Advanced Introduction to Machine Learning, CMU-10715

Hidden Markov Models

Barnabás Póczos

Many of these slides are taken from Eric Xing and Aarti Singh

From i.i.d to sequential data

□ So far we assumed independent, identically distributed data

Sequential (non i.i.d.) data

- Time-series data
 - E.g. Speech

Characters in a sentence

 ${X_i}_{i=1}^n \stackrel{iid}{\sim} p(\mathbf{X})$

Markov Models

□ Joint distribution of *n* arbitrary random variables

$$p(\mathbf{X}) = p(X_1, X_2, \dots, X_n)$$

= $p(X_1)p(X_2|X_1)p(X_3|X_2, X_1) \dots p(X_n|X_{n-1}, \dots, X_1)$
= $\prod_{i=1}^n p(X_n|X_{n-1}, \dots, X_1)$ Chain rule

□ Markov Assumption (mth order)

$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1}, \dots, X_{n-m})$$

Current observation only depends on past m observations

Markov Models

□ Markov Assumption

1st order
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1})$$

2nd order
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1}, X_{n-2})$$

Markov Models

 $n_{\rm c}$

parameters in
stationary model
K-ary variables

1st order
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1})$$
 O(K²)

mth order
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1}, \dots, X_{n-m})$$
 O(K^{m+1})

n-1th order
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_n | X_{n-1}, \dots, X_1)$$
 O(Kⁿ)

 \equiv no assumptions

Markov Assumption

Homogeneous/stationary Markov model (probabilities don't depend on n)

Hidden Markov Models

• Distributions that characterize sequential data with few parameters but are not limited by strong Markov assumptions.

Observation space Hidden states $O_t \in \{y_1, y_2, ..., y_K\}$ $S_t \in \{1, ..., I\}$

Hidden Markov Models

 1^{st} order Markov assumption on hidden states $\{S_t\}$ t = 1, ..., T (can be extended to higher order).

Note: O_t depends on all previous observations {O_{t-1},...O₁}

Hidden Markov Models

 Parameters – stationary/homogeneous markov model (independent of time t)

Initial probabilities $p(S_1 = i) = \pi_i$

Transition probabilities $p(S_t = j | S_{t-1} = i) = p_{ij}$

Emission probabilities $p(O_t = y | S_t = i) = q_i^y$

HMM Example

• The Dishonest Casino

A casino has two dices:

Fair dice P(1) = P(2) = P(3) = P(5) = P(6) = 1/6Loaded dice P(1) = P(2) = P(3) = P(5) = 1/10

 $P(6) = \frac{1}{2}$

Casino player switches back-&forth between fair and loaded die with 5% probability

HMM Problems

GIVEN: A sequence of rolls by the casino player

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the EVALUATION problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the LEARNING question in HMMs

HMM Example

• Observed sequence: $\{O_t\}_{t=1}^T$

• Hidden sequence $\{S_t\}_{t=1}^T$ or segmentation):

State Space Representation

□ Switch between F and L with 5% probability

HMM Parameters

Initial probs Transition probs

Emission probabilities

$$\begin{split} \mathsf{P}(\mathsf{S}_1 = \mathsf{L}) &= 0.5 = \mathsf{P}(\mathsf{S}_1 = \mathsf{F}) \\ \mathsf{P}(\mathsf{S}_t = \mathsf{L}/\mathsf{F} \,|\, \mathsf{S}_{t-1} = \mathsf{L}/\mathsf{F}) &= 0.95 \\ \mathsf{P}(\mathsf{S}_t = \mathsf{F}/\mathsf{L} \,|\, \mathsf{S}_{t-1} = \mathsf{L}/\mathsf{F}) &= 0.05 \\ \mathsf{P}(\mathsf{O}_t = \mathsf{y} \,|\, \mathsf{S}_t = \mathsf{F}) &= 1/6 \qquad \mathsf{y} = 1,2,3,4,5,6 \\ \mathsf{P}(\mathsf{O}_t = \mathsf{y} \,|\, \mathsf{S}_t = \mathsf{L}) &= 1/10 \qquad \mathsf{y} = 1,2,3,4,5 \\ &= 1/2 \qquad \mathsf{y} = 6 \end{split}$$

Three main problems in HMMs

- Evaluation Given HMM parameters & observation seqn{O_t}^T_{t=1}
 find p({O_t}^T_{t=1} |θ) prob of observed sequence
- Decoding Given HMM parameters & observation seqn $\{O_t\}_{t=1}^T$ find $\arg \max_{s_1,...,s_T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T, \theta)$ most probable sequence of hidden states
- Learning Given HMM with unknown parameters and $\{O_t\}_{t=1}^T$ observation sequence

find $\arg \max_{\theta} p(\{O_t\}_{t=1}^T | \theta)$ parameters that maximize likelihood of observed data

