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Abstract

The advent of advanced artificial intelligence technology has significantly accel-
erated progress in protein structure prediction. AlphaFold2, a pioneering method
in this field, has set a new benchmark for prediction accuracy by leveraging the
Evoformer module to automatically extract co-evolutionary information from mul-
tiple sequence alignments (MSA). However, the efficacy of structure prediction
methods like AlphaFold2 is heavily dependent on the depth and quality of the MSA.
To address this limitation, we propose two novel models, AIDO.RAGPLM and
AIDO.RAGFold, which are pretrained modules for Retrieval-AuGmented protein
language model and structure prediction in an AI-driven Digital Organism [1].
AIDO.RAGPLM integrates pre-trained protein language models with retrieved
MSA, allowing for the incorporation of co-evolutionary information in structure pre-
diction while compensating for insufficient MSA information through large-scale
pretraining. Our method surpasses single-sequence protein language models in
perplexity, contact prediction, and fitness prediction. We utilized AIDO.RAGPLM
as the feature extractor for protein structure prediction, resulting in the development
of AIDO.RAGFold. When sufficient MSA is available, AIDO.RAGFold achieves
TM-scores comparable to AlphaFold2 and operates up to eight times faster. In
scenarios where MSA is insufficient, our method significantly outperforms Al-
phaFold2 (∆TM-score=0.379, 0.116 and 0.059 for 0, 5 and 10 MSA sequences
as input). Additionally, we developed an MSA retriever for MSA searching from
the UniClust30 database using hierarchical ID generation, which is 45 to 90 times
faster than traditional methods, and is used to expand the MSA training set for
AIDO.RAGPLM by 32%. Our findings suggest that AIDO.RAGPLM provides an
efficient and accurate solution for protein structure prediction.

1 Introduction
The advent of advanced artificial intelligence technology has significantly accelerated progress in
protein structure prediction. AlphaFold2 [2], a pioneering method in this field, has set a new
benchmark for prediction accuracy. Multiple sequence alignment (MSA) plays a crucial role in
protein structure prediction. Unlike previous methods that required manual calculation of MSA
features [3], AlphaFold2 leverages the Evoformer module to automatically extract co-evolutionary
information from MSA, thereby enhancing the efficiency of information utilization.

However, the efficacy of structure prediction methods like AlphaFold2 is heavily dependent on
the depth and quality of the MSA. Consequently, it is imperative to prepare an extensive sequence
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database. When the number of homologous sequences is insufficient, the performance of AlphaFold2
deteriorates significantly. To address this limitation, methods based on large-scale pre-trained protein
language models have been proposed. For instance, ESMFold [4], OmegaFold [5], ESM3 [6] and
xTrimoPGLM-Fold [7] have demonstrated commendable results using a single sequence as input.
Nevertheless, even with 100-billion parameters, models like xTrimoPGLM and ESM3 remain inferior
to AlphaFold2 in structure prediction when MSA is used as input, underscoring the importance
of MSA. Although several PLM have attempted to integrate multiple sequences for training (see
Appendix A.1), there is currently no validation for using retrieved augmented PLM for end-to-end
protein structure prediction.

In this paper, we integrate pre-trained protein language models with retrieved MSA to propose a
novel approach termed Protein Language Model with Retrieved Augmented MSA (RAGPLM) (see
Figure 1). This approach allows for the incorporation of co-evolutionary information from MSA
in structure prediction while compensating for insufficient MSA information through large-scale
pre-training. We concatenate the query sequence with aligned homologous sequences into a long
sequence (up to 12.8k) and perform pre-training by column span mask strategy based on a transformer
encoder framework. Our method surpasses single-sequence protein language models in perplexity,
contact prediction, and fitness prediction. Subsequently, we utilized AIDO.RAGPLM as a feature
extractor, integrating it with the folding trunks and Structure Modules to achieve end-to-end structural
prediction (AIDO.RAGFold). Our findings indicate that when sufficient MSA is available, our method
achieves results comparable to AlphaFold2 and is eight times faster; when MSA is insufficient, our
method significantly outperforms AlphaFold2.

To expedite MSA acquisition, we also developed an MSA retriever using hierarchical ID generation.
This retriever is 45 to 90 times faster than traditional HHblits [8] in MSA retrieval, which is used to
expand the MSA training set for AIDO.RAGPLM by 32%.

