion is a backwards recursion; that is, we start at the �nal time step T andproceed backwards to the initial time step.As for the initialization of the beta recursion, the de�nition of �(qT) is unhelpful, given that itmakes reference to a non-existent yT+1, but we see from applying the recursion once to compute�(qT�1) that this value will be calculated correctly if we de�ne �(qT) to be a vector of ones.Alternatively, computing p(y) at time T , we have:p(y) = Xi �(qiT)�(qiT) (12.31)= Xi �(qiT) (12.32)= Xi p(y0; : : : ; yT ; qiT) (12.33)= p(y); (12.34)and we see that the de�nition makes sense.If we need only the likelihood p(y), Eq. 12.31 shows us that it is not necessary to compute thebetas; a single forward pass for the alphas will suÆce. Moreover, Eq. 12.12 tell us that any partial

12.5. AN ALTERNATIVE INFERENCE ALGORITHM 11forward pass up to time t to compute �(qt), accompanied by a partial backward pass to compute�(qt), will also suÆce. To compute the posterior probabilities for all of the states qt, however,requires us to compute alphas and betas for each time step. Thus we require a forward pass and abackward pass for a complete solution to the inference problem.12.5 An alternative inference algorithmThe alpha-beta algorithm is not the only way to compute the posterior probabilities of the states. Inthis section we describe an alternative approach in which the backward phase is a recursion de�neddirectly on the
(qt) variables. An interesting feature of this algorithm is that the backward phasemakes no use of the observations yt; only the forward phase uses the observed data. We can throwaway the data as we �lter.The algorithm di�ers from the alpha-beta algorithm only in the backward phase. In the for-ward direction we run the alpha algorithm as before, calculating the �ltered quantities �(qt) =p(y0; : : : ; yt; qt).To uncover a backward recursion linking the
t variables, we refer once again to the graphicalmodel fragment in Figure 12.3. Our goal is to compute
(qt) = p(qtjy0; : : : ; yT). As in our earliercalculations, our main tool for computing such quantities recursively is to condition on a statevariable; such conditioning breaks the problem into two pieces. In particular, we condition on qt+1and obtain: p(qtjqt+1; y0; : : : ; yT) = p(qtjqt+1; y0; : : : ; yt): (12.35)This shows that we can get a conditional probability that depends on all of the data via a conditionalprobability that depends only on the partial sequence up to t. Moreover, the left-hand side can bereadily converted into
(qt) by multiplying by p(qt+1jy0; : : : ; yT)|which is
(qt+1) by de�nition|and summing over qt+1. The details are as follows:
(qt) = Xqt+1 p(qt; qt+1jy0; : : : ; yT) (12.36)= Xqt+1 p(qtjqt+1y0; : : : ; yT)p(qt+1jy0; : : : ; yT) (12.37)= Xqt+1 p(qtjqt+1; y0; : : : ; yt)p(qt+1jy0; : : : ; yT) (12.38)= Xqt+1 p(qt; qt+1; y0; : : : ; yt)Pqt p(qt; qt+1; y0; : : : ; yt)p(qt+1jy0; : : : ; yT) (12.39)= Xqt+1 p(qt; y0; : : : ; yt)p(qt+1jqt)Pqt p(qt; y0; : : : ; yt)p(qt+1jqt)p(qt+1jy0; : : : ; yT) (12.40)= Xqt+1 �(qt)aqt;qt+1Pqt �(qt)aqt;qt+1
(qt+1) (12.41)We see that this recursion makes use of the alpha variables, which therefore must be computedbefore the gamma recursion begins. The gamma recursion is initialized with
(qT) = �(qT).

