
Community Code Engagements: Summer of Code &
Hackathons for Community Building in Scientific Software

Erik H. Trainer, Chalalai Chaihirunkarn, Arun Kalyanasundaram, James D. Herbsleb
Institute for Software Research

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{etrainer, cchaihir, arunkaly, jdh}@cs.cmu.edu

ABSTRACT
Community code engagements — short-term, intensive software
development events — are used by some scientific communities
to create new software features and promote community building.
But there is as yet little empirical support for their effectiveness.
This paper presents a qualitative study of two types of community
code engagements: Google Summer of Code (GSoC) and
hackathons. We investigated the range of outcomes these
engagements produce and the underlying practices that lead to
these outcomes. In GSoC, the vision and experience of core
members of the community influence project selection, and the
intensive mentoring process facilitates creation of strong ties.
Most GSoC projects result in stable features. The agenda setting
phase of hackathons reveals high priority issues perceived by the
community. Social events among the relatively large numbers of
participants over brief engagements tend to create weak ties. Most
hackathons result in prototypes rather than finished tools. We
discuss themes and tradeoffs that suggest directions for future
empirical work around designing community code engagements.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation (e.g., HCI)]:
Group and Organization Interfaces – computer supported
cooperative work, organizational design.

Keywords
Community code engagements, Google Summer of Code (GSoC),
hackathons, scientific software.

1. INTRODUCTION
How do you go from a small number of people with a common
interest to a full-fledged community? The active body of research
on this problem (e.g., [17, 30, 31]) is a testament to the role of
community building in collaborative work practices.

Active communities are essential to the sustainability of software.
Without a community around the code distribution, key issues of

the software’s future may not be addressed, e.g.: in 4 years’ time,
will the software still be available? Will it work? Will there be
pool of participants with the right set of technical skills who can
respond to bug reports and feature requests? Successful
communities find ways to get code contributions from their
members and to incorporate successive generations of newcomers
after the original developers leave [30].

There is an additional twist for software that scientists write.
Although scientists are directly funded to produce new
knowledge, they spend significant time searching for, using, and
developing software that enables those results. The sustainability
of scientific software – the ability to maintain the software in a
state where scientists can understand, replicate, and extend prior
reported results that depend on that software – has sometimes
been an afterthought because scientists are rewarded for the
publications they write, not the software they create and support
[25, 26]. This software, however, is a critical link in the chain of
evidence establishing new scientific knowledge, and thus other
scientists need to be able to run this software in order to
understand and replicate this new knowledge, and apply it to new
problems.

A few scientific communities in the life sciences have begun
experimenting with short-term focused community engagements,
such as Google Summer of Code (GSoC) and hackathons.
Although there is reason to believe from previous research on
online communities (e.g., [30]) that these engagements may
enhance the sustainability of scientific software, there is as yet
little empirical support. Moreover, evidence about when various
types of engagements are likely to succeed is scant.

In this paper, we aim to understand the range of outcomes these
engagements produce and the underlying practices that lead to
these outcomes. We hope to highlight concrete engagement
design issues that community leaders and funding agencies might
consider in order to optimize the outcomes they desire.

2. BACKGROUND
2.1 Sustainability of Scientific Software
Software is of vital importance to science. The role of software in
data analysis, simulation, and visualization is widely
acknowledged [9, 27, 38]. A 2005 NSF Workshop Report [5]
clarified the importance of software in cyberinfrastructure, which
is the “infrastructure based upon distributed computer,
information, and communication technology”[2]. Much scientific
software, however, is not infrastructural. For instance, there are
many “workbench” applications for end user scientists (e.g., Dan
Gezelter’s directory [34] lists almost 500 programs). This list does
not even include the myriad scripts and data conversion utilities
scientists write to translate data into intermediate forms required

This is a preprint version of a paper to be published in the 2014 ACM
Conference on Supporting Group Work.

Please do not quote or distribute.

by tools in the later stages of workflows [26]. Although NSF
sponsored workshops have repeatedly called attention to
cyberinfrastructure maintenance [5], there is less clarity into how
scientific software more generally can be sustained over time,
even though it is a crucial part of scientific research, development,
and delivery [44].
Informal evidence suggests that scientific software is increasingly
a key problem of interest to individual researchers and research
institutions. For example, the First Workshop on Sustainable
Software for Science [51] was recently held collocated with an
annual conference on High Performance Computing. A simple
head count revealed that one third of the workshop participants
only attended the conference for the workshop. As further
evidence, the Water Science Software Institute has developed a
model for software development specifically aimed to support the
maintenance of scientific software [6].

Scientific software exists in a variety of states from “as persistent
as the next grant supporting maintenance” to “supported by a very
small community of volunteers” [44]. But if that software has
gained widespread use outside of the lab and served a valuable
role in assisting other scientists in making new discoveries, it
should be able to be refined and extended for use by other
scientists who can use it to produce new knowledge.

2.2 The Promise of Open-Source
In discussions of software sustainability, the open-source software
model is invariably held up as a promising approach. For instance,
position papers from the 2009 NSF funded workshop on
“Cyberinfrastructure Software Sustainability and Reusability”
[44] led to the report’s recommendation that cyberinfrastructure
software should be released under an open-source license.

Directly applying the open-source model to scientific software
development, however, neglects crucial differences between open-
source scientific software and open-source software in general.
The primary difference is in the incentive structure for
contribution [25, 26]. For open-source developers, reputation in
the open-source community is a primary motivation, where the
number of “followers” a developer has is a symbol of social status
[13]. Scientists who write software, in contrast, operate in a
“reputation economy of science” that rewards software production
only indirectly through publication [26].

Because scientists need tools for their own work, however, there
is built-in motivation to put time and effort into developing them.
Although scientist developers are reluctant to build software they
themselves do not need, scientists are, under certain conditions,
willing to undertake extra work needed to turn their personal tools
into a community resource [48]. For example, if scientists
understand users’ needs well enough, they will be more inclined
to devote effort to building features that meet those needs.