2 Methods
Our method consists of three major components, MSA retriever, AIDO.RAGPLM and
AIDO.RAGFold, which we explain more details below.

2.1 MSA retriever
Searching for multiple sequence alignments (MSAs) in large sequence databases is time-consuming.
Inspired by [9] that generates relevant document identifiers by sequence-to-sequence network in
document retrieval, we developed an MSA retriever to generate hierarchical identifiers for homologous
sequences for a query protein sequence (see Figure A3). The protocol comprises three steps: (1)
Construct hierarchical IDs for each sequence in UniClust30 (UC30) [10] through hierarchical K-
means clustering of embedding; (2) Fine-tune a pretrained casual language model with 3-billion
parameters (CLM-3B, [11]) to memorize the ID of each sequence on UC30 dataset; (3) Continue
to fine-tune the model to generalize to IDs of homologous sequences on the HHblits MSA dataset.
For detailed training information, please refer to Appendix A.3. During inference, the MSA retriever
generates each ID token sequentially, which corresponds to the nodes of the tree, until the UC30 node
is reached. We perform multiple generations using different parameters and aggregate all retrieved
sequences. Jackhmmer [12] is then used to filter and align the homologous sequences. We use MSA
Retriever to expand the MSA training data for AIDO.RAGPLM (see Appendix A.4).

2.2 AIDO.RAGPLM

We fine-tuned a pretrained masked language model with 3-billion parameters (MLM-3B, [11]) using
MSA data by concatenating the query sequence with homologous sequences (see Figure 1). We
introduced several modifications to the standard BERT masking strategy [13]: (1) We randomly
sampled 0.05× L span positions from a query sequence of length L, with span lengths following a
geometric distribution (p=0.2), and capped the maximum length at 10. Our experiments revealed that
this settings lead to an average of 15% of the query tokens were masked. (2) To prevent information
leakage, when a residue was selected, all residues at the same index across all sequences (the column
of the MSA matrix) were also masked. (3) When a column of MSA was selected for masking, the
entire column was replaced with the <MASK> token in 80% of cases, with random amino acids in
10% of cases, and remained unchanged in the remaining 10% of cases. To help the model distinguish
which tokens are from the same chain and which tokens have the same residue index, we use 2D
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Figure 1: Schematic diagram of MSA retriever, AIDO.RAGPLM and AIDO.RAGFold (A)
The relationship between different models in this work. (B) The MSA Retriever generates MSA
sequences, which serve as training data for the AIDO.RAGPLM. (C) The AIDO.RAGPLM functions
as a feature extractor for end-to-end protein structure prediction.

rotary position embedding [14, 15] to encode the tokens (see Figure A4 and Appendix A.5). For the
details of training parameters, please refer to Table A6.

2.3 AIDO.RAGFold
Inspired by ESMFold [4], we use AIDO.RAGPLM as a feature extractor, and added the folding
trunks (AlphaFold2 Evorformer without the column attention module) and Structure modules as
a head to enable end-to-end protein structure prediction. During training, we also fine-tuned the
AIDO.RAGPLM base model using LoRA (Rank=16, Alpha=16). We experimented with various
numbers of folding trunks and found that 24 blocks were enough, which is half the number used in
AlphaFold2 and ESMFold. Additionally, we replaced the ReLU activation function with GEGLU [16]
in the transition module to enhance model performance. Our training procedure consists of two
phases: initial training and fine-tuning. Detailed training parameters are provided in Appendix A7.
Please refer to Appendix A.5 for the details of the data description, model training and inference.

3 Results
Please refer to Appendix A.6 for details of test datasets.

3.1 Comparing MSA retriever and HHblits
We employed HHblits and our MSA retriever to obtain MSAs of the test sequences from the UC30
database. For MSA retriever, we experimented with two sets of parameters: (1) beam search to
generate 20 UC30 clusters; (2) Top-K (K=10) sampling for 64 UC30 clusters. The results were
combined and used as input for AlphaFold2 (checkpoint: model_3_ptm). Table A5 demonstrates that
although our results are not as favorable as those obtained with HHblits in terms of TM-score, our
method is approximately 45 to 85 times faster. To address the issue of missing targets in the retriever
(Depth ≤ 10), we combined the MSA retriever with HHblits. For samples with a depth of less than
10 in the retriever’s results, we used HHblits to retrieve the MSA again. We found that the TM-score
is comparable across four datasets when using HHblits, while still maintaining a 5 to 70-fold increase
in speed.

