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Many of these slides are taken from Eric Xing and Aarti Singh



From i.i.d to sequential data

JSo far we assumed independent, (X7, vid p(X)

identically distributed data

dSequential (non i.i.d.) data

— Time-series data
E.g. Speech

Amplitude




Markov Models

(A Joint distribution of n arbitrary random variables

p(X) — p(X17X27'°°7Xn)
= p(X1)p(X2|X1)p(X35]| X2, X1) ... p(X0n|Xpn—1, ..., X1)
— Hp(Xn|Xn—17 . 7X1) Chain rule
=1

d Markov Assumption (mt" order)

p(X) = Hp(Xn|Xn_1, ..., Xn_m) Current observation
i=1 only depends on past
m observations



Markov Models

J Markov Assumption

15t order p(X) = ][p(XnlXn1)

2nd order




Markov Models

# parameters in
stationary model

J Markov Assumption ) K-ary variables

1torder  p(X) = []p(XnlXno1) O(K2)
1=1

mthorder  p(X) = ]][p(XnlXn-1,.., Xnom) O(K™)
1=1

n-1torder p(X) = |[p(XulXno1,.... X1)  O(KY)
1=1

= no assumptions

Homogeneous/stationary Markov model (probabilities don't depend on n)



Hidden Markov Models

* Distributions that characterize sequential data with few
parameters but are not limited by strong Markov assumptions.

Observation space O; €{Yy, Yo s Vi)
Hidden states S,€{1, ..., I}



Hidden Markov Models

p(Sl,...,ST,Ol,...,OT)

15t order Markov assumption on hidden states {S;} t=1, ..., T

(can be extended to higher order).

Note: O, depends on all previous observations {O,_4,...0,}



Hidden Markov Models

* Parameters — stationary/homogeneous markov model
(independent of time t)

oy Sl SZ

Initial probabilities .
S,=1)=m,

p( 1 ) I Ol Oz

Transition probabilities

P(Se=11Ses =1) = py p({Seti=1, {O}1) =
T

Emission probabilities p(S1) | [ p(SelSe-1) ] [ p(O:]Se)
t=2 t=1

p(O,=y|S=1i) = q;



e The Dishonest Casino

A casino has two dices:

Fair dice
P(1) = P(2) =P(3) =P(5) =P(6) =1/6
Loaded dice

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = %

Casino player switches back-&-
forth between fair and loaded die
with 5% probability
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HMM Problems

GIVEN: A sequence of rolls by the casino player

64621461461561366616616616266165661636165156 6 6

QUESTION

e How likely is this sequence, given our model of how the casino
WOrks?
e Thisis the EVALUATION problem in HMMs

e \What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e Thisis the DECODING question in HMMs

e How “loaded’ is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question in HMMs
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e Observed sequence: {O,}i_,

O—O—O—O—O—O—

Y: "
3 0":
F

e Hidden sequence {St};leor segmentation):

O—O—O—O—0—O—




State Space Representation

J Switch between F and L with 5% probability

0.05
0.95 0.95
0.05
(d HMM Parameters

Initial probs P(S;=L)=0.5=P(S, =F)

Transition probs P(S, = L/F|S,,;=L/F)=0.95
P(S, = F/L|S,, = L/F) = 0.05

Emission probabilities P(O,=y|S=F)=1/6 y=1,2,3,4,5,6

P(O,=y|S=1)=1/10 y=1,2,3,4,5
=1/2 y=6
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Three main problems in HMMs

* Evaluation — Given HMM parameters & observation seqn{O;}._,

find p({O¢}/_1 19) prob of observed sequence

e Decoding — Given HMM parameters & observation seqn {O; }7_;

find arg max p({Si}i_1/{O:};~1.0) most probable

Tyeens ST

sequence of hidden states

* Learning — Given HMM with unknown parameters and {0 }i—4
observation sequence

find arg mgxp({Ot}f:ﬂH) parameters that maximize

likelihood of observed data
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HMM Algorithms

e Evaluation — What is the probability of the observed
sequence? Forward Algorithm

* Decoding — What is the probability that the third roll was
loaded given the observed sequence? Forward-Backward
Algorithm

— What is the most likely die sequence given the observed
sequence? Viterbi Algorithm

* Learning — Under what parameterization is the observed
sequence most probable? Baum-Welch Algorithm (EM)
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Evaluation Problem

* Given HMM parameters p(51), p(S¢|Si—1),p(O¢|S:) & observation

sequence {O:}/—,

S; ~S,  ~5911~S
find probability of observed sequence

O
AONL) = Y wonEaisity  ©%6% @280

S1,..,8T
T T
= Z P(Sl H St|St 1 H Ot|St
S1,...,ST t=2 t=1

requires summing over all possible hidden state values at all times
— K" exponential # terms!