Newcomers, however, will likely face multiple barriers to entry:
for example, installing the tools, learning technical aspects of the
codebase, and learning social conventions, such as where to post
questions or issues and how to contribute code. As we review
below, research suggests that a healthy community can help lower
the barriers to participation and contribution. The reverse is also
true: lowering the barriers helps grow a healthy community.

2.3 Online Communities
At a recent workshop on the sustainability of scientific software
[51], over half of the 57 papers accepted mentioned community as
a crucial ingredient in the recipe for success of scientific software
sustainability. A community is a group of people who share a

common interest, purpose, or goal. Practitioners who learn from
each other to develop themselves personally and professionally
(e.g., a less experienced scientist developer works with a more
experienced developer to develop features of increasing difficulty)
constitute a community of practice [33], whereas people who
share information with others but who are not necessarily
practitioners themselves (e.g., an end user scientist answers a
question about the tool’s installation procedure on the mailing list)
constitute a community of interest [24]. In a community of
practice, learning is always situated in practice. Prior studies of
open-source software communities have used situated learning to
describe the socialization and sustained participation of
newcomers [17]. This suggests that community of practice is the
type of community important for the sustainability of scientific
software.
The literature on communities suggests that in order to be
successful, communities must address two primary challenges:
receiving contributions and attracting newcomers.

2.3.1 Contributions
Communities need contributions from participants ([30], p. 2-
5). In software development, contributions might comprise a
working base of source code that serves people significantly better
than the competition. For example, BLAST, the widely used
open-source tool for comparing biological sequence information
[1] achieved such early success because it was so much faster than
previous algorithms available at the time. Assuming a newcomer
is at least interested in modifying or contributing to the software,
the barrier to entry must be low to modify and extend the existing
contributions to meet their own needs. Because most contributors
to open-source software projects leave after their personal needs
are met [41], it is important to attract enough newcomers in order
to find those who will continue to contribute and act as stewards
of the code base.

2.3.2 Attracting Newcomers
To survive over the long-term, communities must find ways to
attract new generations of members to replace the ones who
leave ([30], p. 179). For example, in recent years leaders of the
online encyclopedia Wikipedia have expressed discontent over the
fact that the growth rate of new contributors does not compensate
for the number of experienced article editors who drop out [3].
Incorporating newcomers can be challenging for three reasons.
First, newcomers have not yet developed the same commitment to
the group as older members. Second, newcomers will not know
how to contribute as effectively as older members. Third, they
will not be aware of the norms and objectives guiding the group.
In open-source software projects, learning how to contribute to the
codebase is often informal and undocumented, placing the onus
on the would-be developer instead of the group [15, 31].

2.3.3 Designing Communities
Research on online communities also tells us that the features of
online communities can be designed and managed to achieve
the goals that their members desire ([30], p. 6). For example,
designers of communities can encourage new participants and
prepare them to make contributions by providing them with
welcoming activities, safe spaces for exploration, and formal
training opportunities. The size of the community can make a
difference as well; more participants can potentially contribute
more content. Furthermore, tasks taken on by members can be
independent or interdependent, and they can be embedded in
social experiences. Rewarding or sanctioning users in response to
the actions they take can motivate or demotivate them to make
additional contributions.

The fact that communities are so important to software
sustainability, and that they are amenable to management and
design, suggests that we can improve the sustainability of
scientific software by intervening to improve the state of its
community.

2.4 Community Code Engagements
Prior studies suggest that there is reason to believe that community
code engagements – short term, intensive, software development
events – may be an effective way to put scientific software
projects on sustainable trajectories [6, 47]. Open-source scientific
software communities, particularly those in the life sciences, have
started employing two types of engagements: Google Summer of
Code (GSoC) and hackathons.

2.4.1 Google Summer of Code (GSoC)
Google Summer of Code (GSoC) is an annual program that pays
university students stipends to develop features for various open-
source software projects. It aims to familiarize students with open-
source software development and enable projects to more easily
identify and bring in new contributors [20].

The GSoC application requires mentoring organizations,
individuals or organizations running an active open-source
software development project, to provide details about the
organization, previous participation in GSoC, communication
methods, plans for project management and participant
engagement, and a URL to their project “idea list.” The idea list
contains descriptions of potential projects, potential mentors, and
required skills for students. Mentors are community members
who volunteer to provide students technical and social support.

If Google accepts an organization’s application, students then
submit proposals to the organization describing features they wish
to develop. Students can expand on projects in the idea lists, or
propose new projects. The organization reviews and ranks student
proposals, assigns project mentors and students, and requests
project slots from Google.
Google allocates each accepted organization a certain number of
project slots, and the organization assigns students and mentors to
those slots. Before coding begins, mentors introduce students to
the community’s culture and practices, select communication
channels to use, and decide on the frequency and form of status
reports. Throughout the coding period, mentors oversee their
students, providing help and guidance. Coding lasts three months,
after which students submit their final projects to Google. Google
pays students once at the beginning of the coding period, and at
the middle and end, provided that they pass mid-term and final
evaluations.

2.4.2 Hackathons
Hackathons are events typically lasting two to seven days where
people meet face to face and collaborate intensively on software.
Hackathon experience reports tend to place emphasis on the
number of new tools, prototype functionality, and lines of code
produced (e.g., [28, 29, 32]). Because the number of participants
at hackathons can be high (having at least 30 participants is
common, according to papers in our review), these events have
the potential to significantly contribute to a codebase. Hackathons
also provide opportunities for networking and relationship
building, which may facilitate incorporating new generations of
newcomers.

Hackathon organizers typically solicit participants, who may be
developers of scientific software, or end user scientists, through
private invitation or open calls on mailing lists. Before the event

starts, organizers may hold “bootcamps,” short tutorials designed
to help developers new to a toolkit get acquainted with the
codebase and the functionality it offers. When the hackathon
starts, participants make presentations on topics they would like to
work on. Based on these presentations, participants collectively
consolidate and prioritize development tasks and then form sub-
groups of about five people based on common interests and
project affiliations. For the duration of the hackathon, sub-groups
work collocated in a large room on their respective tasks and hold
short meetings at the beginning of every day in which group
members give status updates on their work. At the end of each
day, there is often a dinner, reception, or short excursion where
participants eat, drink, and socialize with each other.