3.2 AIDO.RAGPLM
Perplexity (PPL): We randomly replace 15% of the tokens in the sequence with <MASK> token. For
MSA sequences, residues at the same index (the column of MSA) of masked query are also masked.
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We then calculate the perplexity of the masked tokens from the query sequence using ESM2-3B,
MLM-3B, and AIDO.RAGPLM models. Table A4 shows that PLMRAG has the lowest PPL across
all datasets, and as the number of homologous sequences increases, the PPL decreases further.

Unsupervised Contact Prediction: Following the methodology of [17], we randomly selected 20
chains as the training set and obtained H ×L attention maps from the model, where H is the number
of heads and L is the number of layers. Each attention map was symmetrized and adjusted using the
Average Product Correction (APC) independently. Residue pairs with a distance of less than 8Å were
defined as contacts. Logistic regression was employed to predict whether a residue pair is a contact
(distance less than 8Å) using the H × L features as input. For AIDO.RAGPLM, only the attention
map of the query sequence part was utilized. As shown in Table 1, AIDO.RAGPLM outperforms the
two single-sequence models, despite its base model, MLM-3B, performing worse than ESM-3B on
the CAMEO and Recent datasets.

Table 1: Unsupervised contact prediction.

Top L Top L/5

CASP14 CASP15 CAMEO Recent CASP14 CASP15 CAMEO Recent

ESM2-3B 0.357 0.42 0.493 0.452 0.348 0.381 0.444 0.436

MLM-3B 0.350 0.427 0.483 0.433 0.365 0.380 0.441 0.403

RAGPLM 0.389 0.451 0.513 0.477 0.396 0.415 0.470 0.443

Supervised Contact Prediction: We utilized the contact prediction dataset from trRosetta [18] to
fine-tune the model. For all models, qkvo LoRA [19] and MLP LoRA were applied with (Rank=16,
Alpha=16). The batch size was set to 8, and training was conducted for 25,000 steps. The checkpoint
with the highest validation Top L/5 accuracy was used to evaluate the model. As shown in Table 2,
AIDO.RAGPLM outperforms ESM2-3B and MLM-3B on both the validation and test sets.

ProteinGym zero-shot prediction. We obtained the substitutions dataset of Deep Mutational
Scanning (DMS) assays from the ProteinGym website [20]. For each mutation twt → tmut, we
replace the wildtype token twt with a special <MASK> token. We then computed the log ratio
log(Pθ(tmut))− log(Pθ(twt)), where Pθ(tmut) represents the model’s probability of the mutated
token given the other tokens as input. To evaluate the model’s performance, we calculated the
Spearman correlation coefficient between the log ratio and the "DMS score" from the downloaded
tables. As shown in Table 2, the PLMRAG model achieved a higher score compared to the other two
single-sequence PLMs.

Table 2: Result of supervised contact prediction and fitness prediction Supervised contact
prediction: 1,512 samples for validation set and test set. Fitness prediction: Spearman correlation
coefficients of Deep Mutational Scanning (DMS) assays from ProteinGym. The column labeled "All"
includes sequences with single and multiple mutations, while the column labeled “Single” includes
sequences with only a single mutation. The data size is 207.

Supervised contact prediction (L/5 acc) Fitness prediction ( Spearman’s ρ)

Validation Test All Single

ESM2-3B 0.931 0.915 0.439 0.426

MLM-3B 0.916 0.910 0.430 0.408

PLMRAG 0.938 0.927 0.462 0.437

3.3 AIDO.RAGFold
We conducted a comparative analysis of TM-scores and runtime between AIDO.RAGFold and
AlphaFold2 (checkpoint: model_3_ptm) using HHblits retrieved MSAs as input. The number of
recycle (Nrecycle) was fixed at three, and the maximum context length for RAG was constrained up
to 25,600. Both AlphaFold2 and AIDO.RAGFold were executed with varying Nensemble (1, 2 and 4),
resulting in AIDO.RAGPLM processing 4, 8, and 16 different MSAs, respectively (see Algorithm 1).
Table 3 presents the TM-score of the two models. Table A10 presents the inference time, RMSD and
LDDT. Our findings indicate that:
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Table 3: TM-scores of AlphaFold2, AIDO.RAGFold, and ESMFold on four test datasets. HHblits
MSAs were used as input for AlphaFold2 and AIDO.RAGFold. "ens" denotes the number of MSA
ensembles.

