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Abstract

Originally marginalized as an intermediate in the information flow from DNA to
protein, RNA has become the star of modern biology, holding the key to precision
therapeutics, genetic engineering, evolutionary origins, and our understanding of
fundamental cellular processes. Yet RNA is as mysterious as it is prolific, serving
as an information store, a messenger, and a catalyst, spanning many underchar-
acterized functional and structural classes. Deciphering the language of RNA is
important not only for a mechanistic understanding of its biological functions but
also for accelerating drug design. Toward this goal, we introduce AIDO.RNA, a
pre-trained module for RNA in an AI-driven Digital Organism [1]. AIDO.RNA
contains a scale of 1.6 billion parameters, trained on 42 million non-coding RNA
(ncRNA) sequences at single-nucleotide resolution, and it achieves state-of-the-
art performance on a comprehensive set of tasks, including structure prediction,
genetic regulation, molecular function across species, and RNA sequence design.
AIDO.RNA after domain adaptation learns to model essential parts of protein
translation that protein language models, which have received widespread atten-
tion in recent years, do not. More broadly, AIDO.RNA hints at the generality of
biological sequence modeling and the ability to leverage the central dogma to im-
prove many biomolecular representations. Models and code are available through
ModelGenerator in https://github.com/genbio-ai/AIDO and on Hugging
Face.

1 Introduction

RNA, an essential biomolecule found in all living organisms, holds the distinction of being considered
the original molecule of life [2]. Its significance extends beyond its role in bridging genetic informa-
tion and protein synthesis, as it plays a crucial part in various cellular processes such as metabolism,
transport, signaling, and regulation. Messenger RNA (mRNA) carries genetic instructions, transfer
RNA (tRNA) aids in translating mRNA into amino acids, and ribosomal RNA (rRNA) forms an inte-
gral part of ribosomes involved in protein synthesis. Furthermore, small non-coding RNA molecules,
such as microRNA and small interfering RNA, regulate gene expression by silencing or degrading
specific mRNA molecules. Understanding the emergence of diverse structures and functions from a
simple 4-letter chemical vocabulary is vital for comprehending cellular processes, genetic regulation,
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and disease mechanisms. RNA’s synthesizability, programmability, and broad functionality make it
an attractive candidate for therapeutic development and metabolic engineering [3].

However, due to the dynamic nature of RNA structures, there are only a few thousand RNA structure
data available in the Protein Data Bank [4], making it difficult for RNA to get its AlphaFold [5]
moment [6]. Furthermore, functional labels specific to RNA tasks are often scarce. Despite the
scarcity of RNA structural and functional data, the rapid progress in next-generation sequencing
technology has led to a substantial accumulation of RNA sequence data. Similar scenarios have been
observed in the fields of Natural Language Processing (NLP) and protein science, where substantial
quantities of unannotated sequences are accessible. Inspired by the huge success of foundation
models in the two domains, we seek a foundation model for RNA, aiming to benefit a diverse set of
RNA-related tasks, including RNA structure/function prediction and RNA sequence design.

In recent years, several RNA FMs have been proposed [11, 12, 13, 9, 14, 15, 16, 17, 7, 10, 8, 18], most
of which are encoder-only transformers pre-trained using the Masked Language Modeling (MLM)
objective [19, 20] (See Appendix E). These models have shown impressive results in RNA secondary
structure prediction and function prediction [9, 10], demonstrating the potential of large language
models (LLMs) in the RNA domain. However, existing RNA foundation models are relatively small
(up to 650M parameters) compared to protein language models (up to 100B parameters) [10, 21].
Scaling LLMs for RNA remains an interesting and open challenge.

Furthermore, translating sequence modeling methods from NLP to RNA requires substantial im-
provements beyond protein language models. While LLM technology is directly applicable to RNA,
determining the ideal pre-training dataset for general-purpose RNA foundation models remains
unresolved. Unlike the protein domain, where UniRef [22] is a typical pre-training data source,
RNA sequences are scattered across various biological databases. Currently, there exist two easily
accessible RNA sequence databases: 1) RNAcentral, a high-quality ncRNA sequence database with
42 million samples, and 2) MARS, a noisy RNA sequence database containing 1.7 billion sequences.
We investigate both datasets for pre-training purposes and discover that utilizing a high-quality
database is crucial, resulting in improved overall downstream performance (See Section 3.5).

We introduce AIDO.RNA, a 1.6B-parameter RNA foundation model pre-trained on 42 million
ncRNA sequences from RNAcentral. To the best of our knowledge, AIDO.RNA is the largest RNA
foundation model to date. To evaluate its performance, we create a comprehensive RNA sequence

Figure 1: AIDO.RNA achieves SOTA results on 24 out of 26 RNA sequence understanding
tasks. We compare our model with two domain expert models UTR-LM [7] and CaLM [8], and two
general models Uni-RNA [9] and RiNALMo [10]. For all tasks, higher metric values indicate better
performance.
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understanding benchmark comprising 26 datasets from 9 task categories, including structure, function,
and mRNA-related tasks relevant to mRNA vaccine design. As shown in Figure 1, AIDO.RNA
surpasses previous state-of-the-art (SOTA) results on 24 out of 26 tasks. In particular, our model
excels in RNA secondary structure prediction and translation efficiency prediction, which are tasks
specifically relevant to the RNA level, as opposed to DNA or protein levels. Furthermore, we
evaluate AIDO.RNA on the 3D RNA inverse design, which involves generating sequences based on
3D RNA backbones. Experiment results show that our model enhances performance compared to
the previous SOTA method, gRNAde [23], with or without fine-tuning. These results demonstrate
AIDO.RNA’s strong capabilities in RNA language understanding and generation, positioning it as a
potent foundation model for diverse RNA tasks.

2 Pre-training AIDO.RNA

In this work, we explore scaling up RNA foundation models. We adopt encoder-only transformer
as our model architecture and use masked language modeling (MLM) as the pre-training objective.
Special focus is given to the pre-training data, which remains under-explored and lacks consensus
in the RNA domain. Our exploration in the pre-training data suggests that data quality outweigh
data quantity, as illustrated in Section 3.5. Therefore, we leverage high-quality RNA sequences from
RNAcentral [24] as the pre-training data and pre-train the first RNA foundation model at the scale of
1.6 billion parameters.

Pre-training data RNAcentral database contains a comprehensive non-coding RNA sequence
collection representing all ncRNA types from a broad range of organisms. In specific, we collect
sequences from rnacentral_active.fasta.gz and rnacentral_inactive.fasta.gz from
version 24.0 and then remove duplications using SeqKit toolkit. The resulting dataset contains 42
million unique ncRNA sequences. Notably, we do not use clustered sequences as RiNALMo [10]
did for two reasons: 1) The similarity between sequences in a carefully curated dataset represents
evolutionary selection and conservation, which should be kept for the model to learn; 2) It is very
likely that clustering won’t help since the average cluster size is just 2.2 when we cluster the sequences

Figure 2: Pre-training model architecture of AIDO.RNA. AIDO.RNA takes masked sequences from
RNAcentral as input and aims to reconstruct the masked tokens through MLM objective. After
pre-training, the model can be applied to various downstream tasks. Figure created in BioRender.com.
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to 0.7 sequence identity using MMseqs2 [25]. Furthermore, we find that the data follows a long tail
distribution in terms of RNA types, as shown in Appendix Table 12. To have a better understanding of
the generalization ability of our model on different RNA types, we downsample the frequent types and
upsample the infrequent types for validation and testing. Distributions of the train, validation, and test
set are shown in Appendix Table 12. The training dataset consists of 41.5M distinct ncRNA sequences,
comprising a total of 30 billion nucleotides. On average, each sequence has 728 nucleotides.

Sequence tokenization We encode each nucleotide (A, T, C, G) as a token and use N to represent
other rare bases (U has been transformed to T in our dataset). We also introduce some special tokens,
including [CLS], [SEP], [MASK], [PAD]. The vocabulary size is set to 16. When processing
each RNA sequence, we prepend the [CLS] token at the beginning and append the [SEP] token at
the end. This allows the model to separate a full-sized RNA from a cropped one.