We note that hackathons have been widely applied in areas
outside of science, such as Yahoo! Open Hack Day, where
developers create applications using Yahoo! APIs. For a fairly
comprehensive list of the varieties of hackathons, see [22]. In this
paper, we focus on hackathons used in the sciences.

3. METHOD
To understand the range of outcomes GSoC and hackathons
produce and the underlying practices that lead to these outcomes,
we performed a multiple case study of 22 GSoC projects within 6
different scientific software projects across 3 different domains
(Table 1). Searching the project lists on the GSoC home page [20]
for scientific software, we found that the proportion of
bioinformatics GSoC projects is high compared with other
scientific domains, which is reflected in our sample. Another
criterion was to pick projects with a track record of participation
in GSoC so that we could tell if participants’ project activities
carried over into subsequent years. Our last criterion was to pick
active projects, which would indicate that the software serves a
current scientific need.

We found very active projects in Biopython, Cytoscape,
Wikipathways, CGAL, Bioconductor, and VTK. Each project has
consistent development activity, a well-used wiki for
documentation and discussion and publicly available mailing lists.
Biopython is a set of Python libraries for biological computation
[7]. Cytoscape is a software platform for visualizing molecular
interaction networks [42]. Wikipathways is a wiki for contributing
and maintaining content related to biological pathways [36]. The
Computational Geometry Algorithms Library (CGAL) is a
software library that provides access to efficient algorithms for
computational geometry [16]. Bioconductor provides R packages
for analysis and comprehension of genomic data [19].
Visualization Toolkit (VTK) is a software tool for 3D computer
graphics, image processing, and visualization [39]. For each
project in our sample, we looked at the software community’s
website and mailing list archives in order to identify the mentors
and students and discussions of project ideas and feedback.

3.1 Data Collection
To find instances of hackathons, we conducted a review of the
research literature on hackathons using Google Scholar and
regular web searches. If we found a publication describing a
particular hackathon, we triangulated information about the
number and types of participants, activities, objectives, and
outcomes described in the publication with information from any
planning documents (e.g., agendas, calls for participation, write-
ups of work accomplished) linked to on the engagement’s web
page. This process resulted in a list of 42 hackathons.

In addition to collecting archival data, we conducted semi-
structured interviews with 38 scientific software developers.

Table 1. Scientific software projects and number of GSoC
projects in our sample.

We also targeted scientist developers who attended hackathons,
some of whom attended the same hackathon, and some of whom
attended different ones, in order to see variations in their
perceptions of the benefits, challenges, and outcomes. We
conducted interviews using either Google Hangout or Skype.
Each interview lasted 45 minutes on average. If participants could
not commit to an interview, we e-mailed them questions from our
interview protocol. Twenty-four people participated in GSoC; 15
participated as students, 5 participated as mentors, and 4
participated as both students and mentors. Six of our 38
participants participated in hackathons. Two participated in the
2012 and 2013 OpenBio Codefest Hackathons [8], 2 participated
in the 2013 RMassBank Hackathon, 1 participated in the 2012
NESCent Phylotastic Hackathon [35], and 1 participated in the
2012 SWAT4LS Hackathon [46]. Three people participated in
both GSoC and hackathons.

3.2 Data Analysis
We applied a grounded approach [10] to analyze our interview
data, and started analysis while the data was being collected. All
interviews were recorded, transcribed, and prepared for analysis in
the Dedoose qualitative data analysis software [43]. We began
analysis by conducting open coding on statements about practices
and outcomes associated with GSoC and hackathons. Our
research group met weekly to define and discuss codes, compare
instances of coded excerpts to previously examined examples, and
unify them where there was commonality. Moreover, we
triangulated statements in the interviews, such as references to
mentors, students, and project status with the archival data we
collected on GSoC and hackathons. In the next phase of analysis,
we wrote, shared, and discussed descriptive memos about the role
of GSoC and hackathons.

4. RESULTS
We found that each engagement has periods where participants
define development targets and interact with other community
members. These phases result in similar outcomes, but in different
ways. We describe these processes and their outcomes in the
sections below.

4.1 GSoC
A GSoC project is often structured such that the student works on
a particular module that is independent of the rest of the codebase.
For example, in the Biopython project, we observed that students
created a separate GitHub branch for their code. In the
Bioconductor project, students worked on a standalone package
that contained all the code necessary to implement one piece of

functionality. GSoC projects proceed without concerns that the
development will break functionality in the existing code
distribution.

4.1.1 Defining Development Targets
Among other things, the GSoC application requires each
mentoring organization to submit an idea list. The idea list is
meant to introduce contributors to the needs of the project and to
provide inspiration to would-be students. It is framed as a starting
point for student applications, but we observed a range of projects,
from those expanding on a proposed idea, to those not mentioning
items in the idea list at all.

We investigated where the ideas in the idea list came from, how
those ideas were prioritized, and how student projects were
established.

4.1.1.1 Creating the Idea List
The decision for participating in GSoC usually emerged from
discussion among core community members, those who were
actively involved in project management, or who contributed the
majority of the code. Because of their experience and expertise,
they were sometimes quite sure about what ideas should be
implemented as part of GSoC:
“...we did it in a controlled kind of a way, that we discussed it
internally and amongst the [group name], which are, say a group
of power users that...And from there we identified projects that
would be useful to pursue.” (P31)
One member of the core team informed us that most projects will
have a to-do list or wish list that community members would like
people to work on. GSoC provides an opportunity to get these
ideas rolling. As he said:

“…there are some ideas on the Wiki, and also in the bug tracker,
and sometimes they just sort of get passed around on the project
mailing lists. But the developers, in general, have more ideas
than time on their hands…” (P4)
Those initial ideas generated by the core team members would be
placed on a webpage designed for showing existing ideas and
providing details about them1. Core team members also
encouraged community members and potential student applicants
to contribute their ideas, or build on the existing ideas presented
on the webpage.