Dataset
ens=1

AF2
ens=2 ens=4 ens=1

AIDO.RAGFold
ens=2 ens=4

ESMFold

CASP14 0.754 0.766 0.767 0.752 0.764 0.776 0.696

CASP15 0.725 0.727 0.728 0.722 0.727 0.726 0.639

CAMEO 0.864 0.863 0.864 0.868 0.869 0.871 0.854

Recent 0.824 0.823 0.824 0.820 0.823 0.823 0.775

MSA ensembling enhances AIDO.RAGFold’s performance: This improvement is primarily due
to RAG’s limited MSA context usage. Increasing Nensemble allows AIDO.RAGFold to use more
homologous sequence information.

AIDO.RAGFold’s performance is comparable to AlphaFold2: AIDO.RAGFold demonstrates a
significantly faster inference speed, ranging from 8 times faster.

AIDO.RAGFold outperforms ESMFold: The inclusion of MSA significantly boosts
AIDO.RAGFold’s performance compared to ESMFold.

To investigate the impact of the number of MSAs on AIDO.RAGFold’s structural prediction accuracy,
we randomly sampled 0, 5, 10, 25, 50, and 100 sequences from the HHblits MSA as input for
both AlphaFold2 and AIDO.RAGFold. Table A11 and Figure 2 illustrate that AIDO.RAGFold’s
TM-scores surpass those of AlphaFold2 when the number of MSAs is limited. For instance, using
the Recent PDB dataset, AIDO.RAGFold outperforms AlphaFold2 by margins of 0.420, 0.155,
0.070, 0.016, and 0.007 for 0, 5, 10, 25, 50, and 100 MSAs, respectively. However, it is noteworthy
that without any MSA input, AIDO.RAGFold’s performance lags behind ESMFold. Nevertheless,
providing more than 5 MSAs enables AIDO.RAGFold to match ESMFold’s performance, with the
exception of the CAMEO dataset.

Figure 2: TM-scores of AlphaFold2 and AIDO.RAGFold on four test datasets with limited
MSA sequences as input. AlphaFold2 and AIDO.RAGFold are represented by blue and green bars
respectively. The x axis represents the upper bound of the MSA number.

4 Conclusion
Our study introduces a novel MSA retrieval method based on ID generation, significantly accelerating
MSA acquisition compared to traditional approaches. Utilizing this method, we expanded the existing
MSA dataset and trained an MSA retrieval-enhanced protein language model. Our findings indicate
that this model outperforms single-sequence models in tasks such as contact prediction and fitness
prediction. Furthermore, we employed the embeddings from this language model for downstream
end-to-end structure prediction, achieving results comparable to AF2, but with an approximately
eightfold increase in speed. Notably, in scenarios with insufficient MSAs, our model substantially
surpasses AF2, underscoring the critical importance of pre-trained models.
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A Appendix

A.1 Retrieval Augmented Protein Language Models

Recent advancements in protein language models have attempted to integrate multiple homologous
sequences for training. For example, the MSA Transformer [17], a model with 150 million parameters,
utilizes aligned homologous sequences as input and employs self-supervised learning through random
masking. This model has demonstrated superior performance compared to single-sequence models
in downstream tasks such as fitness and contact prediction. Similarly, PoET [21], an autoregressive
generative model, concatenates unaligned sequences and trains them using next-token prediction.
This enables the generation of entirely new sequences within the same family and the prediction
of variant fitness. RSA [22] retrieves homologous sequences of the query using its dense sequence
retriever and aggregates the information from the query and homologous sequences in pairs for
downstream task prediction. This method not only achieves a retrieval speed significantly faster
than traditional MSA methods but also delivers superior results in tasks such as fold classification,
contact prediction, and localization. ProtMamba [23], leveraging the Mamba framework, extends the
maximum sequence length up to 131k. By integrating autoregressive modeling and masked language
modeling (MLM) with a fill-in-the-middle objective, ProtMamba can generate protein sequences and
be utilized for downstream tasks such as fitness prediction.

