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From i.i.d to sequential data 

So far we assumed independent, 
identically distributed data 

Sequential (non i.i.d.) data 

– Time-series data 
  E.g. Speech 

 

– Characters in a sentence 
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Markov Models 

Joint distribution of n arbitrary random variables 

 

 

 

 

 

Markov Assumption (mth order) 

Current observation 
only depends on past 
m observations 

Chain rule 
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Markov Models 

 Markov Assumption  

 1st order 

 

 

 

 2nd order 
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Markov Models 

 Markov Assumption  

 1st order 

 

 mth order 

 

 n-1th order 

 ≡ no assumptions   

 

# parameters in 
stationary model 
  K-ary variables 

O(K2) 

O(Km+1) 

O(Kn) 

Homogeneous/stationary Markov model (probabilities don’t depend on n) 
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Hidden Markov Models 

• Distributions that characterize sequential data with few 
parameters but are not limited by strong Markov assumptions. 

 

 

 

 
 

  

 Observation space   Ot ϵ {y1, y2, …, yK} 

 Hidden states   St ϵ {1, …, I} 

  

O1 O2 OT-1 OT 

S1 S2 ST-1 ST 
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Hidden Markov Models 

O1 O2 OT-1 OT 

S1 S2 ST-1 ST 

1st order Markov assumption on hidden states  {St}  t = 1, …, T 
(can be extended to higher order). 
 

Note: Ot depends on all previous observations {Ot-1,…O1} 
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Hidden Markov Models 

• Parameters – stationary/homogeneous markov model 
(independent of time t) 

 

 Initial probabilities 

  p(S1 = i) = πi 

 

 Transition probabilities 

  p(St = j|St-1 = i) = pij 

 

 Emission probabilities 

  p(Ot = y|St= i) =  

O1 O2 OT-1 OT 

S1 S2 ST-1 ST 
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HMM Example 

• The Dishonest Casino 

A casino has two dices: 

Fair dice 

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 

Loaded dice 

P(1) = P(2) = P(3) = P(5) = 1/10 
P(6) = ½ 
 
Casino player switches back-&-
forth between fair and loaded die 
with 5% probability 
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HMM Problems 
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HMM Example 

F F F L L L 

L 

F 
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State Space Representation 

 Switch between F and L  with 5% probability 
 
 
 
 
 

 HMM Parameters 

 Initial probs     P(S1 = L) = 0.5 = P(S1 = F)  
 Transition probs  P(St = L/F|St-1 = L/F) = 0.95 

      P(St = F/L|St-1 = L/F) = 0.05 

 Emission probabilities   P(Ot = y|St= F) = 1/6        y = 1,2,3,4,5,6 
     P(Ot = y|St= L) = 1/10      y = 1,2,3,4,5 
                  = 1/2        y = 6 
 

F L 

0.05 

0.05 

0.95 0.95 
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Three main problems in HMMs 

• Evaluation – Given HMM parameters & observation seqn 

  find       prob of observed sequence 

 
• Decoding – Given HMM parameters & observation seqn 

  find                 most probable 

 sequence of hidden states 

 
• Learning – Given HMM with unknown parameters and  

  observation sequence 

  find                         parameters that maximize 

 likelihood of observed data 
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HMM Algorithms 

• Evaluation – What is the probability of the observed 
sequence? Forward Algorithm 

 

• Decoding – What is the probability that the third roll was 
loaded given the observed sequence? Forward-Backward 
Algorithm 
 

 – What is the most likely die sequence given the observed 
sequence? Viterbi Algorithm 

 

• Learning – Under what parameterization is the observed 
sequence most probable? Baum-Welch Algorithm (EM) 
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Evaluation Problem 

• Given HMM parameters                                            & observation 
sequence 

 find probability of observed sequence 

 

 

 
  

 requires summing over all possible hidden state values at all times 
– KT exponential # terms! 

 Instead: 

αT k Compute recursively 

O1 O2 
OT-1 OT 

S1 S2 
ST-1 ST 
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Forward Probability 

 

 

Compute forward probability       recursively over t  αt 
k 

. 

. 

. 