We found that sometimes the core team member would send the
call for ideas to the community mailing lists. Biopython also used
a Wiki page to facilitate contribution of ideas [4]. The ideas
reflected the visions and needs of individuals. Most ideas came
from their own research, problems they faced, lack of certain
features in the software, new things they wanted to explore, or
common needs that were discussed among members.

4.1.1.2 Prioritizing Ideas and Establishing Projects
Since only a few proposals will be accepted, the task of ranking
and prioritizing the proposals becomes important. The criteria to
prioritize these ideas depend on the views of the core team
members. Typically, ideas must be generally useful, practical, and
able to be completed within the GSoC time frame.

The availability of mentors and the potential of student applicants
were also taken into account. We found that, in general, the match
between mentors and students had a big influence on which ideas
were prioritized over others. Ideas proposed by experienced

1 For an example of a project idea page, see

https://www.cgal.org/project_ideas.html

Scientific
Software Name

Scientific
Domain

Number of
GSoC Projects

Biopython Bioinformatics 8

Cytoscape Scientific
Visualization 3

Wikipathways Bioinformatics 3

CGAL Mathematics 4

Bioconductor Bioinformatics 2

VTK Scientific
Visualization 2

mentors that attracted students who showed a strong promise to
complete the work and potential to continue to make contributions
after GSoC, were assigned high priority.

The number of ideas that would be selected depended on the slots
allocated by Google for the mentoring organization. Once the
mentoring organization selected ideas based on the number of
project slots, the mentors and the students could define the
directions of the project by themselves. The code of the student
projects was usually visible and the community members were
welcome to give them feedback.

4.1.2 Relationship Building: Interactions with
Mentors Create Strong Ties; Sharing Updates
Creates Weak Ties
GSoC students build relationships with mentors as well as other
members of the community. We use the term strong tie to refer to
relationships that involve frequent communication, which may
lead to bonding. We use weak tie refer to relationships that
involve occasional communication, which may lead to exposure
to novel information [21].

4.1.2.1 Strong Ties
One of the recurring themes among GSoC students was the
strength of the mentor-student relationship. Almost all students
we interviewed expressed a deep sense of bonding with their
mentor. Students begin their interaction with mentors during the
proposal phase of the project, usually via private emails or video
chats. There are usually very few face-to-face interactions and yet
we found that over time, students developed a strong relationship
with their mentor. One student expressed this as follows:
“Communication with my mentor was great, initially it was email
communication and in July I attended the Bioconductor’s
conference that they have every year. After the conference we kind
of transitioned into this Google hangouts weekly. And now he is
actually going to serve on my thesis committee.” (P48)
We found that GSoC students get direct feedback from their
mentors on a frequent basis, which supplements our previous
findings from a quantitative analysis of communications between
students and mentors in Biopython GSoC projects [47]. As such,
students are able to focus more on getting work done instead of
collating feedback from different members of the community,
which is typical of open-source software communities [15].

Prior to GSoC, a number of students had only limited software
development experience (e.g., P5, P27) and others had none at all
(e.g., P34). Mentors help these students develop skills around unit
testing, APIs, GitHub, object-oriented programming, and reading
others’ code.
We found that mentoring is often far-ranging, not just about
developing source-code. For example, mentors give GSoC
students advice on choosing career paths:
“A lot of the students that we get are probably in the middle of
grad school, which is the time when you’re most like I don’t know
what’s going on. So people have asked me about career paths and
those sort of questions. So definitely I’ve tried to help people in
that way too. And because I had all those same experiences. So
it’s like I can at least relate to them.” (P1)
We also found evidence that students are likely to stay in touch
with their mentors after GSoC ends. Students across different
projects in our sample (e.g., P33, P38, P40, P43) mentioned that
they were only in touch with their mentors, suggesting that they
did not continue to communicate with other project members.

4.1.2.2 Weak Ties
The way students interact with other members of the community
during the course of their project depends on how their progress is
shared. We found two distinct ways in which this was done:
private communication and announcement of updates on mailing
lists. In the case of private communication, students typically
maintain their code in a private repository shared only with
mentors. In such cases, sharing updates on their progress is
sometimes implicit, which involves submitting changes to the
shared repository without explicitly updating their progress via
emails, as one participant from Bioconductor described:

“Most of the updates went to either <mentor>(P26) or <a core
member>, basically everything was done through SVN. So, at any
point they could come and check what changes I have made.”
(P48)
Upon probing further about receiving any requests or feedback
from other members, the participant (P48) mentioned that there
was not much engagement on the mailing list except for a short
period after his package was included in a Bioconductor release.

On the other hand, in Biopython, we found that in addition to
private communication between students and mentors, it was
mandatory for students to share their progress on mailing lists and
blogs. This increased visibility and the potential to garner
feedback and different points of view from other members.
Making the code available on a public repository like GitHub
during the development phase was also another way of increasing
community engagement. One of the Biopython participants who
was also a GSoC mentor, explained this process as follows:

“Some discussion actually happens on Github itself through the
commenting on there. And we also wanted our students to do a
weekly blog post. So every week they would try and summarize
what they'd been doing. And then post the link on the mailing list,
and post it up on our blog as well.” (P7)
In sum, we observed that establishing a formal protocol of making
GSoC project updates available to the community allowed
students to form weak ties with other community members.