Model architecture Following common practice in the literature as summarized in Appendix Table
22, we adopt encoder-only transformer as our pre-training model architecture to extract meaningful
biological representations from RNA sequences [19, 20]. Figure 2 illustrates our pre-training model
architecture. In experiment, our 1.6B model AIDO.RNA contains 32 layers and 32 attention heads.
The hidden size is set to 2,048 and the feed-forward hidden size is 5,440. We use Rotary Position
Embedding (RoPE) [26] to allow better position modeling. In addition, we use LayerNorm [27] and
SwiGLU activation function in our model to make it more expressive and stable in pre-training.

Pre-training setting We pre-train two models with different sizes, i.e., 650M, 1.6B, on non-coding
RNA sequences. Unless otherwise specified, AIDO.RNA denotes the 1.6B one. We use the MLM
objective with a masking ratio 0.15. In specific, this involves randomly selecting 15% of the input
tokens for each input sequence. For the selected tokens, there are three possible operations: 1) The
token is masked with a probability of 0.8; 2) The token is replaced with a random token with a
probability of 0.1; 3) The token remains unchanged with a probability of 0.1. Cross entropy loss is
computed on those selected tokens. We train our models on 30 billion unique nucleotides for 6 epochs.
We use AdamW optimizer with weight decay of 0.01 [28]. The peak learning rate is set to 5e-5 and
gradually decay to 1e-5 via cosine learning rate scheduler. All hyperparameters for pre-training are
summarized in Appendix Table 13. We implement our code using the Megatron-LM framework. To
accelerate pre-training, we use FlashAttention-2 [29] and use BFloat16 mixed precision training.

3 Results

3.1 AIDO.RNA captures RNA structural information

As with proteins, structure determines RNA function. RNA secondary structure, formed by base
pairing, is more stable and accessible than its tertiary form within cells. Accurate prediction of
RNA secondary structure is essential for tasks such as higher-order structure prediction and function
prediction [30]. We utilize two benchmark datasets created by Singh et al. (2019) [31] and Szikszai
et al. (2022) [32] for RNA secondary structure prediction. The first dataset, derived from bpRNA-
1m [33], is divided into three splits: TR0 for training, VL0 for validation, and TS0 for testing. The
second dataset, which is used for generalization assessment, contains nine distinct RNA families.
Following RiNALMo, we use the same metric calculation approach proposed by [34]. We consider
(i± 1, j) and (i, j ± 1) pairings as correct predictions for a nucleotide pairing (i, j), where i and j
denote nucleotide index in the RNA sequence.

Table 1: RNA secondary structure prediction results on bpRNA-TS0.
Precision Recall F1-score

SPOT-RNA [35] 0.594 0.693 0.619
UFold [36] 0.607 0.741 0.654

RNA-FM [12] 0.709 0.664 0.676
RNAErnie[18] 0.575 0.678 0.622
RiNALMo [10] 0.784 0.730 0.747

AIDO.RNA(ours) 0.815 0.769 0.783

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.625345doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.28.625345
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Inter-family generalization for secondary structure prediction on filtered Archive-II.
Reported is the average F1 score. Bold denotes the best performance within a family.

RNA family AIDO.RNA (ours) RNAstructure CONTRAfold RiNALMo RNA-FM MXfold2 UFold

5S rRNA 0.853 0.63 0.63 0.88 0.57 0.54 0.53
SRP RNA 0.739 0.63 0.55 0.70 0.25 0.50 0.26

tRNA 0.945 0.70 0.77 0.93 0.79 0.64 0.26
tmRNA 0.838 0.43 0.49 0.80 0.28 0.46 0.40

RNase P RNA 0.804 0.55 0.63 0.80 0.31 0.51 0.41
Group I Intron 0.644 0.54 0.60 0.66 0.16 0.45 0.45

16S rRNA 0.795 0.57 0.58 0.74 0.14 0.55 0.41
Telomerase RNA 0.085 0.50 0.54 0.12 0.07 0.34 0.80

23S rRNA 0.896 0.73 0.71 0.85 0.19 0.64 0.45

Average 0.733 0.59 0.61 0.72 0.31 0.51 0.44

Figure 3: Unsupervised pre-training captures secondary and tertiary structures in the RNAseP
component of the eukaryotic ribosome. Left: predictions; Right: ground truths.

Table 1 shows the results of our model and several baselines on the bpRNA-TS0 test set. AIDO.RNA
achieves SOTA results on this dataset, with an F1 score of 0.787, outperforming RNAErnie [18] and
RiNALMo by large margins. This result indicates that our model pre-trained on sequence data learns
substantially more structural information than previous methods. Furthermore, a case study detailed
in Appendix Section D reveals that our model learns functional dependencies within RNA sequences
without labeled data, as shown in Figure 3.

We further test the generalization ability of AIDO.RNA using the dataset from [32]. We use 9-fold
cross-validation, with each fold corresponding to one RNA family. We compare our model with
RNA-FM [12], RNAstructure [37], CONTRAfold [38], UFold [36], and MXfold2 [39]. These
models are trained and tested on the split datasets, with CONTRAfold using EternaFold parameters
from the EternaBench dataset. Table 2 shows the inter-family generalization results in RNA secondary
structure prediction. Our model outperforms RNAstructure in 6 out of 9 families and achieves the
second-highest scores in two families.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.625345doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.28.625345
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: mRNA translation efficiency and expression level prediction results. We use 10-fold
cross-validation. Reported is the average Spearman correlation coefficient across 10 folds.

mRNA translation efficiency mRNA expression level
Muscle PC3 HEK AVG Muscle PC3 HEK AVG

Optimus 5-Prime [40] 0.41 0.38 0.36 0.38 0.15 0.19 0.18 0.17
Cao-RF [41] 0.63 0.63 0.55 0.60 0.64 0.59 0.57 0.60

RNABERT [11] 0.56 0.48 0.41 0.48 0.60 0.45 0.47 0.51
RNA-FM [12] 0.30 0.32 0.23 0.28 0.30 0.20 0.22 0.24
UTR-LM [7] 0.67 0.65 0.60 0.64 0.66 0.63 0.65 0.65

AIDO.RNA (ours) 0.73 0.72 0.68 0.71 0.73 0.68 0.72 0.71

3.2 AIDO.RNA facilitates genetic engineering

Genes introduced to a cell via genetic engineering often must be expressed as proteins to affect
cellular functions. mRNA plays a vital role in protein synthesis by transferring genetic information
from DNA to ribosomes for protein production. It consists of three main regions: the 5’ untranslated
region (5’ UTR), coding sequence (CDS), and 3’ untranslated region (3’ UTR), each serving specific
functions in mRNA regulation. Understanding their effect on transcription and translation is essential
for improving the success of genetic engineering and gene therapies.

3.2.1 mRNA translation efficiency and expression level prediction based on 5’ UTR

Protein expression is highly dependent on 1) the relative abundance of the mRNA transcript in the
cell (refer as mRNA expression level), and 2) the rate at which mRNA molecules are translated
into proteins within a cell (refer as mRNA translation efficiency). Following UTR-LM [7], we
use the same datasets and metrics for mRNA translation efficiency and expression level prediction.
Specifically, mRNA expression level is quantified using RNA-sequencing RPKM (reads per kilobase
of transcript per million mapped reads), while mRNA translation efficiency is determined by dividing
Ribo-seq RPKM by RNA-sequencing RPKM. To evaluate these tasks, we employ three datasets
collected from human muscle tissue (muscle), the human prostate cancer cell line PC3 (PC3), and the
human embryonic kidney 293T cell line (HEK).

We fully fine-tune our model on each of the cell line dataset using 10-fold cross-validation. We adopt
Spearman correlation coefficient as the evaluation metric. Table 3 shows the results of our model and
baseline models, including the domain expert UTR-LM which is pre-trained on 5’ UTR sequences.
On the mRNA translation efficiency prediction task, AIDO.RNA achieves SOTA on each cell line,
outperforming UTR-LM by large margins. On average across the three cell lines, AIDO.RNA attains
a Spearman correlation coefficient of 0.71, with a relative improvement over UTR-LM of +10.9%.
Similarly, our model achieves SOTA results on all cell lines in the mRNA expression level prediction
task. On the one hand, these results showcase the superior performance of our model on the two
types of tasks. On the other hand, they indicate that our model has strong generalization capabilities,
successfully adapting to a new domain beyond its original pre-training scope.