12 CHAPTER 12. HIDDEN MARKOV MODELSNote that the data yt are not referenced in the gamma recursion; the alpha recursion hasabsorbed all of the necessary data likelihoods.12.6 The �(qt; qt+1) variablesThe alpha-beta or the alpha-gamma algorithm provide us with the posterior probability of thehidden states of the HMM. These quantities are the direct analogs of the posterior probabilities hithat we studied in the simpler mixture setting. Moreover, they play the same role in estimating theparameters of the output distribution|as we will see in Section 12.8 they are the expected suÆcientstatistics for these parameters. To estimate the transition probability matrix A, however, we needsomething more. It is clear intuitively, and justi�ed in Section 12.8, where we write out the completelog likelihood, that what is required is the matrix of cooccurrence probabilities p(qt; qt+1jy). In thissection we show how to calculate these posterior probabilities.Let us de�ne �(qt; qt+1) , p(qt; qt+1jy): (12.42)There are several ways to calculate this quantity. One way is to return to �rst principles anddevelop recursions for the �(qt; qt+1), following much the same procedure as we followed for thesingleton probabilities
(qt). This is indeed a rather useful exercise (which we ask the reader tocarry out in Exercise ??), not only because it reinforces the Markovian calculations that we haveengaged in, but because it provides a stepping-stone to the general \junction tree algorithm" thatwe discuss in Chapter 17. That algorithm provides a general framework from which to derive all ofthe recursions that we describe in this chapter. Moreover, if we have an algorithm for calculating�(qt; qt+1) in hand, we can also obtain the singleton probabilities via
(qt) =Pqt+1 �(qt; qt+1).A second approach to calculating �(qt; qt+1) is to build on the recursions already developed forthe alphas and betas:�(qt; qt+1) = p(qt; qt+1jy) (12.43)= p(yjqt; qt+1)p(qt+1jqt)p(qt)p(y)= p(y0; : : : ; ytjqt)p(yt+1jqt+1)p(yt+2; : : : ; yT jqt+1)p(qt+1jqt)p(qt)p(y)= �(qt)p(yt+1jqt+1)�(qt+1)aqt;qt+1p(y) : (12.44)This result can also be expressed in terms of alphas and gammas:�(qt; qt+1) = �(qt)p(yt+1jqt+1)
(qt+1)aqt;qt+1�(qt+1) : (12.45)In either case we see that we can readily calculate the �(qt; qt+1) variables once we have �nishedthe recursive calculation of the singleton probabilities
(qt).

12.7. NUMERICAL ISSUES 1312.7 Numerical issuesTo summarize, we have found that we can calculate all of the necessary posterior probabilities forthe HMM recursively. Given an observed sequence y, we run the alpha recursion forward in time.If we require only the likelihood we simply sum the alphas at the �nal time step. If we also requirethe posterior probabilities of the states, we proceed to either the beta recursion or the gammarecursion.Before these recursions are implemented on the computer, attention must be paid to numeri-cal issues. In particular, the recursions involve repeated multiplications of small numbers and itis generally not long before the numbers under
ow. To avoid under
ow it suÆces to normalize.We outline the basic ideas in Exercise ??, but in brief the procedure is as follows. The alpha vari-ables, p(y0; : : : ; yt; qt), can be viewed as unnormalized conditional probabilities. Indeed, normalizingmeans division by p(y0; : : : ; yt), which yields conditionals p(qtjy0; : : : ; yt). Not only are these condi-tionals scaled in a numerically sensible manner, but they also have a sensible semantics|they arethe �ltered estimates of the states. In sum, one should always compute normalized alphas. In thebackward direction, if one uses the gamma recursion one is already on safe ground|the gammasare conditional probabilities and hence sum to one. Moreover, it is easy to verify that normalizedalphas can be used in Eq. 12.41 in place of the unnormalized alphas. Alternatively, if one usesthe beta recursion, it turns out that a numerically sensible solution (although one that is devoidof probabilistic interpretation), is to use the normalization factors from the forward recursion torescale the beta variables (these rescaled betas will not sum to one). It turns out that the rescaledvariables are then used exactly as the original alphas and betas are used in the formulas for theposteriors
(qt) and �(qt; qt+1) (i.e., the normalization factors cancel). See Exercise ?? for furtherdiscussion.12.8 Parameter estimationThe parameters of an HMM are the transition matrix A, the initial probability distribution � andthe parameters that are associated with the output probability distribution. In this section wediscuss the problem of estimating these parameters from data.Let � = (�;A; �) represent all of the parameters of the HMM model, where p(ytjqt; �) is theoutput distribution. The likelihood is given by p(yj�), for a �xed observable sequence y. Takingthe logarithm of Eq. 12.5 we have the following log likelihood:p(yj�) = logXq0 Xq1 � � �XqT �(q0) T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �): (12.46)Our goal is to maximize this expression with respect to �.As with our earlier models, this is in principle just another optimization problem that can besolved via standard numerical optimization methods. In practice, however, the EM algorithm isgenerally used to estimate HMM parameters.