4.1.3 Project Outcomes
4.1.3.1 Actively Used Software
The primary objective of GSoC projects is to produce code.
However, it is unclear how this code is used and maintained few
years after a GSoC project ends. Fourteen of the 22 GSoC
students responded that their code written as part of GSoC was
still being used and maintained. The most common way to gauge
the usefulness of the code was by identifying if it was included in
the official release. We saw instances, however, where the project
resulted in scientific publications (e.g. P46) and in one case the
software itself was being cited in other scientific publications (e.g.
P42). All 14 participants who expressed positively that their code
was being used were also aware of how their code was currently
being maintained, and in some cases the participants continued to
maintain the code after GSoC.
Some of the reasons why the participants thought their code was
not useful or were not aware if their code was being maintained
were change in field of work and re-implementing their code
using a different technology:

“Once GSOC finished I had almost zero contact with the project.
This was also because my line of work after graduating did not
fall in line with the project (am doing clinical instead of research-
related work). A few months after GSOC, there was an email
thread going on regarding how to best deploy the work done after

my mentor made several improvements on it, but by then my
interest on the project had faded so I did not look much into it.”
(P43)

4.1.3.2 Student Retention
One of the motivations of this process of facilitating ties between
newcomers and other members of the community is to retain their
engagement and future contributions. We found that the
possibility of students continuing to be involved in the community
was also one of the criteria in selecting students. The following
quote summarizes the rationale behind student selection:

“Sometimes people just work for the summer and that's it. And
then sometimes they continue. And we really try to keep this in
mind when people are selected. You really want someone that's
going to keep going and keep contributing to the community.”
(P1)
While some students ramped down their involvement post GSoC,
other students went on to become mentors, active contributors and
users. Among the 22 GSoC projects we studied we found that
18% of students went on to become mentors later, a reasonably
strong indication of retaining new comers in a community. One
participant who has been actively involved in the community for
several years since being a student said:

“I am still involved. I co-mentored and mentored some Cytoscape
projects from 2009-2011, joined a couple of retreats, published a
book on Cytoscape, and some of my other research are still
closely related to Cytoscape though I am not part of the core
development.” (P46)
There were few participants who mentioned their involvement
with the community stopped after their GSoC project ended,
although we found that they had still retained some of their ties
that they formed during course of their project:
“No contact once GSOC ended. Shortly after the GSOC though, a
professor in close relationship to the project came to visit
Singapore and I met him plus one other GSOC student and had a
chit-chat together. It was nice, but no activity after that.” (P43)

4.2 Hackathons
Whereas the GSoC format works well for independent work, the
hackathon format seems more designed for interdependent work.
Participants recalled that hackathon organizers purposefully select
objectives that require intensive coordination and collaboration
because it is maybe the only time they will be able to do this kind
of work (e.g., P7, P20). For example the goals of the 2008
DBCLS Biohackathon [29], and the 2006 NESCent
Phyloinformatics Hackathon [32] were to increase the level of
interoperability and standardization of bioinformatics databases,
services, and tools. By their nature, standardization and
interoperability require cooperation from independent tool
builders, database providers, and standards bodies. These
stakeholders, however, are often geographically dispersed across
multiple time zones, and live interactions such as conference calls
would have to be scheduled outside normal office hours.

Hackathons last up to several days in length (the average length in
our sample was 3.3 days), which provides a long but limited span
of uninterrupted time to work. A short period of issue
prioritization and development target identification precedes
intensive and focused coding sessions.

4.2.1 Defining Development Targets
Hackathons begin with an agenda setting phase in a large shared
room, where the output is a list of tasks that participants will work

on for the duration of the event. Each participant who wants to
raise an issue gets the opportunity to speak before the group. One
participant summarized the process as follows:

“…the very first day, we had a few presentations to kind of give
the scope of the hackathon, what we wanted to accomplish…
[presenters] would say, ‘I think that would further our goals
would be to develop this. And I’m looking for collaborators to
work on this with me.’” (P30)
After hearing from presenters, attendees collectively consolidate
the total number of issues, translate them into development
targets, and prioritize them into two categories: (1) issues that can
be directly addressed at the event and (2) issues that cannot be
addressed in the time allotted. For example, a hackathon planning
document from the 2006 NESCent Phyloinformatics Hackathon
[32] indicates that 6 out of the original 19 “use cases” proposed
by participants were ultimately selected for development targets.
The following comment on the “Population Analysis” use case
seems to indicate that, while not selected for the hackathon, it is
still of value to the community:
“This [use case] is outside the scope of the current hackathon but
will be addressed in a future one --Tjv 10:26, 21 October 2006
(EDT)” [49]
Through this process, participants can effectively identify and
prioritize the common challenges facing the community. When
otherwise geographically and temporally dispersed from their
closest collaborators, scientists may wonder whether the issues
they struggle with matter to others in the same way. The
hackathon answers this question with clarity. Once participants
sort these issues out, they break into sub-groups and work
intensively on the development targets they identified.

4.2.2 Relationship Building: Sub-group Work
Creates Strong Ties; Social Events Create Weak Ties
Hackathon participants gather together from all over the world.
While they may know the names of their colleagues and
something about the kinds and level of their activities from project
mailing lists, issue trackers, and source-code repositories, they
have fewer opportunities to get to know them. We found that
working in sub-groups creates few strong ties among members,
and that social events create weak ties among a relatively larger
number of people.

4.2.2.1 Strong Ties
 The number of people who attend the hackathon can influence
the degree to which participants build upon their current
relationships, because there is a limit to the time they can interact
outside of sub-groups. As one participant described:

“At larger hackathons, like the BioHackathon series which has
had about 80 participants, inevitably as with a similarly sized
workshop/conference I am unlikely to get to speak to everyone. I
would hope at least to remember key people giving talks or
representing a sub group in progress meetings/wrap-up sessions.”
(P7)
We found that sub-group work creates strong ties among group
members. Participants spend the majority of their time working
together in sub-groups. During this time, debugging code,
explaining thought processes, asking for feedback, and offering
tips and suggestions lead to frequent interactions. Working
together allows participants to develop deeper relationships with
individuals within the group:

 “I find you get to know the people better if you actually work
together with them and see how they react to problems along the

way. I really need to know this about a person to be able to work
with them well.” (P36)

4.2.2.2 Weak Ties
 Outside of sub-group interactions, social events provide social
networking opportunities with the larger group. Of the hackathons
in our sample, 79% (33/42) included short social events, such as
coffee breaks, group dinners, and group excursions to nearby
landmarks of interest. These events provide participants with
opportunities to chat informally with other hackathon attendees,
creating weak ties that expose them to information about:

Interesting tool developments or research in one’s area.
Several of the developers we talked with spent a lot of time
discussing technologies and tools that might benefit their research.
We interviewed a developer (P20) who introduced an end-user
(P36) to an online community that distributes R packages for
conducting analyses of genomic data. The end-user is now an
active reader of that community’s forums and user of the packages
that the developer writes. They have also co- authored articles,
worked together at subsequent hackathons, and provided feedback
on each other’s work.
Suggestions for future conferences of interest. Participants
reported hearing about conferences and people working on related
things through researchers that they met at hackathons (P7, P23,
P36). In some cases, they led participants to whole software
communities. One of our participants, for example, reported that a
developer she met at a hackathon introduced her to the
Bioconductor community (P36).
News of job vacancies. The participants we spoke with also told
us that hackathons are a useful way to hear about job openings
that open up, both academic positions and positions in industry
(e.g., P7).

Invitations to tutor or speak at other conferences. One
participant told us that he just got back from contributing to a
Python part of a workshop tutorial on “keystone skills for
bioinformatics.” (P7) Another scientist who he had first met at a
hackathon invited him.

4.2.3 Project Outcomes: Limited Time Results in
Unfinished but Promising Outcomes
Participants we spoke with indicated that it is rare that “finished”
software is produced as a result of the hackathon. As one
participant recalled, “we did a lot of programming in that meeting
but had a long way to go still.” (P36). We found that participants
often attributed the reason for this to the limited time allotted for
the hackathon:

“Of course we came across more problems than anticipated and
didn't get as much done as we wanted…the task was much bigger
than 1 day.” (P36)
Instead, software outcomes ranged from “not anything to write
home about” (P31) to “discarded—serving as inspiration for a
second attempt” to something “useful enough that the authors
can polish it afterward.” (P7)
We found that the most common software products were:

4.2.3.1 Integration of Existing Tools, Web Services,
and Databases
Outcomes improved the interoperability of existing tools with
other tools, services, and databases. For example, at the NESCent
2006 hackathon [32], developers of the Bio* toolkits (i.e.,
BioPerl, BioJava, and Biopython), expanded their coverage of
data types and analyses commonly used in phylogenetics. At

BioHackathon 2009 [28], developers of the G-language project
implemented web service interfaces so that the G-language
functions would be available to workflows available in the
popular workflow workbench application Taverna.

4.2.3.2 Proof-of-Concept
Some tools only demonstrated a concept’s feasibility, but
motivated the authors to develop a more sophisticated version
after the hackathon. One example from the O|B|F CodeFest 2013
report was a visualization tool that made it possible to visualize an
RNA sequence analysis while browsing the genome. This
prototype later inspired a version of the tool that scheduled
animation updates more efficiently, leading to smoother
animations and more accurate windows.
Other useful community resources included:

4.2.3.3 Mailing Lists
In some instances, hackathon participants created mailing lists to
sustain the energy of the hackathon after the event. For instance,
after the NESCent hackathon for comparative methods in R, a
hackathon that aimed to ensure compatibility and data flow
between R packages, the participants created a mailing list for
users and developers of the packages. Five years after the
hackathon, the mailing list has 962 subscribers and an average of
over 50 posts per month [11].

4.2.3.4 Documentation
Documentation is an additional important outcome of a
hackathon. We observed that there is both documentation in the
form of “records of the event” and documentation in terms of how
to use the software that is produced. Examples of activities that
participants document include use cases, the names of sub-groups,
their progress in addressing the use cases, and future work [14].

Participants also created extensive documentation of the tools
themselves, both for tools already in wide use, and for tools
created at the hackathon. For instance, due to increased interest in
using CloudBioLinux, a project providing machine images for
bioinformatics on cloud computing platforms participants from
the “Infrastructure management” group at Codefest 2013 created
extensive documentation on the ReadTheDocs website [37].

4.2.3.5 Training and Tutorials on New Tools
Some developers we spoke with attended “bootcamps,” short
tutorials designed to help developers new to a toolkit to get
acquainted with its basic design and coding principles (P7, P23,
P36). We found evidence that these tutorials enabled some
effective cross-project interactions. For instance, a developer from
the HyPhy project added an interface to the Biopython codebase.
In another example, a creator of PhyloXML contributed a NEXUS
parser to the BioRuby project [32].

5. DISCUSSION
Below, we draw on our results to suggest how four different
themes that cross-cut our work may have implications for
organizing community code engagements: task interdependence,
ties, transparency of contributions, and appropriate mix of experts
and novices. We place these themes in the context of community
growth and code contributions. We also discuss other possible
forms of community code engagements, additional outcomes of
interest beyond contributions and community growth, how the
type of community results in different outcomes, and implications
for Information and Communication Technologies (ICTs).

5.1 Community Growth
5.1.1 Task Interdependence
In the hackathon format, large groups of participants engage in
face-to-face interactions. Face-to-face is an effective medium for
highly interdependent tasks. Previous research by others has
found that groups whose members work cooperatively on
interdependent tasks tend to be more cohesive and committed to
the group [18, 50]. Commitment may increase in these
interdependent tasks as individuals see evidence that the group
depends on them and values their work ([30], p. 85). Our findings
indicate that a GSoC project, in contrast, involves a single student
who works remotely on an isolated task. We speculate that
independent tasks may make it difficult for students to understand
the value of their contributions, which may lead to lower levels of
commitment. It may also partly explain our finding that some
students were unaware of how their code was being used after
GSoC. Future study would investigate the relationship between
task interdependence and community growth.

5.1.2 Ties
The benefits of completing highly interdependent work, however,
may need to be balanced against the creation of strong ties in
GSoC. Although GSoC tasks are isolated, our findings indicate
that the longer, intensive mentoring facilitates the creation of
strong ties between student and mentor. According to previous
research, people who develop connections to others in a group
work harder, do more, and tend to stick with the group longer
([30], p. 77). Therefore, the relative benefit of community growth
will require more research to assess.