3.2.2 Mean ribosome load prediction based on 5’ UTR

Table 4: Mean ribosome load
prediction results.

R2 score ↑
Optimus 5-Prime [40] 0.78

RNA-FM [12] 0.79
Uni-RNA [9] 0.85

RiNALMo [10] 0.86
AIDO.RNA (ours) 0.86

Ribosomes are cellular structures responsible for protein synthesis,
and the ribosome load on an mRNA molecule can influence the
rate and efficiency of protein production, and the success of genetic
engineering. Predicting ribosome load can provide valuable insights
into gene expression regulation, translation efficiency, and cellular
processes. Due to its significance, several studies emphasize on
computational prediction of mean ribosome load (MRL), which
is defined as the number of ribosomes bound to a specific mRNA
molecule at any given time [40, 12, 9]. We use datasets from [40],
which include 5’ UTR sequences with measured MRL values. The
validation and test sets, namely Random7600 and Human7600, are
generated by sampling sequences of varying lengths (25-100 nucleotides) from random and human
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Table 5: Transcript abundance prediction results. We use 5-fold cross-validation for each dataset.
Reported is the average Pearson correlation coefficient across 5 folds. AIDO.RNA-CDS denotes our
CDS domain-adaptive model.

A. thaliana D. melanogaster E.coli H. sapiens S. cerevisiae P. pastoris H. volcanii AVG

CaLM [8] 0.270 0.330 0.420 0.220 0.460 0.470 0.100 0.324
ESM2-650M(LoRA) 0.460 0.488 0.430 0.449 0.672 0.602 0.269 0.482

AIDO.RNA(ours) 0.510 0.535 0.632 0.527 0.656 0.684 0.377 0.560
AIDO.RNA-CDS(ours) 0.573 0.601 0.685 0.560 0.699 0.729 0.397 0.606

Table 6: Protein abundance prediction results. We use 5-fold cross-validation for each dataset.
Reported is the average Pearson correlation coefficient across 5 folds.

A. thaliana D. melanogaster E.coli H. sapiens S. cerevisiae AVG

CaLM [8] 0.410 0.450 0.430 0.330 0.520 0.428
ESM2-650M(LoRA) 0.689 0.662 0.595 0.682 0.682 0.662

AIDO.RNA(ours) 0.644 0.688 0.685 0.560 0.757 0.667
AIDO.RNA-CDS(ours) 0.728 0.748 0.736 0.671 0.791 0.735

UTR sequences. Each length category contains 100 sequences with the deepest read coverage. The
remaining random 5’ UTRs with sufficient read coverage formed the training dataset. As shown in
Table 4, our model fine-tuned on the dataset attains the same R2 score as the SOTA model RiNALMo.

3.2.3 Transcript abundance prediction based on CDS

Transcript abundance refers to the quantity of a specific RNA transcript within a cell or tissue at a
given time. It represents the amount of mRNA molecules produced from a particular gene and serves
as an indicator of gene expression. We leverage the transcript abundance datasets from CaLM [8],
which contain samples from seven organisms. Notably, although sharing conceptual similarities with
the mRNA expression level prediction task described in Section 3.2.1, this task diverges in terms
of input requirements. Instead of utilizing 5’ UTR sequences, it focuses on coding sequences. In
essence, this task aligns more closely with protein-level tasks rather than RNA-level tasks.

We fine-tune our models on each of the seven organisms using LoRA [42]. We use 5-fold cross-
validation and adopt the Pearson correlation coefficient as the evaluation metric, following the setting
in CaLM. Table 5 shows the results of our models and the baselines. AIDO.RNA outperforms
the codon language model CaLM by large margins on all organisms. On average across the seven
organisms, it achieves a 0.560 Pearson correlation coefficient, outperforming CaLM by an absolute
improvement of 0.236. When comparing to the protein language model ESM2-650M [43], our model
also achieves better results on most of the organisms, indicating that the nucleotide space provides
additional information compared to the amino acid space.

To better adapt our model from the ncRNA domain to the CDS domain, we continue to pre-train
our model on 9 million CDS sequences from CaLM [44]. Intriguingly, our domain-adaptive model
achieves impressive performance gain across all datasets over the pre-trained model, setting new
SOTAs on these tasks. These results suggest that: 1) Patterns learned from ncRNA sequences lay
a solid foundation for generalization to the coding sequence region, and 2) Continued pre-training
proves to be an effective strategy in the RNA domain.

3.2.4 Protein abundance prediction based on CDS

Protein abundance refers to the quantity of a specific protein present within a cell or tissue at
a given time. Analyzing protein abundance provides insights into protein expression patterns,
cellular processes, and regulatory mechanisms. We utilize protein abundance datasets from CaLM,
encompassing five organisms. The abundance labels are estimated as the number of protein copies
per cell, as annotated in PAXdb [45]. In machine learning, this task is formulated as a sequence-level
regression problem. We use the same fine-tuning and evaluation schemes for these tasks as in Section
3.2.3. As shown in Table 6, our model achieves SOTA performance on most datasets, in line with the
results in transcript abundance prediction tasks. This consistency across tasks demonstrates that our
model is competent in protein-level tasks, opening a new avenues for studying proteins.
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3.3 AIDO.RNA predicts RNA function

3.3.1 Cross-species splice site prediction

RNA splicing is a crucial step in gene expression, particularly in eukaryotic organisms. It is the
process by which introns (non-coding regions) are removed from pre-messenger RNA (pre-mRNA)
sequences, and the remaining exons (coding regions) are joined together to form mature mRNA.
Predicting splice sites is essential for uncovering the structure of genes and gaining insights into the
mechanisms of alternative splicing. Depending on the location in the pre-mRNA sequence, the splice
site can be classified into two types: donor and acceptor. We leverage the dataset from Spliceator [46],
which contains a donor dataset and an acceptor dataset. For each dataset, the task is formulated as a
sequence-level binary classification task, which is to predict whether a given RNA sequence contains
a donor/acceptor or not. We fine-tune AIDO.RNA on the donor and acceptor datasets separately
using LoRA. We then test it on four unseen species that are not shown in the training data, including
Zebrafish, fly, worm, and plant. Table 7 shows the average scores of the acceptor and donor dataset
for our model and baselines. AIDO.RNA performs slightly better on 3 out of 4 species, with an
average F1 score of 0.949 across four species.

Table 7: Cross-species splice site prediction results. The average F1 score across the donor and
acceptor datasets is reported. Results of RiNALMo are reproduced by us by using their codebase and
hyperparameters.

Zebrafish Fly Worm Plant AVG

Spliceator [46] 0.935 0.929 0.916 0.929 0.927
DNABERT [47] 0.951 0.931 0.909 0.909 0.925
SpliceBERT [14] 0.957 0.946 0.934 0.936 0.943

Uni-RNA [9] 0.964 0.950 0.939 0.936 0.947
RiNALMo* [10] 0.965 0.948 0.935 0.932 0.945

AIDO.RNA (ours) 0.965 0.949 0.936 0.945 0.949

3.3.2 Non-coding RNA family classification

ncRNAs play important regulatory roles in various cellular processes. Depending on the sequence
length, ncRNAs can be classified as short (≤200 nucleotides) or long (>200 nucleotides). Following
[48], we leverage our model to predict short ncRNA functional families curated from Rfam [49]
using only sequences as input. In machine learning, this task is a sequence-level classification task,
with 88 classes in the label space. We assess the prediction performance under the uncertainty of
where the ncRNA sequence starts and ends. We use the dataset from [48], which contains sequences
with different levels of added boundary noise. In specific, a sequence with 0% boundary noise
denotes the original ncRNA sequence. A sequence with 200% boundary noise refers to the addition
of random nucleotides, equivalent to 100% of the sequence length, at both the beginning and the
end of the ncRNA sequence. We fine-tune our model on datasets with different boundary noises
using LoRA. Table 8 shows the results of our model and the baseline models. AIDO.RNA achieves
a 0.993 accuracy on the dataset with 0% boundary noise, significantly outperforms Uni-RNA [9].
When dealing with 200% boundary noise, AIDO.RNA attains a SOTA score of 0.994, showing its
robustness against boundary noise.