A.2 MLM-3B model and CLM-3B model

The MLM-3B model [11]) is a transformer encoder framework with 2.8 billion parameters. We
utilize the same hyperparameters as ESM-3B, specifically: 36 layers, 40 heads, a hidden size of
2560, and an FFN hidden size of 6832. The training data is a mixture of the UniRef database and
ColabFoldDB. We follow the BERT masking strategy: 15% of the tokens are selected for masking,
with 80% replaced by special MASK tokens, 10% replaced by random amino acids, and the remaining
10% left unchanged. The learning rate schedule includes a 3% warm-up phase from 0 to 2.5e-4
followed by cosine decay from 2.5e-4 to 2.5e-5. Please refer to Table A6 for detailed information
about MLM-3B. We train on 1,000 billion tokens and evaluate the model on two out-of-distribution
datasets, with maximum identity to the training set being less than 0.9 and 0.5, respectively. The
results are presented in Table A5.

The CLM-3B model [11]) is a transformer decoder framework. It shares the same hyperparameters
as the MLM-3B model and is trained on the same dataset. Our approach follows the training
methodology of GPT, predicting the next token based on the given prefix. For detailed information
about CLM-3B, please refer to Table A6.

A.3 MSA retriever

As described in the main text, training the MSA retriever involves three steps. Below, we detail the
methods for each step.

A.3.1 Construct Hierarchical IDs for Each Sequence in UniClust30 via Hierarchical K-means
Clustering of Embedding

The UC30 database (v2021_03) comprises 29 million clusters containing a total of 263 million
sequences. The hierarchical ID is a multi-layer tree structure (see Figure A3), with each node having
no more than 64 child nodes. Each leaf node corresponds to a sequence in UC30. To ensure the
hierarchical ID reflects sequence similarity semantics (e.g., the similarity between 23-43-52-0 and
23-43-52-1 is higher than that between 23-43-52-0 and 23-43-34-5), we assign the ID tokens by
clustering the embedding of sequences. So we use the MLM-3B model to generate embedding
(dimension of 2560) for the 263 million sequences.

The ID of a sequence consists of two parts: (1) ID_center: derived from clustering the 29 million
cluster centers; (2) ID_member: derived from clustering the members within a UC30 cluster.

ID_center: For each UC30 cluster, the longest sequence is selected as the representative sequence,
and its embedding is used as the representative embedding of the cluster. We perform hierarchical
K-means clustering (K=64) on the 29 million representative embedding, resulting in a tree with a
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degree of 64. We label all child nodes of each node from 0 to 63. Thus, for any node, we traverse
from the root node to it in sequence to obtain its hierarchical ID, which is ID_center.

ID_member: For UC30 clusters with more than 64 members, we perform the same hierarchical
K-means clustering on all members’ embeddings to build ID_member.

The final ID for each sequence is obtained by concatenating ID_center and ID_member.

A.3.2 Fine-tune the CLM-3B Model to Memorize the ID of Each Sequence

We first build a Seq-ID dataset from UC30 dataset. Each sample comprises the query sequence, a
special <ID> token, the hierachical ID tokens, and an <EOS> token. The CLM-3B model is trained
with 500 billion tokens. After training, the model can generate the ID tokens with the query sequence
and the <ID> token as a prefix until the <EOS> token or the UC30 cluster level token (purple circle
in Figure A3). The learning rate is warmed up from 0 to 2.0e-5 for the first 2.5% of training tokens
and then decays to 0 using a cosine schedule.

A.3.3 Continue to fine-tune the model to Generalize to IDs of Homologous Sequences

We use HHblits to search for MSAs from UC30 using UniRef50 (UR50) as query sequences, obtaining
23.7 million MSAs. We refer to this dataset as HHblits_MSA. When fine-tuning CLM-3B on this
dataset, each sample comprises a query sequence, a special <ID> token, the ID tokens (randomly
sampled from its homologous sequences), and a <EOS> token. We train 10 billion tokens on this
dataset. Please refer to Table A6 for detailed information.