HMM Algorithms

- Evaluation What is the probability of the observed sequence? Forward Algorithm
- Decoding What is the probability that the third roll was loaded given the observed sequence? Forward-Backward Algorithm

What is the most likely die sequence given the observed sequence? Viterbi Algorithm

 Learning – Under what parameterization is the observed sequence most probable? Baum-Welch Algorithm (EM)

Evaluation Problem

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability of observed sequence

$$p(\{O_t\}_{t=1}^T) = \sum_{S_1, \dots, S_T} p(\{O_t\}_{t=1}^T, \{S_t\}_{t=1}^T)$$

$$= \sum_{S_1, \dots, S_T} p(S_1) \prod_{t=2}^T p(S_t | S_{t-1}) \prod_{t=1}^T p(O_t | S_t)$$

$$\begin{array}{c} S_1 \\ S_2 \\ O_1 \\ O_2 \\ O_{T-1} \\ O_T \\ O$$

requires summing over all possible hidden state values at all times – K^T exponential # terms!

 $S_1....,S_T$ t=2 t=1

Instead:
$$p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k)$$

 α_T^k Compute recursively

Forward Probability

$$p(\{O_t\}_{t=1}^T) = \sum_k p(\{O_t\}_{t=1}^T, S_T = k) = \sum_k \alpha_T^k$$

Compute forward probability α_t^k recursively over t

$$\alpha_t^k \quad := \quad p(O_1, \dots, O_t, S_t = k)$$

Introduce S_{t-1}

Chain rule

Markov assumption

$$= p(O_t | S_t = k) \sum_{i} \alpha_{t-1}^i p(S_t = k | S_{t-1} = i)$$

Forward Algorithm

Can compute α_t^k for all k, t using dynamic programming:

- Initialize: $\alpha_1^k = p(O_1 | S_1 = k) p(S_1 = k)$ for all k
- Iterate: for t = 2, ..., T

$$\alpha_t^k = p(O_t | S_t = k) \sum_i \alpha_{t-1}^i p(S_t = k | S_{t-1} = i)$$
 for all k

• Termination: $p(\{O_t\}_{t=1}^T) = \sum_{k} \alpha_T^k$

Decoding Problem 1

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find probability that hidden state at time t was k $p(S_t = k | \{O_t\}_{t=1}^T)$

Backward Probability

$$p(S_t = k, \{O_t\}_{t=1}^T) = p(O_1, \dots, O_t, S_t = k)p(O_{t+1}, \dots, O_T | S_t = k) = \alpha_t^k \beta_t^k$$

Compute forward probability β_t^k recursively over t

$$= \sum_{i} p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i$$

Backward Algorithm

Can compute β_t^k for all k, t using dynamic programming:

- Initialize: $\beta_T^k = 1$ for all k
- Iterate: for t = T-1, ..., 1

$$\beta_t^k = \sum_i p(S_{t+1} = i | S_t = k) p(O_{t+1} | S_{t+1} = i) \beta_{t+1}^i$$
 for all k

• Termination: $p(S_t = k, \{O_t\}_{t=1}^T) = \alpha_t^k \beta_t^k$

$$p(S_t = k | \{O_t\}_{t=1}^T) = \frac{p(S_t = k, \{O_t\}_{t=1}^T)}{p(\{O_t\}_{t=1}^T)} = \frac{\alpha_t^k \beta_t^k}{\sum_i \alpha_t^i \beta_t^i}$$

Most likely state vs. Most likely sequence

Most likely state assignment at time t

$$\arg\max_{k} p(S_t = k | \{O_t\}_{t=1}^T) = \arg\max_{k} \alpha_t^k \beta_t^k$$

E.g. Which die was most likely used by the casino in the third roll given the observed sequence?

Most likely assignment of state sequence

$$\arg\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T)$$

E.g. What was the most likely sequence of die rolls used by the casino given the observed sequence? x y

Not the same solution !

MLE of x? MLE of (x,y)?

x	Y	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Decoding Problem 2

• Given HMM parameters $p(S_1), p(S_t|S_{t-1}), p(O_t|S_t)$ & observation sequence $\{O_t\}_{t=1}^T$

find most likely assignment of state sequence

$$\arg \max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T | \{O_t\}_{t=1}^T) = \arg \max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T)$$
$$= \arg \max_k \max_{\{S_t\}_{t=1}^{T-1}} p(S_T = k, \{S_t\}_{t=1}^{T-1}, \{O_t\}_{t=1}^T)$$
$$\bigvee_{\mathsf{V}_{\mathsf{T}}^{\mathsf{k}}}^{\mathsf{k}}$$
Compute recursively