14 CHAPTER 12. HIDDEN MARKOV MODELS12.8.1 EM algorithmThe EM algorithm for the HMM presents no new diÆculties to surmount and we will make relativelyshort work of the derivation. For concreteness we derive the algorithm for the case in whichthe outputs yt are multinomial variables; it should be obvious how to change the derivation toaccommodate other output types (cf. Exercise ??).In the multinomial case, yt is an N -component vector such that yjt is equal to one for a particularcomponent and zero for all other components. We use the symbol �ij to denote the probabilitythat the jth component of yt is one, given that the ith component of qt is one; i.e., �ij , p(yjt =1jqit = 1; �). Using this notation we have:p(ytjqt; �) = MYi;j=1 [�ij]qityjt (12.47)as the general expression for the output distribution.As usual we begin by writing down the complete log likelihood to discover the form of the Mstep estimates as well as the suÆcient statistics that are needed for the E step. We have:log p(q; y) = log(�q0 T�1Yt=0 aqt;qt+1 TYt=0 p(ytjqt; �)) (12.48)= log8<:MYi=1 [�i]qi0 T�1Yt=0 MYi;j=1 [aij]qitqjt+1 TYt=0 MYi;j=1 [�ij]qityjt9=; (12.49)= MXi=1 qi0 log �i + T�1Xt=0 MXi;j=1 qitqjt+1 log aij + TXt=0 MXi;j=1 qityjt log �ij: (12.50)From this expression, we see that mij , PT�1t=0 qitqjt+1 is the suÆcient statistic for aij, nij ,PT�1t=0 qityjt is the suÆcient statistic for �ij, and qi0 is the suÆcient statistic for �i. The maximumlikelihood estimates for the case of complete data are therefore given by:âij = mijPMk=1mik (12.51)�̂ij = nijPNk=1 nik (12.52)�̂i = qi0: (12.53)All of these estimates have natural interpretations. Note that mij is the count of the numberof times that the process is in state i and transitions to state j. Dividing by Pkmik yields theproportion of those transitions out of state i that go to state j|a natural estimate of aij . Similarlythe estimate of �ij is given by the proportion of times that the chain is in state i and produces the

12.8. PARAMETER ESTIMATION 15jth output value. Finally, for the estimate of �i, we obtain a singular distribution that puts all ofthe probability mass at the observed initial state.3We turn to the E step of the EM algorithm. Consider �rst the expectation of the suÆcientstatistic nij =PTt=0 qityjt . We have:E(nij jy; �(p)) = TXt=0 E(qitjy; �(p))yjt (12.54)= TXt=0 p(qit = 1jy; �(p))yjt (12.55), TXt=0
ityjt ; (12.56)where we introduce the notation
it in the last line. By de�nition
it is equal to
(qt), evaluated atthat value of qt such that qit = 1. Note �nally that the dependence of
it on �(p) has been suppressed.Similarly, for the suÆcient statistic mij , we have:E(mij jy; �(p)) = T�1Xt=0 E(qitqjt+1jy; �(p)) (12.57)= T�1Xt=0 p(qitqjt+1jy; �(p)) (12.58), T�1Xt=0 �ijt;t+1; (12.59)where we let �ijt;t+1 denote �(qt; qt+1) for (qt; qt+1) such that qit = 1 and qjt+1 = 1.In summary, the suÆcient statistics are calculated via the recursive forward-backward procedurefrom Section 12.4. We calculate the
 variables via either Eq.12.13 or Eq.12.41. The � variablesare then calculated via Eq. 12.44 or Eq. 12.45.With the estimated suÆcient statistics in hand, we substitute into the maximum likelihoodformulas (Eqs. 12.51, 12.52, and 12.53), to obtain the M step of the EM algorithm (also known, inthe case of HMMs, as the \Baum-Welch updates"). We obtain:�̂(p+1)ij = PTt=0
ityjtPNk=1PTt=0
itykt = PTt=0
ityjtPTt=0
it : (12.60)3In a more general setting, in which we have multiple repeated observations from a single HMM (i.e., data thatare IID at the level of entire sequences), the estimate of �i becomes the proportion of times that the chain starts instate i, and indeed the estimates in Eq. 12.51 and Eq. 12.52 also become averages over the multiple repetitions (cf.Exercise ??).

16 CHAPTER 12. HIDDEN MARKOV MODELSwhere we use the fact that PNk=1 ykt = 1,â(p+1)ij = PT�1t=0 �i;jt;t+1PMk=1PT�1t=0 �i;kt;t+1 = PT�1t=0 �i;jt;t+1PT�1t=0
it ; (12.61)where by de�nitionPMk=1 �i;kt;t+1 =
it , and: �̂(p+1)i =
i0: (12.62)The EM algorithm iterates between performing these updates (the M step) and the forward-backward pass using the updated values (the E step).12.9 Historical remarks and bibliography