Table 8: ncRNA family classification results. Accuracy is reported.
0% boundary noise 200% boundary noise AVG

1-mer-CNN [48] 0.870 0.810 0.840
2-mer-CNN [48] 0.880 0.840 0.860
3-mer-CNN [48] 0.890 0.840 0.865

Uni-RNA [9] 0.985 0.984 0.985
AIDO.RNA (ours) 0.993 0.994 0.993
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3.3.3 RNA modification site prediction

Post-transcriptional RNA modifications are chemical modifications that occur on RNA molecules
after transcription, which can alter the structure, stability, function, and processing of RNA molecules,
playing crucial roles in various biological processes. Following [50], we assess our model’s ability
to predict 12 types of RNA modification sites. In machine learning, this task is formulated as a
sequence-level multi-label classification task. For evaluation, we compute the AUROC score for
each modification site following the common practice in the literature. We fine-tune AIDO.RNA
using LoRA. Table 9 shows the results of our model and the baseline models. AIDO.RNA achieves
SOTA results on 12 types of modifications, with an average AUROC score of 0.971, outperforming
MultiRM [50] and Uni-RNA [9].

Table 9: RNA modification site prediction results. AUROC score is reported.
Am Cm Gm Tm m1A m5C m5U m6A m6Am m7G Φ I AVG

MultiRM [50] 0.789 0.860 0.926 0.878 0.779 0.906 0.948 0.856 0.891 0.677 0.853 0.670 0.836
Uni-RNA [9] 0.929 0.968 0.986 0.959 0.954 0.976 0.958 0.994 0.978 0.956 0.942 0.993 0.966

AIDO.RNA (ours) 0.951 0.975 0.988 0.957 0.954 0.980 0.961 0.994 0.985 0.970 0.937 0.994 0.971

3.4 AIDO.RNA benefits 3D RNA inverse design

RNA sequence design involves the process of creating or generating RNA sequences with specific
properties or functions [23, 51]. It is crucial to therapeutic innovation [52], synthetic biology [53, 54],
and fundamental molecular biology research [55]. In this section, we extend AIDO.RNA with a
discrete diffusion modeling framework to enable generative capabilities for RNA sequence design.
We adopt a probabilistic diffusion approach [56, 57], iteratively refining sequences by masking and
predicting optimal nucleotide compositions. It is a general method which supports both unconditional
and conditional design. For details of our method, please refer to Appendix Section C.1.1.

We conduct experiments on RNA inverse folding, a task aiming to generate RNA sequences that
fold into the given 3D structure [23, 58]. We use the dataset from Das et al. [59], which contains
4,025/100/98 train/validation/test samples. We evaluate our model in two settings: (1) adaptation
with conditional diffusion where AIDO.RNA is fine-tuned for the inverse folding task; and (2)
zero-shot generation where AIDO.RNA is frozen (refer to Appendix Section C for more details). As
shown in Table 10, AIDO.RNA, integrated with the pipeline of a SOTA RNA inverse folding method,
gRNAde [23], improves upon the original gRNAde in both zero-shot and diffusion-adaptation settings.
In Appendix Table 21, we show results for 14 RNA structures of interest identified by Das et al. [59],
where we can see that AIDO.RNA with diffusion-adaptation can enhance gRNAde’s performance
by about 3%. We also provide a visualization of generated sequences for an example RNA (PDB
ID: 3B58) in Appendix Figure 4, showing preserved structural details. These results showcase that
AIDO.RNA can benefit RNA sequence design.

Table 10: RNA inverse folding results.
Avg. Seq. Recovery ↑

gRNAde [23] 52.78
gRNAde+AIDO.RNA-zeroshot 53.16

gRNAde+AIDO.RNA-cDiffusion 54.41

3.5 High-quality small data is better than low-quality large data for pre-training

From the literature (as shown in Table 22), we find that there is no consensus regarding the ideal
dataset for pre-training a versatile RNA FM that can benefit diverse RNA downstream tasks. Uni-
RNA [9] employs 1B potential RNA sequences for pre-training, while RiNALMo [10] utilizes 36M
ncRNA sequences. The extensive number of sequences used in Uni-RNA’s pre-training is enticing
for training a general-purpose RNA foundation model. Although Uni-RNA does not publicly release
their pre-training data, the MARS dataset [60] contains similar data sources. We analyze the data and
find that approximately 85% of the sequences within MARS are whole-genome shotgun sequences,
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Table 11: Downstream task performance comparison regarding the pre-training dataset. The
result of RiNALMo on cross-species splice site prediction is reproduced by us.

Model Pre-training data SS TS0 (F1) MRL(R2) CSP (F1)

Uni-RNA [9] 1B noisy RNA sequences/DNA fragments - 0.85 0.947
AIDO.RNA-1B(ours) 886M noisy RNA sequences/DNA fragments 0.69 0.86 0.967

RiNALMo [10] 36M high-quality ncRNA sequences 0.75 0.86 0.945
AIDO.RNA-1.6B(ours) 42M high-quality ncRNA sequences 0.79 0.86 0.949

indicating a significant portion of the data consists of DNA fragments. Consequently, despite the
dataset’s substantial size, its quality is considerably low. To explore the effect of noisy data, we
pre-train a 1B model utilizing this extensive yet low-quality dataset and compare the model with
models trained using a smaller but high-quality dataset. For details of our 1B model’s pre-training data
and setting, see Appendix Section F. We compare AIDO.RNA-1B with Uni-RNA, RiNALMo, and
our AIDO.RNA-1.6B model on RNA secondary structure prediction, mean ribosome load prediction,
and cross-species splice site prediction tasks. As shown in Table 11, our AIDO.RNA-1B trained on
a low-quality large dataset performs worse than RiNALMo trained on a high-quality small dataset.
This suggests that a large pre-training dataset does not necessarily benefit downstream tasks if the
data quality is low and the data distribution differs from the specific task. Moreover, we observe that
AIDO.RNA-1B achieves SOTA performance on cross-species splice site prediction, outperforming
both RiNALMo and AIDO.RNA-1.6B, which were trained on the RNAcentral database. This
improvement may be attributed to the similarity between the input sequences for this task and the
majority of sequences in MARS50. Aligning the pre-training dataset with the downstream task
dataset holds promise for enhancing downstream task performance.

4 Conclusions and future work

In this work, we present AIDO.RNA, the largest general-purpose RNA foundation model to-date and
a key module in an AI-driven Digital Organism. AIDO.RNA excels in a diverse set of RNA under-
standing and generation tasks. We find that high-quality data is crucial for pre-training powerful RNA
foundation models. We also find that domain-adaptive pre-training yields significant performance
gain in the target domain, further emphasizing the importance of pre-training data. By collecting
more high-quality RNA sequences and better mixing different domains, it is promising to build a
larger and stronger RNA foundation model. We leave this part for future work.
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Appendix

A Pre-training data and hyperparameters

We pre-train two RNA foundation models with different model size using ncRNA sequences from
RNAcentral database. Table 12 shows the data distribution of our pre-training data. Table 13 shows
the key configurations of our models.

Table 12: RNA type distribution of training, validation, and test set.
RNA type # train # valid # test train ratio valid ratio test ratio

rRNA 28,913,600 10,000 10,000 69.7% 12.5% 12.5%
tRNA 3,543,484 10,000 10,000 8.5% 12.5% 12.5%
lncRNA 3,531,218 10,000 10,000 8.5% 12.5% 12.5%
misc_RNA 2,463,079 10,000 10,000 5.9% 12.5% 12.5%
sRNA 468,084 5,000 5,000 1.1% 6.3% 6.3%
pre_miRNA 360,711 5,000 5,000 0.9% 6.3% 6.3%
ncRNA 348,184 5,000 5,000 0.8% 6.3% 6.3%
snRNA 302,658 5,000 5,000 0.7% 6.3% 6.3%
snoRNA 281,057 5,000 5,000 0.7% 6.3% 6.3%
piRNA 209,806 5,000 5,000 0.5% 6.3% 6.3%
SRP_RNA 200,854 5,000 5,000 0.5% 6.3% 6.3%
others 879,659 5,000 5,000 2.1% 6.3% 6.3%

total 41,502,394 80,000 80,000 100.0% 100.0% 100.0%

Table 13: Hyperparameters for training AIDO.RNA models.
AIDO.RNA-650M AIDO.RNA-1.6B

dataset RNAcentral (30B tokens) RNAcentral (30B tokens)
num-layers 33 32
hidden-size 1,280 2,048

num-attn-heads 20 32
ffn-hidden-size 3,392 5,440
tie emebdding TRUE TRUE
max-seq-len 1,024 1,024
batch size 2M tokens 2M tokens

epochs 6 6
optimizer AdamW AdamW

peak learning rate 5e-5 5e-5
min learning rate 1e-5 1e-5

lr scheduler cosine cosine
warmup steps 2,000 2,000
weight decay 0.01 0.01

hidden dropout 0.0 0.0
attention dropout 0.1 0.1
residual dropout 0.1 0.1

clipnorm 1.0 1.0
precision bf16 bf16

use flash attention No Yes
distributed backend DDP DDP

B RNA sequence understanding tasks

We build a comprehensive benchmark to fully evaluate our RNA foundation model by integrating
tasks from the literature [9, 7, 8]. As shown in Table 14, the benchmark encompasses a total of 26
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subtasks from 9 distinct tasks, including RNA structure, function prediction, and mRNA-related
prediction tasks critical for mRNA therapeutic design.