A.4 AIDO.RAGPLM training dataset

We utilized sequences from UniRef50 as queries to search for homologous sequences in UniClust30,
subsequently constructing multiple sequence alignments (MSAs). UniRef50 comprises a total of
53.6 million sequences. Using HHblits, we searched all sequences, identifying over 25 homologous
sequences for 23.7 million of them. This dataset was directly used as the training set, referred to as
HHblits_MSA. The remaining 29.9 million sequences were input into MSA Retriever, resulting in
7.7 million sequences with more than 25 homologous sequences. This dataset was designated as
Retriever_MSA. During training, AIDO.RAGPLM randomly sampled from the two datasets with
probabilities of 0.75 and 0.25, respectively. Detailed information is provided in Figure A8.

A.5 Detailed description of AIDO.RAGFold architecture and inference.

We used the PDB database (release prior to January 1, 2024), the AlphaFold Database (with mean
pLDDT > 90) and OpenProteinSet residues with pLDDT > 90 [24] as the training set. Detailed
information about the data is provided in Table A9. We ensured that all samples with sequence
identity greater than 0.5 with the test set were excluded. The open-source OpenFold framework was
employed to train our RAG-Fold model.

To feed the query tokens (∈ RL, where L is the length of the query sequence) and MSA tokens
(∈ RN×L, where L is the length of the query sequence) into the AIDO.RAGPLM model, the MSA
tokens are flattened into the shape of RNL. We initialize a 2D positional encoding (∈ R2×L),
where the first dimension represents the residue index for each sequence and the second dimension
represents the sequence index [14]. To reduce the length of the sample, we remove G gap tokens
that contain no information in the sequence. This adjustment changes the dimension of the sample
to RNL−G and the dimension of the positional encoding to R2×(NL−G). Figure A4 illustrates this
process.

The output of the AIDO.RAGPLM model includes the embeddings of homologous sequences. We
retain only the hidden states corresponding to the query tokens and input them into the downstream
modules. Linear modules are employed to transform these hidden states into the MSA representation
and Pair representation of folding trunks. For a detailed description, please refer to Algorithm 1.

During inference, due to the limitation of the input sample length (up to 25,600), the information
from homologous sequences that the AIDO.RAGPLM model can utilize is restricted. To address this,
we adopted the MSA ensembling method from AlphaFold2. Specifically, we sample a subset of up to
25,600 sequences from the all MSA sequences each time and run the AIDO.RAGPLM Nensemble
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times to average the resulting representations. This approach enables us to maximize the utilization
of information from homologous sequences.

A.6 Test datasets

• CASP14 (N=50): Protein targets obtained from the CASP14 website, accompanied by
ground-truth structures.

• CASP15 (N=53): Protein targets sourced from the CASP15 website, with corresponding
ground-truth structures.

• CAMEO (N=194): Protein domains retrieved from the CAMEO website, covering the
period from July 1, 2021, to June 1, 2022.

• Recent PDB (N=107): Protein chains extracted from the PDB database, with release dates
ranging from January 1, 2024, to July 1, 2024. The following criteria were applied to filter
the chains: (1) a length range between 50 and 1500 residues; (2) exclusion of sequences
containing non-standard amino acid types; (3) removal of sequences with repeat fragments,
defined as having a bi-gram entropy greater than 4; (4) exclusion of sequences with more
than 50% identity to the training set; (5) clustering of sequences at a 50% identity cutoff,
selecting one representative sequence per cluster.

Table A4: Perplexity of various models and inputs across six sequence datasets.(N) denotes
the dataset size, while (D) represents the number of homologous sequences used as input for
AIDO.RAGPLM.

CASP14 CASP15 CAMEO Recent PDB MaxID0.5 MaxID0.9

N 50 53 194 107 5,012 6,907

ESM2-3B 10.658 5.963 5.959 6.223 10.753 6.703

MLM-3B 8.905 6.355 5.631 5.671 10.959 6.816

RAGPLM (D=1) 10.114 6.599 6.321 6.357 10.718 6.816

RAGPLM (D=8) 9.303 6.360 6.212 5.999 10.222 6.494

RAGPLM (D=16) 8.980 6.167 6.167 5.666 9.989 6.317

RAGPLM (D=64) 8.724 5.803 5.995 5.329 9.381 5.840

RAGPLM (D=128) 8.391 5.612 5.707 5.296 9.341 5.833
RAGPLM (D=256) 8.072 5.741 5.635 5.266 9.359 5.871

Table A5: Performance Comparison of Various MSA Search Tools. In the case of Ours + hhblits,
Ours MSAs with a depth of fewer than 10 were replaced with HHblits MSAs.