Chain rule 

Markov assumption 

Introduce St-1 

Ot-1 Ot 

St-1 St S1 

O1 
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Forward Algorithm 

Can compute αt
k  for all k, t using dynamic programming: 

 

• Initialize:  α1
k = p(O1|S1 = k) p(S1 = k)  for all k 

 

• Iterate: for t = 2, …, T 

   αt
k = p(Ot|St = k) ∑ αt-1

 p(St = k|St-1 = i)          for all k 

 

• Termination:      = ∑ αT 

i 

i 

k 

k 
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Decoding Problem 1 

• Given HMM parameters                                            & observation 
sequence 

 find probability that hidden state at time t was k 

 

 
  

αt 
k Compute recursively βt 

k 

Ot-1 Ot 

St-1 St S1 

O1 OT-1 OT 

ST-1 ST 
St+1 

Ot+1 
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Compute forward probability       recursively over t  

OT 

ST 

Backward Probability 

βt 
k 

. 

. 

. 

Chain rule 

Markov assumption 

Ot Ot+1 

St St+1 St+2 

Ot+2 Introduce St+1 
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Backward Algorithm 

Can compute βt
k  for all k, t using dynamic programming: 

 

• Initialize:  βT
k = 1  for all k 

 

• Iterate: for t = T-1, …, 1 

                  for all k 

 

• Termination:   
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Most likely state vs. Most likely 
sequence 

 Most likely state assignment at time t 

 
 

 E.g. Which die was most likely used by the casino in the third roll given the 
observed sequence? 

 

 Most likely assignment of state sequence 

 
 

 E.g. What was the most likely sequence of die rolls used by the casino 

given the observed sequence? 

Not the same solution ! 
MLE of x? 
MLE of (x,y)? 
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Decoding Problem 2 

• Given HMM parameters                                           & observation 
sequence 

 find most likely assignment of state sequence 

 

 

 

 

 

 

 

        - probability of most likely sequence of states ending at 
  state ST = k 

  

VT k 

Compute recursively 

VT k 
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Viterbi Decoding 

 

 

Compute probability       recursively over t  

. 

. 

. 

Bayes rule 

Markov assumption 

Vt 
k 

Ot-1 Ot 

St-1 St S1 

O1 
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Viterbi Algorithm 

Can compute Vt
k  for all k, t using dynamic programming: 

 

• Initialize:  V1
k = p(O1|S1=k)p(S1 = k)  for all k 

 

• Iterate: for t = 2, …, T 

                  for all k 

 

• Termination: 

 

 Traceback:   
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Computational complexity 

• What is the running time for Forward, Backward, Viterbi? 

 

 

 

 

  

 

  

 O(K2T) linear in T instead of O(KT) exponential in T! 
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Learning Problem 

• Given HMM with unknown parameters                                    
and observation sequence 

 find parameters that maximize likelihood of observed data 

 

  

 hidden variables – state sequence 

 

 EM (Baum-Welch) Algorithm: 

 E-step – Fix parameters, find expected state assignments 

 M-step – Fix expected state assignments, update parameters 

But likelihood doesn’t factorize 
since observations not i.i.d. 
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Baum-Welch (EM) Algorithm 

• Start with random initialization of parameters 

• E-step – Fix parameters, find expected state assignments 

 

 

 

 
Forward-Backward algorithm 
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Baum-Welch (EM) Algorithm 

• Start with random initialization of parameters 

• E-step 

 

 

 

 

• M-step 

= expected # times 
    in state i 

= expected # transitions 
    from state i to j 

= expected # transitions 
    from state i 

-1 
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Some connections 

• HMM vs Linear Dynamical Systems (Kalman Filters) 
 

HMM:    States are Discrete 

     Observations Discrete or Continuous 

 

Linear Dynamical Systems:  Observations and States are multi- 
    variate Gaussians whose means are 
    linear  functions of their parent states 

     (see Bishop: Sec 13.3) 
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HMMs.. What you should know 

• Useful for modeling sequential data with few parameters 
using discrete hidden states that satisfy Markov assumption 

• Representation - initial prob, transition prob, emission prob,            

           State space representation 

• Algorithms for inference and learning in HMMs 

– Computing marginal likelihood of the observed sequence: 
forward algorithm 

– Predicting a single hidden state: forward-backward 

– Predicting an entire sequence of hidden states: viterbi 

– Learning HMM parameters: an EM algorithm known as Baum-
Welch 
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