Table 14: Overview of RNA sequence understanding tasks. Bold denotes the most important task at
the RNA level.

Category Task #subtask Input Task formulation

Structure RNA secondary structure prediction 2 ncRNA pairwise token-level binary classification

mRNA-related

Translation efficiency prediction 3 5’ UTR seq-level regression
Expression level prediction 3 5’ UTR seq-level regression

Mean ribosome load prediction 1 5’ UTR seq-level regression
Transcript abundance prediction 7 CDS seq-level regression

Protein abundance prediction 5 CDS seq-level regression

Function
Cross-species splice site prediction 2 pre-mRNA seq-level binary classification

ncRNA family classification 2 ncRNA seq-level multi-class classification
RNA modification site prediction 1 RNA seq-level multi-label classification

B.1 Task datasets

RNA secondary structure prediction In this study, we employed two benchmark datasets for
secondary structure prediction, as developed by Singh et al. (2019)[31] and Szikszai et al. (2022)[32].
The former dataset was derived from bpRNA-1m [33] by filtering out sequences longer than 500
bases and applying an 80% sequence similarity cut-off. This preprocessed dataset was divided into
three splits: TR0 for training with 10,814 samples, VL0 for validation with 1,300 samples, and TS0
for testing with 1,305 samples.

For generalization assessment, we used the dataset by Szikszai et al. (2022)[32], consisting of 3,865
RNAs from nine families. This dataset was generated from the Archive-II dataset[61] by filtering out
sequences longer than 512 nucleotides. It was then split into nine subsets, each time leaving out one
family for evaluation while using the remaining families for training and validation. In Table 15, we
show the statistics of each family in filtered version of ArchiveII dataset.

Table 15: Family-wise statistics of RNA sequences in filtered ArchiveII.
RNA family Mean length Total count

5S rRNA 119 1283
SRP RNA 180 918

tRNA 77 557
tmRNA 366 462

RNase P RNA 332 454
Group I Intron 375 74

16S rRNAa 317 67
Telomerase RNA 438 35

23S rRNAa 326 15

Mean 281 429
Total - 3865

Translation efficiency and expression level prediction We use the data from UTR-LM [7], which
contains three datasets gathered from human muscle tissue (Muscle), human prostate cancer cell
line PC3 (PC3), and human embryonic kidney 293T cell line (HEK) 3. The Muscle, PC3, and HEK
datasets contain 1,257, 12,579, and 14,410 samples correspondingly. Each sample in these datasets
includes a UTR sequence, a translation efficiency label, and an expression level label. The expression
level label is measured using RNA-sequencing RPKM, where RPKM refers to reads per kilobase
of transcript per million mapped reads. The translation efficiency label is measured by dividing the
Ribo-seq RPKM by the RNA-sequencing RPKM. Note that in the datasets released by UTR-LM, all
labels are transformed into the natural logarithm space. Following UTR-LM, we use these datasets
for training and testing via 10-fold cross-validation. Table 16 summarizes the data statistics.

3https://drive.google.com/drive/folders/190oihtrwCxWjtDCK9kJzyhXPKxbr5xoR
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Table 16: Statistics of translation efficiency and expression level prediction datasets. “TE” denotes
translation efficiency, “EL” denotes expression level.

Cell line Samples Seq len TE label EL label

Min Max Mean Mean Std Mean Std

Muscle 1,257 45 100 91 -0.26 1.46 3.12 1.30
PC3 12,579 45 100 91 -0.36 1.01 3.07 1.09
HEK 14,410 45 100 91 -0.65 1.08 3.01 1.01

Mean ribosome load prediction For this task, we use the same benchmark dataset used by previous
best-performing methods, which is a large-scale synthetic Human 5’UTR library [40] consisting of
83,919 5’UTRs (untranslated regions) spanning 75 distinct lengths, each paired with its associated
MRLs. To ensure balanced validation, 7,600 sequences are uniformly sampled at each length (namely
Random7600), while the remaining data is allocated for training purposes. Note that we use the
same splitting as the previous studies for a fair comparison [12, 40]. Furthermore, an extra dataset
containing 7,600 authentic human 5’UTRs, distributed in a similar manner as the synthetic collection,
is employed as the test set (namely Human7600).

Transcript abundance prediction We use the public data from caLM [8] for transcript abundance
prediction 4. It contains seven datasets from A. thaliana, D. melanogaster, E.coli, H. sapiens, S.
cerevisiae, H. volcanii and P. pastoris, respectively. The abundance label is the natural logarithm
of the transcript count per million, ranging between -16 and 16. Table 17 shows the overall data
statistics for each organism.

Table 17: Statistics of transcript abundance prediction datasets.

Organism Sample Seq len Label

Min Max Mean Min Max Mean

A. thaliana 12,664 120 16182 1312 -3.32 16.13 2.55
D. melanogaster 9,836 132 45318 1718 -3.32 13.59 3.42

E. coli 3,528 117 7077 971 -5.81 14.16 4.49
H. sapiens 5484 117 16941 1578 1.85 13.63 5.21

S. cerevisiae 5,448 105 14733 1408 -3.32 14.30 5.72
H. volcanii 3,189 135 6717 892 -6.04 13.99 5.17
P. pastoris 4,682 207 14811 1494 -16.30 15.44 5.11

Protein abundance prediction We use the public data from caLM [8] for protein abundance
prediction 5. It contains five datasets from A. thaliana, D. melanogaster, E.coli, H. sapiens, and S.
cerevisiae, respectively. The abundance labels are the estimated number of copies per cell annotated
in PAXdb [45], ranging between 0 and 105. Table 18 shows the overall data statistics for each
organism.

Table 18: Statistics of protein abundance prediction datasets.

Organism Sample Seq len Label

Min Max Mean Min Max Mean

A. thaliana 11,451 135 15417 1418 0 70146 49
D. melanogaster 10,335 132 48672 1626 0 23894 66

E. coli 3,627 126 7077 952 0 82534 244
H. sapiens 11,789 156 16791 1654 0 30702 43

S. cerevisiae 4,937 105 14733 1494 0 18406 143

4https://github.com/oxpig/CaLM/tree/main/data/transcript_abundance
5https://github.com/oxpig/CaLM/tree/main/data/protein_abundance
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Cross-species splice site prediction We use the data from Spliceator, which contains confirmed
error-free splice sites from more than 100 eukaryotic species [46]. In specific, we use the acceptor
and donor datasets from GS-1 subset 6 for training and validation. For testing, we use data from four
different species that are not shown in the training set, including zebrafish, fruit fly, worm, and plant
7. Each sample in the dataset is a 400nt sequence centered on a splice/non-splice site. Table 19 shows
the overall data statistics.

Table 19: Statistics of splice site prediction datasets.

Train Valid Test

Zebrafish Fly Worm Plant

Acceptor 17,723 4,431 20,000 20,000 20,000 20,000
Donor 17,556 4,389 20,000 20,000 20,000 20,000

Non-coding RNA family classification We use the preprocessed Rfam-novel dataset 8 from [48],
which contains 105,864/17,324/25,342 in the train/valid/test sets correspondingly. The dataset
contains 88 Rfam classes, with an imbalanced class distribution in the training set. The ncRNA
sequence length with 0 boundary noise is ≤ 200. When the boundary noise increases to 200%, the
sequence length increases two times.