Average time (s) #(Depth ≥ 100) ↑ #(Depth ≤ 10) ↓ AlphaFold2
TM-score ↑

CASP14

hhblits 899 27 9 0.757
Ours 19 31 11 0.696

Ours + hhblits 172 31 7 0.748

CASP15

hhblits 2928 47 2 0.731
Ours 32 42 8 0.668

Ours + hhblits 94 46 2 0.723

CAMEO

hhblits 2761 172 5 0.865
Ours 43 163 24 0.831

Ours + hhblits 127 171 5 0.862

Recent PDB

hhblits 3138 91 1 0.824

Ours 43 94 10 0.783

Ours + hhblits 104 96 1 0.827
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Table A6: Detailed training information of MLM-3B, CLM-3B, MSA Retriever and
AIDO.RAGPLM.

MLM-3B CLM-3B Retriever
Step 1

Retriever
Step 2

RAGPLM

Training data UniRef +
ColabFoldDB

UniRef +
ColabFoldDB

UniClust30 HHblits_MSA HHblits_MSA
Retriever_MSA

Initial params Random Random CLM-3B Retriever
Step 1

MLM-3B

Learning rate 2.5e-4 1.2e-4 2e-4 1.2e-4 1e-4

Training tokens 1000B 2300B 300B 10B 100B

Batch size 2560 2048 2048 1024 256

Micro batch size 4 4 4 4 1

Sample length 1024 2048 2048 1024 12800

Attention Bi-directional Causal Causal Causal Bi-directional

Table A7: Detailed training information of AIDO.RAGFold

Initial training Fine-tuning

Sequence crop size 256 368

Maximum context length of RAG 16,384 12,800

Exponential moving average Enabled Enabled

Learning rate of LoRA A: 1e-4, B: 1.6e-3 A: 1e-4, B: 1.6e-3

Learning rate of folding trunks Structural modules First 90%: 1e-3
Last 10%: 5e-4

5e-4

Batch size First 90%: 128
Last 10%: 256

256

Warm up First 2000 steps N/A

Structural violation loss weight 0 0.1

“Experimentally resolved” loss weight 0 0.01

Training samples (million) 10 6

Table A8: Training data of AIDO.RAGPLM23.7 million MSAs are collected by HHblits and 7.7
million MSAs are collected by MSA Retriever.

#Seqs #Query tokens Sample Weight
HHblits_MSA 23.7M 6.5B 0.75

Retriever_MSA 7.7M 2.4B 0.25

Table A9: Training data of AIDO.RAGFold.

Dataset #Chains #Clusters Sample ratio

PDB 440,952 34,961 25%

AlphaFold DB Distil 4,457,794 1,829,120 N/A

OpenProteinSet Distil 259,343 242,079 N/A

Distil mixed 4,711,621 2,002,005 75%
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Table A10: Inference time, RMSD and LDDT of AlphaFold2 (AF2), AIDO.RAGFold (AIDO.RF),
and ESMFold on four test datasets.

Dataset
ens=1

AF2
ens=2 ens=4 ens=1

AIDO.RF
ens=2 ens=4

ESMFold

Inferene Time
(wo MSA search)

CASP14 93.9 121.9 163.8 8.7 17.5 34.4 8.3

CASP15 95.4 127.4 171.6 11.4 22.8 45.2 8.5

CAMEO 90.0 116.1 149.3 11.3 22.5 44.5 6.0

Recent 99.6 130.2 175.4 11.7 23.2 45.9 9.1

RMSD

CASP14 6.152 5.767 5.726 6.788 6.521 6.281 8.558

CASP15 15.479 15.387 15.351 12.375 13.451 12.930 16.055

CAMEO 3.555 3.607 3.597 3.670 3.635 3.633 4.131

Recent 5.428 5.431 5.213 6.263 6.161 6.071 7.080

LDDT

CASP14 0.784 0.794 0.797 0.795 0.804 0.813 0.732

CASP15 0.841 0.843 0.842 0.836 0.840 0.840 0.777

CAMEO 0.890 0.890 0.890 0.893 0.894 0.896 0.876

Recent 0.893 0.893 0.893 0.891 0.894 0.893 0.853

Table A11: TM-scores of AlphaFold2, AIDO.RAGFold, and ESMFold on four test datasets with
limited MSA sequences as input.