 V_T^k - probability of most likely sequence of states ending at state $S_T = k$

Viterbi Decoding

$$\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$$

Compute probability V_t^k recursively over t

Viterbi Algorithm

Can compute V_t^k for all k, t using dynamic programming:

- Initialize: $V_1^k = p(O_1 | S_1 = k)p(S_1 = k)$ for all k
- Iterate: for t = 2, ..., T

$$V_t^k = p(O_t | S_t = k) \max_i p(S_t = k | S_{t-1} = i) V_{t-1}^i$$
 for all k

• Termination: $\max_{\{S_t\}_{t=1}^T} p(\{S_t\}_{t=1}^T, \{O_t\}_{t=1}^T) = \max_k V_T^k$

Traceback:
$$S_T^* = \arg \max_k V_T^k$$

 $S_{t-1}^* = \arg \max_i p(S_t^* | S_{t-1} = i) V_{t-1}^i$

Computational complexity

• What is the running time for Forward, Backward, Viterbi?

$$\alpha_t^k = q_k^{O_t} \sum_i \alpha_{t-1}^i p_{i,k}$$

$$\beta_t^k = \sum_i p_{k,i} q_i^{O_{t+1}} \beta_{t+1}^i$$

$$V_t^k = q_k^{O_t} \max_i p_{i,k} V_{t-1}^i$$

 $O(K^{2}T)$ linear in T instead of $O(K^{T})$ exponential in T!

Learning Problem

• Given HMM with unknown parameters $\theta = \{\{\pi_i\}, \{p_{ij}\}, \{q_i^k\}\}\$ and observation sequence $\mathbf{O} = \{O_t\}_{t=1}^T$

find parameters that maximize likelihood of observed data

 $\arg\max_{\theta} p(\{O_t\}_{t=1}^T | \theta)$

But likelihood doesn't factorize since observations not i.i.d.

hidden variables – state sequence

 $\{S_t\}_{t=1}^T$

EM (Baum-Welch) Algorithm:

E-step – Fix parameters, find expected state assignments

M-step – Fix expected state assignments, update parameters

Baum-Welch (EM) Algorithm

- Start with random initialization of parameters
- **E-step** Fix parameters, find expected state assignments

$$\gamma_i(t) = p(S_t = i | O, \theta) = \frac{\alpha_t^i \beta_t^i}{\sum_j \alpha_t^j \beta_t^j}$$
 $\mathbf{O} = \{O_t\}_{t=1}^T$

Forward-Backward algorithm

$$\begin{aligned} \xi_{ij}(t) &= p(S_{t-1} = i, S_t = j | O, \theta) \\ &= \frac{p(S_{t-1} = i | O, \theta) p(S_t = j, O_t, \dots, O_T | S_{t-1} = i, \theta)}{p(O_t, \dots, O_T | S_{t-1} = i, \theta)} \\ &= \frac{\gamma_i(t-1) \ p_{ij} \ q_j^{O_t} \ \beta_t^j}{\beta_{t-1}^i} \end{aligned}$$

Baum-Welch (EM) Algorithm

- Start with random initialization of parameters
 - E-step $\gamma_i(t) = p(S_t = i | O, \theta)$ $\xi_{ij}(t) = p(S_{t-1} = i, S_t = j | O, \theta)$
- $\sum_{t=1}^{T} \gamma_i(t) = \text{expected } \# \text{ times}$ in state i $\sum_{t=1}^{T-1} \gamma_i(t) = \text{expected } \# \text{ transitions}$ from state i $\sum_{t=1}^{T-1} \xi_{ij}(t) = \text{expected } \# \text{ transitions}$ from state i to j

• M-step

 $\pi_i = \gamma_i(1)$ $p_{ij} = \frac{\sum_{t=1}^{T-1} \xi_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_i(t)}$

$$q_i^k = \frac{\sum_{t=1}^T \delta_{O_t = k} \gamma_i(t)}{\sum_{t=1}^T \gamma_i(t)}$$

Some connections

• HMM vs Linear Dynamical Systems (Kalman Filters)

HMM: States are Discrete Observations Discrete or Continuous

Linear Dynamical Systems: Observations and States are multivariate Gaussians whose means are linear functions of their parent states (see Bishop: Sec 13.3)

HMMs.. What you should know

- Useful for modeling sequential data with few parameters using discrete hidden states that satisfy Markov assumption
- Representation initial prob, transition prob, emission prob,

State space representation

- Algorithms for inference and learning in HMMs
 - Computing marginal likelihood of the observed sequence: forward algorithm
 - Predicting a single hidden state: forward-backward
 - Predicting an entire sequence of hidden states: viterbi
 - Learning HMM parameters: an EM algorithm known as Baum-Welch