RNA modification site prediction We use the processed data from MultiRM [50], which is
obtained from 20 epi-transcriptome profiles generated from 15 different base-resolution technologies
for 12 different types of RNA modifications. The 12 modifications are Am, Cm, Gm, Tm, m1A,
m5C, m5U , m6A, m6Am, m7G, Φ, and I . The train/valid/test data contains 304,661/3,599/1,200
samples respectively, with a sequence length of 1,001. Negative sites were chosen at random from
the unmodified bases within the same transcript that also contains the positive sites. Table 20 shows
label distribution for each modification type.

Table 20: Number of positive samples for each modification site in the RNA modification site
prediction dataset.

Am Cm Gm Tm m1A m5C m5U m6A m6Am m7G Φ I

Train 1,391 1,678 1,271 2,053 16,146 3,007 3,496 64,978 2,247 836 2,937 52,418
Valid 150 150 150 150 150 150 150 150 150 150 150 150
Test 50 50 50 50 50 50 50 50 50 50 50 50

B.2 Fine-tuning settings

RNA secondary structure prediction We generate pair representations by applying outer concate-
nation to the language model’s outputs, concatenating the representation of nucleotide j with that of
nucleotide i for each pair (i, j). In the prediction head the concatenated representation is first linearly
projected to an embedding dimension of 64. This is followed by two bottlenecked ResNet-2D blocks
and a convolution layer, all with 64 kernels of size 3 and followed by instance normalization and
ReLU activation. The output matrix represents pairing probability logits for nucleotide pairs, with
binary cross-entropy loss calculated only for elements above the main diagonal due to the symmetry
of secondary structures. To train the model, we use AdamW optimizer with weight decay 0.01. To
prevent the model from overfitting, we regularize both the language model and the prediction head
with dropout rate of 0.1. Fine-tuning involved a gradual unfreezing method, starting with training the
prediction head for the first three epochs, then unfreezing three additional layers every three epochs
over a total of 60 epochs with a batch size of 4, and a learning rate decreasing from 10−4 to 10−5. A
greedy algorithm was used to convert base pairing probabilities into secondary structures, prioritizing

6https://www.lbgi.fr/spliceator/?source=download
7https://git.unistra.fr/nscalzitti/spliceator/-/tree/master/Data/Benchmarks?ref_

type=heads
8https://github.com/bioinformatics-sannio/ncrna-deep/tree/master/datasets/

Rfam-novel
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the highest probabilities and excluding conflicting pairs, avoiding non-canonical pairings and sharp
hairpin loops (|i− j| < 4). The classification threshold was tuned on the validation set to balance
the pairing ratio.

Translation efficiency and expression level prediction Since translation efficiency and expression
level prediction are sequence-level regression tasks, we take the mean pooling of the output of the
transformer model as sequence representation and add a two-layer MLP with a hidden dimension
of 512 as the prediction head. Mean square error (MSE) is then used as the loss for both tasks. We
fully fine-tune the model using AdamW with a peak learning rate of 1e-5 and weight decay of 0.01.
The dropout probability is set to 0.1. For the Muscle dataset, the batch size is set to 8 while for the
PC3 and HEK datasets, the batch size is set to 32. We train the model for 30 epochs and select the
best checkpoint based on the validation score. To make results comparable with UTR-LM[7], we use
10-fold cross-validation for each cell line on both translation efficiency prediction and expression
level prediction tasks.

Mean ribosome load prediction Predicting mean ribosome load is also a regression task performed
at the sequence level. The prediction head comprises a linear projection into 256 dimensions and nine
ResNet-1D blocks. Each block includes two convolution layers with 256 kernels of size 3, followed
by instance normalization and an ELU activation function. The model is also regularized with dropout
at rate 0.1. The MRL targets were standardized using the mean and standard deviation of the training
MRL values. The model underwent fine-tuning for 60 epochs. During the first 3 epochs, only the
prediction head was trained. The learning rate, similar to that used in RNA secondary structure
prediction, started at 10−4 and linearly decreased to 10−5 over the first 5000 training steps before
remaining constant. The batch size for the training process was set to 64. We train the model with
AdamW optimizer for this task as well.

Protein abundance and transcript abundance prediction To adapt our model to the CDS domain,
we continue to pre-train our model on 9 million CDS sequences released by CaLM [8]. We trained
our model for 13,000 steps with a peak learning rate of 5e-5 and a mask ratio 0.25. For both tasks,
we take the mean pooling of the transformer’s output as sequence representation and add a two-layer
MLP with a hidden dimension of 512 as the prediction head. Mean square error (MSE) is used as
the loss. Following CaLM, we perform 5-fold cross-validation on each organism dataset. We use
LoRA fine-tuning with rank=32 and alpha=64. The trainable parameters amount to 9 million, which
constitutes 0.58% of the total size of the pre-trained model. We use AdamW with a weight decay of
0.01. Both the hidden layer and LoRA dropout probabilities are set to 0.1. The batch size is set to
16. We train the model for 15 epochs and select the best checkpoint based on the validation score.
For the protein abundance prediction task, we convert the label y to natural logarithm space by using
log(1+ y). The peak learning rate is set to 3e-4 for both tasks. Since the sequences on each organism
are generally long, we truncate each sequence to 1,024 nucleotides as input.

Cross-species splice site prediction For this sequence-level binary classification task, we take the
[CLS] embedding from the output of the transformer as sequence representation and add a three-layer
MLP with hidden dimensions of 512 and 128 as the prediction head. Cross-entropy loss is used as
the loss. We use LoRA fine-tuning with rank=32 and alpha=64. The trainable parameters amount to
9.6 million, which constitutes 0.59% of the total size of the pre-trained model. We train the model
using AdamW with a peak learning rate of 2.5e-4 and weight decay of 0.01. The batch size is set to
32. Both the hidden layer and LoRA dropout probabilities are set to 0.1. We train the model for 10
epochs and select the best checkpoint based on the validation score.

Non-coding RNA family classification For this sequence-level classification task, we take the
mean pooling of the output of the transformer as sequence representation and add a two-layer MLP
with a hidden dimension of 512 as the prediction head. Cross-entropy loss is used as the loss. We use
LoRA fine-tuning with rank=16 and alpha=32. The trainable parameters amount to 5 million, which
constitutes 0.33% of the total size of the pre-trained model. We train the model using AdamW with
a peak learning rate of 4e-4 and weight decay of 0.01. The batch size is set to 64. Both the hidden
layer and LoRA dropout probabilities are set to 0.1. We train the model for 15 epochs and select the
best checkpoint based on the validation score.
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RNA modification site prediction For this sequence-level multi-label classification task, we take
the [CLS] embedding from the output of the transformer as sequence representation and add a
two-layer MLP with a hidden dimension of 512 as the prediction head. Binary cross-entropy loss is
computed for each modification site at the same time. We use LoRA fine-tuning with rank=16 and
alpha=32. We train the model using AdamW with a peak learning rate of 4e-4 and weight decay of
0.01. The batch size is set to 64. Both the hidden layer and LoRA dropout probabilities are set to 0.1.
We train the model for 10 epochs and select the best checkpoint based on the validation score.

C RNA inverse folding

RNA inverse folding, also referred to as structure-conditioned RNA design, aims to generate RNA
sequences that fold into a predefined 3D structure [23, 58]. It is an inverse task of RNA structure
prediction which aims to predict the structure based on a given sequence [62]. In RNA inverse folding,
the challenge lies in identifying sequences that can reliably adopt the desired structure [63, 51]. In
particular, we focus on designing sequences with known RNA backbone structure [23, 63]. This task
is vital for synthetic biology and nanotechnology applications [64], where specific RNA structures
are needed to perform essential biological functions, such as acting as molecular switches [65],
facilitating biochemical interactions [66], or serving as scaffolds for molecular assemblies [67].

The complexity of RNA inverse folding stems from the intricate relationship between RNA sequence
and structure. RNA molecules exhibit a high degree of structural variability, and even small changes
in sequence can lead to significantly different folding patterns [63]. Therefore, the challenge for
computational models is to identify sequences that thermodynamically favor the target structure while
avoiding undesired or alternative configurations. This task requires advanced algorithms capable
of optimizing sequences based on both stability and specificity. Recent advances in computational
modeling, particularly those leveraging deep generative models, have significantly improved the
accessibility and effectiveness of RNA inverse folding approaches [23, 63, 51].