#MSA=0 #MSA=5 #MSA=10 #MSA=25 #MSA=50 #MSA=100
AF2 RAG AF2 RAG AF2 RAG AF2 RAG AF2 RAG AF2 RAG ESMFold

CASP14 0.298 0.604 0.584 0.692 0.672 0.728 0.716 0.735 0.726 0.744 0.740 0.748 0.696
CASP15 0.290 0.624 0.583 0.652 0.614 0.666 0.645 0.678 0.666 0.697 0.701 0.697 0.639
CAMEO 0.330 0.787 0.690 0.822 0.777 0.834 0.820 0.844 0.840 0.851 0.843 0.853 0.854
Recent 0.292 0.712 0.618 0.773 0.714 0.784 0.769 0.798 0.790 0.806 0.800 0.807 0.775

Figure A3: Schematic Diagram of Hierarchical ID of UniClust30 Sequences. The UC30 sequences
are organized into a tree structure with a branching factor of 64. Each leaf node represents an
individual sequence, while each UC30 cluster corresponds to an internal node of the tree. The
hierarchical ID of a sequence is determined by traversing from the root node to the corresponding
leaf node.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.626519doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.02.626519
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure A4: Schematic Diagram of AIDO.RAGPLM input.

Algorithm 1 AIDO.RAGFold
Require: query_tokens ∈ {0, . . . , 20}L ▷ L: Number of residues
Require: msa_tokens ∈ {0, . . . , 20}N×L ▷ N : Number of sequences
Require: Nrecycle ▷ Number of recycles
Require: Nensemble ▷ Number of ensemble

msa_emb_prev, pair_emb_prev, cbeta_prev = 0, 0, 0
for i_rec ∈ 0, . . . , Nrecycle do

msa_emb, pair_emb = 0, 0
for i_ens ∈ 1, . . . , Nensemble do

msa_tokens_ens = GreedyMaxSample(msa_tokens) ▷ GreedyMaxSample sample a subset
of MSA with maximum diversity

msa_emb, pair_emb += RAGPLM-Embedder(query_tokens, msa_tokens_ens)
end for
msa_emb, pair_emb /= Nensemble

msa_emb, pair_emb += RecyclingEmbedder(msa_emb_prev, pair_emb_prev, cbeta_prev)
msa_emb, pair_emb = FoldTrunk(msa_emb, pair_emb)
atom_pos, plddt = StructureModule(msa_emb, pair_emb)
msa_emb_prev, pair_emb_prev, cbeta_prev = msa_emb, pair_emb, get_cbeta(atom_pos)

end for
return atom_pos, plddt

Algorithm 2 RAGPLM-Embedder
Require: query_tokens ∈ {0, . . . , 20}L ▷ L: Number of residues
Require: msa_tokens ∈ {0, . . . , 20}N×L ▷ N : Number of sequences

hid_stat = RAGPLM (query_tokens, msa_tokens) ▷ hid_stat ∈ R(NL−G)×D

hid_stat = hid_stat[:L] ▷ hid_stat ∈ RL×D

msa_emb = MSA_Transform(hid_stat) ▷ msa_emb ∈ RL×256

pair_emb = PAIR_Transform(hid_stat) ▷ pair_emb ∈ RL×L×128

pair_emb + = relpos(res_ind) ▷ res_ind is short for residue index
msa_emb + = aa_embedder(query_tokens)
return msa_emb, pair_emb

Algorithm 3 MSA_Transform
Require: hid_stat ∈ RL×D

msa_emb = Linear(hid_stat) ▷ msa_emb ∈ RL×256

return msa_emb

Algorithm 4 PAIR_Transform
Require: hid_stat ∈ RL×D

hid_stat = LayerNorm(hid_stat)
pair_emb = OuterAdd(Linear(hid_stat), Linear(hid_stat)) ▷ pair_emb ∈ RL×L×128

return msa_emb
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