5.1.3 Transparency of Contributions
We suggest that the extent to which participants make their
contributions visible to others will have a positive impact on
community growth. We found that some Biopython GSoC
students, for example, created blogs to promote their projects and
posted links to their source-code on the blogs. Students also
posted updates on their projects to the mailing list. These
behaviors prompted other community members to comment on
students’ projects and help solve problems [47]. In contrast, the
majority of Bioconductor GSoC students neither shared updates
on their projects over the mailing list nor created materials
promoting their projects. We found that Bioconductor community
members (other than the project mentors) were often unaware of
students’ GSoC projects altogether.

Based on this evidence, we propose that if other community
members do not see students’ work, they will be less likely to
provide feedback or offer suggestions for improvement. If this is
true, students will not know if others value their work and may
not feel strong enough commitment to stick with the community.

5.1.4 Appropriate Mix of Experts and Novices
Our findings indicate that community code engagements often
provide opportunities for mentoring and learning, as novices and
experts collaborate. GSoC mentors teach students about the
codebase and community norms, and expose them to other
community members through blog and mailing list posts. During
hackathon tutorials, experts teach new contributors about a tool’s
codebase. According to Lave and Wenger [33], people join
communities by being present and participating along with experts
and learning while doing actual work, as “Legitimate peripheral
participants” (LPP). Not only is it typical for peripheral
participants to become core members through situated learning, it
is apparently an important motivation for the learner to continue
participating in the community [17].

There is presumably some ratio where mentoring and learning are
most efficient, as the ratio influences the number of opportunities
for situated learning. Future work around this topic is needed.

5.2 Code Contributions
5.2.1 Appropriate Mix of Experts and Novices
Before newcomers can contribute to open-source software, a
socialization process is triggered [15, 17]. GSoC students, for
example, go through a process of introducing themselves to the
community, formulating project ideas, and learning the technical
aspects of the code base with their mentors. As hackathon
tutorials illustrate, even experienced developers must learn about
how to contribute to other tools.

Seasoned core members of the community are likely to be the
most expert contributors [12]. We found that these members are
also aware of what contributions are needed. In GSoC, for
instance, mentors often seed project idea lists. Moreover, student
projects are heavily influenced by the vision of mentors. We
speculate that, all other things (including number of participants
and engagement duration) being equal, an engagement involving
only core members would likely contribute more code than an
engagement with more novices. A mixture of attendees including
novices not only decreases the mean productivity of participants,
but may cause the experts to devote time to assisting novices
instead of coding.

This suggests a tension between the goals of code contribution
and community growth: the greater proportion of experts present,
the more code that will be produced, but the greater the ratio of
novices present, up to some optimum, the more newcomers will
join.
We suggest that there are important tradeoffs involving both
appropriate mix of experts and novices and task
interdependence. An engagement in which many novice
participants are included (up to some optimal number), and/or in
which highly interdependent tasks are chosen, will contribute
more to community growth but less to the codebase; and
conversely an event in which experts work on independent tasks
will be likely to grow the source code without doing as much to
grow the community.

5.3 Hybrid Forms of Community Code
Engagements
There are likely hybrid forms of engagements worth exploring
that mix aspects of GSoC and hackathons. For instance, one issue
we raised in this work is that GSoC students are seldom exposed
to other students, mentors, and the larger community. A possible
variation on GSoC would be, at the midpoint of the project, to
send the student to a community conference. In addition to
receiving feedback on their projects, the student could get
exposure to the networking and relationship building benefits of
hackathons, such as hearing about job opportunities and meeting
potential users of their software. On completion of the GSoC
project, they may feel more connected to the community, feel that
others value their work, and perhaps be more likely to stick
around.
As another example, a variation on the hackathon format would
be to invite students to a hackathon and pair them off with more
experienced members of the community. This configuration might
be a way for the engagement designer to strike a balance between
code contributions and community growth. As they work side-by-
side with mentors in the sub-group, students would not only learn
by doing, but also get a sense of real issues that matter to the

community that they aspire to join. Working on interdependent
tasks would enhance students’ perceptions that their work has
value. Mentors could delegate simpler tasks to students therefore
freeing them up to work on more difficult tasks. Students would
see how their contributions matter in the “big picture” while
mentors would be able to devote more of their time to coding.

5.4 Other Outcomes
We suggest that there are two important outcomes in addition to
community growth and code contributions: visibility of
community needs, and training.

5.4.1 Visibility of Community Needs
Both GSoC and hackathons provide the community with an
occasion to identify, discuss, and prioritize needs in a way that is
generally visible to everyone. The creation of the idea list in
GSoC facilitates discussion with potentially new community
members and existing community members, who may normally
not have the interest or need to engage one another. The agenda
setting phase of the hackathon facilitates real-time interactions
and discussions with community members who may normally
have a willingness to collaborate, but who otherwise face
obstacles of geographical and temporal dispersion. Participants
can therefore establish a common vocabulary for talking about the
work and develop shared goals before development begins. These
mechanisms may play an important role in bringing the
community together around common goals, regardless of what is
accomplished by any particular engagement.

5.4.2 Training
We find that for some students, GSoC is not only their first
exposure to the project’s codebase, but also to software
engineering practices in general such as versioning, unit testing,
and object-oriented programming. During hackathons,
participants receive training on other software tools and projects
of interest. This training seems an important component for the
sustainability of scientific software, since new generations of
newcomers will need a certain set of technical skills to fill the
roles of the original authors. Unfortunately, research shows that
scientists tend to undervalue important software engineering
concepts like modularity, test-driven development, versioning,
and tend to underestimate the amount of time required to develop
the software [40]. This not surprising, as scientists are trained in
their domain of science, not software engineering. Future work
should therefore examine how to structure engagements around
optimizing for training, not just code contributions and
community growth.