C.1 Method

Building on a state-of-the-art method gRNAde [23], we demonstrate how AIDO.RNA can be used to
enhance RNA inverse folding performance. We conduct two separate experiments to showcase the
capabilities of AIDO.RNA: one focusing on adaptation with conditional diffusion and the other on
zero-shot generation. In the diffusion-adapted model, AIDO.RNA is fine-tuned for the inverse folding
task, while in the zero-shot setting, we evaluate its refinement capabilities without any adaptation.

C.1.1 Masked diffusion for RNA sequence generation

We aim to approximate a data distribution q(x) by training a diffusion model, by first iteratively
adding noise to a sample x0 ∼ q(x) for T discrete steps (forward process) that results in a sample
with entire noise xT ; and then training a model, parameterized by θ, to denoise xT iteratively to
retrieve the original signal x0 (reverse process). For continuous signals, such as image or audio, at
any time step t ∈ [0, T ], the sample xt can be assumed as a linear combination of the original signal
x0 and Gaussian noise ϵ ∼ N (0, 1) as follows:

xt =
√
π(t) x0 +

√
1− π(t) ϵ (1)

where π(t) ∈ [0, 1] is a monotonically decreasing function of t [68]. The model learns a marginal
distribution pθ(xt−1|xt), which aims to approximate the true transition probability q(xt−1|xt, x0)
of estimating a less noisy variant xt−1 given a relatively more noisy variant xt. Assume we have
xt = x0, π(t) = 1 at t = 0, and xt = xT = ϵ ∼ N (0, 1), π(t) = 0 at t = T . For discrete signals
like RNA sequence, however, it is infeasible to represent xT as a sample from standard normal
distribution. To address this issue, we represent xT by absorbing state [69, 56] that contain no
data-specific signal, analogous to pure Gaussian noise. Following [69], we use the [MASK] token as
the absorbing state.

Training objective We adopt the formulation proposed by [56] as our masked diffusion model
training objective. It is a negative evidence lower bound on log likelihood (NELBO) [69] and can be
decoupled into three disjoint objectives for reconstruction Jrecon, diffusion Jdiff , and prior Jprior.
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As derived by [69, 56, 57], for diffusion directly on data samples x, it is possible to show that
Jrecon = 0, Jprior = 0. Given this, NELBO for discrete times step T can be simplified as follows:

J<T> = Jdiff = −Et∼U [1,T ], x0∼q, xt−1∼pθ

[π(t− 1)− π(t)

π(0)− π(t)
log⟨xt−1, x0⟩

]
, (2)

where U [1, T ] is a uniform distribution integers between 1 and T , and ⟨xt−1, x0⟩ computes the
similarity between xt−1 and x0. In our experiment, we use cross-entropy loss between x0 and xt−1,
LCE(x0, xt−1), for − log⟨xt−1, x0⟩. As shown in [70], we can get a tighter bound on J<T> with
higher number of diffusion steps T. When T → ∞, Equation 2 becomes follows:

J<T→∞> = Et∼U [1,∞), x0∼q, xt−1∼pθ

[π(t− 1)− π(t)

1− π(t)
LCE(x0, xt−1)

]
, (3)

where π(0) = 1. Note that for T → ∞, π(t − 1) → π(t), i.e., the change in π(t) at any time t
should be infinitesimal. Besides, we have π(t−1)−π(t) > 0 since π(t) is monotonically decreasing.
With T → ∞, we can represent this change with the negative time-derivative of π(t) at time t,
−dπ(t)

dt = −π′(t). This leads to the continuous-time likelihood bound as follows:

J<T→∞> = −Et∼U [1,∞), x0∼q, xt−1∼pθ

[ π′(t)

1− π(t)
LCE(x0, xt−1)

]
. (4)

As shown by [56], the choice of π(t) has insignificant effect on the overall performance of the training
algorithm. We adopt π(t) = 1− t

T ;∀t ∈ [1,∞) as our noise schedule for its simplicity and efficiency.
This further simplifies Equation 4 as follows:

J<T→∞> = Et∼U [1,∞), x0∼q, xt−1∼pθ

[LCE(x0, xt−1)

t

]
. (5)

Intuition behind the objective function Note that the loss computed on any sample xt is now
inversely proportional to t. Intuitively, if t is large, xt is more noisy and hence it can potentially
lead to many varieties of reconstructed samples x̂ from q(x), i.e., all of them can be valid. However,
with LCE(x0, xt) loss we are always pushing the xt to be more similar to x0, i.e., encouraging less
diversity in generation, which is only expected if xt is already very similar to x0 (when t is smaller).
To address this conflict, the loss LCE(x0, xt) is down-weighted by the factor 1

t .

C.1.2 Adaptation with conditional diffusion

For a given 3D RNA structure, we begin by taking the predicted sequence and structural embedding
by gRNAde, S0 and est, respectively. We then mask out t

T (where t ∼ U [1, T ]) portion of S0, that
produces xt, which can be assumed as a noisy variant of the expected RNA sequence. We then pass
xt through AIDO.RNA’s encoder that produces sequence embedding eseqt . Then est and eseqt are
processed by an adaptor module [71, 72], which in our design is a multi-head self-attention layer [19]
with bottleneck [73], that generates a new estimate of the RNA sequence xt−1. Note that here the
AIDO.RNA and the adaptor combined work as the estimated transition function pθ(xt−1|xt) we
discussed in the previous section. During training, we optimize the diffusion objective in Equation 5,
where x0 is the ground truth sequence. After training, we can generate sequences starting from the
initial estimate S0 and structural embedding estr provided by gRNAde, and applying masking to the
top M least confident tokens in S0 (based on predicted class probabilites of the tokens), resulting in a
masked sequence xt. We then iteratively denoise this sequence over several steps to obtain x̂0, our
final estimate.

C.1.3 Zero-shot generation

This method is utilizes the generation approach in the conditional diffusion discussed above; however,
it operates entirely in a zero-shot manner. This means we utilize our pre-trained AIDO.RNA without
any fine-tuning or the implementation of an adaptor module. Specifically, we begin with the initial
estimate S0 generated by gRNAde. Subsequently, we apply a masking technique to the top M least
confident tokens in S0, resulting in a masked sequence xt. Following this, we iteratively denoise the

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.625345doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.28.625345
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequence over several steps, gradually refining it until we arrive atx̂0, which serves as our generated
sequence. Please note that, unlike the diffusion-adaption settings, here we utilize the full AIDO.RNA
architecture (i.e., both the AIDO.RNA’s encoder and its masked language modeling prediction head).
This approach ensures that we can leverage the pre-trained capabilities of AIDO.RNA effectively
while maintaining simplicity in the process.

C.2 Results

Figure 4: Generated sequence by our inverse folding framework leads to similar structures.
Here we show the ground truth distogram (distances between base-pairs) of the given RNA 3D
structure (PDB ID: 3B58) and the predicted distogram (by RhoFold) of two sequences generated by
our framework. Top row: At the very left, we show the true structure of the RNA. The second image
shows the ground truth distogram. The third image from the left (labeled as gen1) show the predicted
distogram of RNA sequences generated by our framework, conditioned on the true structure, with low
sampling temperature (temp=0.1). Note that sampling temperature controls how much randomness
we allow for the generation (see [23] for details). We can see that, even though this distogram is a bit
different from the ground truth, it shows structural similarity in several regions. We have marked a
region of interest with rectangle for demonstration. The right-most image in the top row shows how
the structure (represented as distrogram, denoted at gen2) changes when we allow more randomness
in sampling, by introducing high sampling temperature (temp=1.5) [68, 69]. As expected, compared
to the ground truth and gen1, the structural details are lost to a great extent in gen2 as we allow more
randomness. However, it is interesting to see that some structural properties are still preserved, for
instance, the region within the marked rectangle. Bottom row: We annotate the pair of segments
corresponding to the region of interest we discussed above. These segments seem to have contact in
3D space even for the sequence generated with high temperature (gen2).
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Table 21: Inverse folding performance comparison on 14 RNA structures of interest identified by Das
et al. [59]. All of these 14 RNAs belong to the test set. The results by gRNAde [23] were produced
by the model checkpoint provided in the official github repository (source: https://github.com/
chaitjo/geometric-rna-design, checkpoint file name gRNAde_ARv1_1state_all.h5. Last
accessed: Sept 25, 2024).