Instead:  p({O:}i—;) = ZP({Ot};ﬁrzlv St = k)

I

of  Compute recursively »




Forward Probability

p({Ot}firzl) = ZP({Ot}tT:p St =k) = ZCV’qi
k k
Compute forward probability a't‘ recursively over t
of = p(O01,...,0 S, =k)

Introduce S, ,
Chain rule

Markov assumption

= p(OdS: = k) Y aj_1p(S; = k| Si—1 = i)
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Forward Algorithm

Can compute o.* for all k, t using dynamic programming:
* Initialize:  a,*=p(0,]S; =k) p(S; =k) for all k

* |terate:fort=2,.. T

o = p(O,[S,=k) 3 ol p(S,=k|S,, =) for all k
I

e Termination:  p({O:}F ) =5 o

k
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Decoding Problem 1

* Given HMM parameters p(51), p(S¢|Si—1),p(O¢|S:) & observation
sequence {O:}/—,

find probability that hidden state at time t was k p(S; = k|{O;}{_,)

p(St — k? {Ot}le) — p(017 . '70757 St — kaOt-l—la . '7OT)
= p(Ol, .o .,Ot,St — k)p(Ot—l—l, .o .,OT‘St — k‘)
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Backward Probability

p(St — k? {Ot};rzl) — p(017 . '7Otast — k)p(Ot-l—la . '7OT|St — k) — Ozfﬁf

Compute forward probability B{‘ recursively over t

B = p(Ous1,...,07|8; = k) St Sw1 S s,

Introduce S,

Chain rule

Markov assumption

— ZP(SH_l = 1St = k)p(O411|Sty1 = i)ﬁ%}l

{
20



Backward Algorithm

Can compute B.X for all k, t using dynamic programming:
* Initialize: B;*=1 for all k

* |terate:fort=T-1,...,1

B = Y p(Siq1 =19 = k)p(Op41|Se41 = 1)By,  forall k

* Termination: p(S, =k, {O;},) = alpF

p(St =k, {Ot}’le) — &fﬁf .
p({O})  Xiaif

p(St = k|{0t}?=1) =
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Most likely state vs. Most likely

sequence

J Most likely state assignment at time' t

arg max p(Sy = k|{O};—) = argmax oy B

E.g. Which die was most likely used by the casino in the third roll given the
observed sequence?

1 Most likely assignment of state sequence
arg max p({St}t 1|{Ot}t 1)

{Se}f
E.g. What was the most I|ker sequence of die rolls used by the casino
given the observed sequence? X y Plx.y)

MLE of x? o o 035
. oT X: o 7 .05
Not the same solution ! MLE of (xy)? @7z © o3

7 7 0.5




Decoding Problem 2

* Given HMM parameters p(S,), p(S:|S:—1), p(O:|S;) & observation
sequence {O,}1_,

find most likely assignment of state sequence

arg max p({St}i=1{Os}i=1) = arg max p({St}i=1,{Oe}i=1)

= argmax max (St =k S S {O)
\ e )
1
Ve
Compute recursively

V# - probability of most likely sequence of states ending at
state S; =k
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Viterbi Decoding

(nax p({St}iz1, {Os}iz1) = max Vr

Compute probability V't< recursively over t

‘/tk: = S magc p(St:k,Sl,...,St_l,Ol,...,Ot)
Sl

Bayes rule a
Markov assumption O,

= p(OSt = k) m?Xp(St = k|S;_1 =)V}
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Viterbi Algorithm

Can compute V¢ for all k, t using dynamic programming:
e Initialize:  V,*=p(0,]S;=k)p(S; =k) for all k

e |terate:fort=2,.. T

V} = p(OiS: = k)maxp(S, = K|S =i)ViL,  forallk

* Termination: {m?X p({St}t 1,{Ot}t ) = m]?xvjlf

Traceback: St = argmax VE

S; 4 —argmaxp(S St_1 —Z)Vt )
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Computational complexity

 Whatis the running time for Forward, Backward, Viterbi?
af = g Z@i—l Dik
By = Zpk,i ¢ By
Vi = g maxpi Vi

O(K?T) linear in T instead of O(K') exponential in T!
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Learning Problem

* Given HMM with unknown parameters ¢ = {{r;}, {p;;}, {¢"}}
and observation sequence o = {0,}T ,

find parameters that maximize likelihood of observed data

arg max p({O;}L_,10) But likelihood doesn't factorize
0 since observations not i.i.d.

hidden variables — state sequence  {S;}{_,

EM (Baum-Welch) Algorithm:
E-step — Fix parameters, find expected state assignments
M-step — Fix expected state assignments, update parameters

27



Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

* E-step — Fix parameters, find expected state assignments

{4 — . _ aif _ T
7i(t) = p(S: = 4|0, 0) ST O = {0},

Forward-Backward algorithm
§ij(t) = p(Si—1= 1,.5:= 3|0, 0)

_ p(St_l = Z|O, 9)p(St = j, Ot, e ooy OT|St_1 = 7:, (9)
p(Ota SRR OT|St—1 = 1, ‘9)

vt = 1) pij o B
i1
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Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

° E_ t T
wep Z 7i(t) = expected # times
vi(t) = p(S; = i|0,0) t=1 in state i

T-1
Y " 7i(t) = expected # transitions
t=1 from state i

S‘Ej(t) - p(St—lz i: St — le, 9)

T-1
Z &i;(t) = expected # transitions
=1 from state i toj

* M-step
z “ qF = Ef:lfOt:kTi(t)
(/ T ‘
ng — g-r:_ll 51.? (t) EtZI Tﬂ(t}
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Some connections

e HMM vs Linear Dynamical Systems (Kalman Filters)

HMM:

Linear Dynamical Systems:

States are Discrete
Observations Discrete or Continuous

Observations and States are multi-
variate Gaussians whose means are
linear functions of their parent states

(see Bishop: Sec 13.3)
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HMMs.. What you should know

Useful for modeling sequential data with few parameters
using discrete hidden states that satisfy Markov assumption

Representation - initial prob, transition prob, emission prob,

State space representation

Algorithms for inference and learning in HMMs
— Computing marginal likelihood of the observed sequence:
forward algorithm
— Predicting a single hidden state: forward-backward
— Predicting an entire sequence of hidden states: viterbi

— Learning HMM parameters: an EM algorithm known as Baum-
Welch
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