PDB ID Description gRNAde gRNAde +
AIDO.RNA-cDiffusion

1CSL RRE high affinity site 50.0 53.846
1ET4 Vitamin B12 binding RNA aptamer 42.857 45.714
1F27 Biotin-binding RNA pseudoknot 50.0 44.444
1L2X Viral RNA pseudoknot 59.259 62.963
1LNT RNA internal loop of SRP 65.0 60.0
1Q9A Sarcin/ricin domain from E.coli 23S rRNA 88.889 92.593
4FE5 Guanine riboswitch aptamer 41.791 46.269
1X9C All-RNA hairpin ribozyme 40.0 48.333
1XPE HIV-1 B RNA dimerization initiation site 60.87 65.217
2GCS Pre-cleavage state of glmS ribozyme 45.902 47.541
2GDI Thiamine pyrophosphate-specific riboswitch 58.974 60.256
20EU Junctionless hairpin ribozyme 38.095 33.333
2R8S Tetrahymena ribozyme P4-P6 domain 70.886 68.987
354D Loop E from E. coli 5S rRNA 60.0 65.0

Average 55.18 56.74

D AIDO.RNA captures structure information through self-supervised
pre-training

Self-supervised pre-training is a powerful tool to infer conditional dependencies, which can be probed
and cataloged through in silico mutagenesis. To assess conditional dependencies, we implement the
dependency mapping strategy in [74],

ei,j = max
k,q∈{A,T,C,G}

∣∣∣∣∣log2
(

ˆodds(nj = k | n1, ..., ni = q, ..., nL)

ˆodds(nj = k | n1, ..., nL)

)∣∣∣∣∣ ,
where ei,j are the "pixel" values of the dependency map, k and q are the key and query nucleotides,
n is a length L DNA sequence, and ˆodds are the odds inferred by the pre-trained RNA Foundation.

Figure 5: Comparing dependency mapping [74] with AIDO.RNA and RiNALMo for identifying
tRNA secondary structure.
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While in silico mutagenesis studies normally require O(L2) inferences using a supervised model such
as Enformer [75] to compute all pairwise interactions, self-supervised models infer the probability
of all key mutations under a given query mutation at once, allowing us to compute this dependency
mapping with only O(L) inferences.

E Related work

Table 22 provides an overview of the literature on pre-training RNA foundation models. These
models predominantly use an encoder-only transformer architecture and employ masking language
modeling (MLM) as the pre-training objective. The key distinctions among these models are the
pre-training dataset and model size. In comparison, our AIDO.RNA is the largest RNA foundation
model up-to-date and it is pre-trained on ncRNA sequences from RNAcentral.

Table 22: Related work of RNA foundation models.
FM Architecture Model size Pre-training dataset Tokenization Pre-training objective

RNABERT[11] encoder-only
transformer <10M RNAcentral (76,237 human-derived small

ncRNA sequences) & Rfam alignment base MLM(15%) + others

RNA-FM[12] encoder-only
transformer 100M RNAcentral v19(23M ncRNA sequences) base MLM(15%)

RNA-MSM[13] MSA
transformer ∼200M Rfam v14.7 base MLM(20%)

Uni-RNA[9] encoder-only
transformer ≤400M RNAcentral & nt & Genome Warehouse

(1B potential RNA sequences) base MLM

SpliceBERT[14] encoder-only
transformer 20M 2M pre-mRNA sequences from

UCSC genome browser base MLM (15%)

CodonBERT[15] encoder-only
transformer ∼100M NCBI (10M mRNA coding sequences) codon MLM(15%) + others

3UTRBERT[16] encoder-only
transformer ∼100M 86k 3’UTRs curated from

GRCh38.p13, Release 40 k-mer MLM (15%)

UTR-LM[7] encoder-only
transformer <10M Ensembl & eGFP & mCherry & Cao

(700K 5’UTRs) base MLM + others

ATOM-1[17] encoder-decoder
transformer unknown chemical mapping data base unknown

RiNALMo[10] encoder-only
transformer 650M RNAcentral & Rfam & nt & Ensembl

(36M unique ncRNA sequences) base MLM

CaLM[8] encoder-only
transformer 86M European Nucleotide Archive

(9M cDNA sequences) codon MLM (25%)

RNAErnie[18] encoder-only
transformer ∼100M RNAcentral

(23M ncRNA sequences) base MLM(15%) + others

AIDO.RNA (ours) encoder-only
transformer 1.6B RNAcentral v24.0

(42M ncRNA sequences) base MLM (15%)

F Pre-training AIDO.RNA-1B on a vast number of noisy RNA sequences

MARS50 To pre-train the 1B model, we use genomic sequences from the MARS database, which
contains 1.7 billion nucleotide sequences from various biological databases [60]. The sequences
are aligned to a standardized DNA alphabet and undergo filtering and clustering steps. Extremely
long and short sequences (exceeding 4,096 bases or below 10 bases) are excluded. We perform a
two-step clustering approach using the MMseqs2 algorithm [25]. The first step clusters sequences
with at least 90% identity and 80% overlap with the longest sequence in each cluster, resulting in the
MARS90 dataset. In the second step, sequences with at least 50% identity and 80% overlap with
the longest sequence are clustered, yielding the refined MARS50 dataset. MARS50 comprises 886
million sequences, totaling 344 billion bases, with an average length of 389 bases. Finally, the dataset
is randomly split, with 0.2% allocated for validation and another 0.2% for testing purposes.

Pre-training We pre-train the AIDO.RNA-1B model, which consists of 1 billion parameters, using
the MARS50 dataset. This model has 36 layers, 32 attention heads, and a hidden size of 1,536. The
other architecture hyperparameters are the same as our 1.6B model. During pre-training, we train the
model for 145k steps, employing MLM loss with a mask ratio of 15%. We use AdamW optimizer
with a peak learning rate of 1.5e-4 and a weight decay of 0.02.
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G AIDO.RNA-650M: our reproduction of RiNALMo

Before our work, the largest RNA foundation model available was RiNALMo [10], which consisted
of 650 million parameters. It was pre-trained using 36 million ncRNA sequences collected from the
RNAcentral database, Rfam, nt, and Ensembl. It achieved SOTA results on RNA secondary structure
prediction. Given its impressive performance on downstream tasks, we set out to pre-train a 650M
RNA foundation model using almost the same architecture and training setting as RiNALMo before
training our 1.6B model. Since RiNALMo does not release its pre-training data, we use the ncRNA
sequences from RNAcentral version 24.0 as described in Section 2, which contains all the ncRNA
sequences used in RiNALMo’s pre-training in theory. For model comparison, we fine-tune our 650M
model and RiNALMo on RNA secondary structure prediction, translation efficiency prediction, and
expression level prediction datasets using the same prediction head and training settings. Table 23
shows the results of our AIDO.RNA-650M and RiNALMo. On all 8 datasets from the three tasks,
our model achieves similar results as RiNALMo. These results demonstrate that we successfully
reproduce RiNALMo, showing the effectiveness of pre-training on a high-quality ncRNA sequence
database.

Table 23: Comparsion of downstream task performance between AIDO.RNA-650M and RiNALMo
[10].

Task Dataset Metric RiNALMo AIDO.RNA-650M (ours)

Secondary structure bpRNA TS0 F1-score 0.772 0.778
Archive-II F1-score 0.720 0.743

Translation efficiency
Muscle Spearman CC 0.711 0.697

PC3 Spearman CC 0.698 0.699
HEK Spearman CC 0.661 0.664

Expression level
Muscle Spearman CC 0.698 0.688

PC3 Spearman CC 0.672 0.683
HEK Spearman CC 0.697 0.707

H Data and code availability

We have developed the ModelGenerator package to reproduce, apply, and extend the results in this
manuscript https://github.com/genbio-ai/ModelGenerator. Pre-trained models and down-
stream datasets are also available on Hugging Face at https://huggingface.co/genbio-ai.
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