5.5 Impact of Community Type on Outcomes
Our findings suggest that situated learning, a concept from
communities of practice [33], may help explain GSoC outcomes.
Students learn throughout the process, from introducing
themselves to the community, proposing project ideas, discussing
project plans, and resolving issues related to the code they write,
all with support from their mentors and other community
members. In general, upon project completion, their code is added
to the codebase. Afterward, they may continue to develop new
features (e.g., P4, P5, P8), mentor future students (e.g., P4, P5), or
both (e.g., P4, P5). Students thus become contributors, they do not
simply learn about how to contribute.

The hackathons in our sample, in contrast, had more of a flavor of
scientific software communities of interest. GSoC involved
pairing up newcomers who had scientific domain knowledge and
at least some knowledge of software development with mentors,
whereas hackathons involved experienced developers working

with end user scientists who had the domain knowledge. The
presence of both groups was mutually beneficial; end users played
an important role in determining requirements for the software
(i.e., providing use cases), and the developers played an important
role in demonstrating what software was possible using prototypes
and proof-of-concepts. Developers often ran tutorial sessions to
teach other developers, which are examples of knowledge being
codified and then transferred to others, not situated learning. As
we discussed previously, there may be promise, however, for
facilitating situated learning by investigating hybrid forms of
community code engagements.

5.6 Implications for Information and
Communication Technologies (ICTs)
Although community code engagements have several positive
outcomes, we also found evidence of many technological
challenges that participants faced. Among them, there are two
major issues that we discuss here.

Ranking Proposals. During the student application period in
GSoC, mentoring organizations receive a huge number of project
proposals from students. Since only a few can be accepted, the
task of ranking these proposals becomes important. Also each
proposal requires a mentor to be assigned, however, the
availability of mentors is usually limited. Therefore, the use of
software tools can assist in the process of ranking proposals,
sharing with other members and assigning mentors. The
Biopython community does this by having lots of discussions on
the mailing list. One Biopython participant (P1) mentioned that
this results in a flurry of emails and is often difficult to keep up.
The participant suggested that developing a tool with a Reddit2
like interface where members can up / down vote proposals, sort,
comment and share them, could facilitate this process.

Video Chats as a Substitute for Face to Face Interaction. We
found that in GSoC, students and mentors almost always
coordinated remotely. Some of them used emails whereas others
relied heavily on real time video chat tools such as Google
Hangouts and Skype. While some mentors (P29) found it
comfortable to communicate via emails when students were able
to work independently, other students (P48) and mentors (P26)
felt they needed more face-to-face interaction. In the latter cases,
the use of video chat technologies was found to be an appropriate
substitute for working from the same physical location. One
participant (P48) acknowledged that this helped them get a better
sense of what they were trying to communicate and therefore,
sped up the process.

6. CONCLUSION
In this work we examined two community code engagements:
Google Summer of Code and hackathons. We sought to
understand the range of outcomes these engagements produce and
the underlying practices that lead to those outcomes. We found
that in GSoC, the vision and experience of core team members
influences project selection and the mentoring process facilitates
creation of strong ties. Most GSoC projects result in stable
features. The agenda setting phase of hackathons reveals high
priority issues perceived by the community, and social events
create weak ties. Most hackathons result in promising prototypes
rather than finished tools. Our findings point to several themes
and tradeoffs around community code engagement design that we
hope to explore in future empirical work.

2 http://www.reddit.com/

As is common with case studies, the generalizability of our results
is limited. On the one hand, some elements from community code
engagements seem applicable to other types of collaborative
groups, not just open-source software. For instance, mentorship,
which facilitates the socialization of newcomers, seems useful to
explore in Wikipedia, where contributions from newcomers are
disproportionally rejected due to not following standard policies
[23]. Moreover, articulating and prioritizing user needs seems
fundamental to eliciting contributions in any community, because
contributors will know what to do. On the other hand, these
elements are likely impractical for software shared only within
local laboratories, tailored to a particular purpose, and limited to a
few developers and users. Numerical simulations, for example,
are difficult to make generally useful, and many scientists are
reluctant to share, or open up development of the code, lest others
use it incorrectly and produce spurious results [45]. In addition,
different scientific fields may value individual skill and reputation
in developing software over collective achievements. Future work
could thus elaborate on the conditions under which community
code engagements are appropriate and likely to have impact.

7. ACKNOWLEDGMENTS
This work was supported by a grant from the Alfred P. Sloan
Foundation, the Google Open Source Programs Office, and NSF
awards IIS-1111750, SMA-1064209, and ACI-0943168. We
thank our participants for taking time out of their busy schedules
to collaborate with us.

8. REFERENCES
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and

Lipman, D.J. 1990. Basic local alignment search tool.
Journal of Molecular Biology. 215, (1990), 403–410.

[2] Atkins, D., Droegemeier, K., Feldman, S., Garcia-Molina,
H., Klein, M., Messerschmitt, D., Messina, P., Ostriker, J.
and Wright, M. 2003. Revolutionizing Science and
Engineering Through Cyberinfrastructure: Report of the
National Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure.

[3] Attracting and Retaining Participants: 2010.
http://strategy.wikimedia.org/wiki/Attracting_and_retaining_
participants. Accessed: 2014-02-02.

[4] Biopython Google Summer of Code:
http://biopython.org/wiki/Google_Summer_of_Code.
Accessed: 2014-06-13.

[5] Blatecky, A. and Messerschmitt, D. 2005. Planning for
Cyberinfrastructure Software.

[6] Christopherson, L., Idaszak, R. and Ahalt, S. 2013.
Developing Scientific Software through the Open Community
Engagement Process.

[7] Cock, P.J. a, Antao, T., Chang, J.T., Chapman, B. a, Cox,
C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F.,
Wilczynski, B. and de Hoon, M.J.L. 2009. Biopython: freely
available Python tools for computational molecular biology
and bioinformatics. Bioinformatics (Oxford, England). 25, 11
(Jun. 2009), 1422–3.

[8] Codefest: http://www.open-bio.org/wiki/Codefest. Accessed:
2014-06-13.

[9] Colwell, R. 2000. Information Technology: Ariadne’s
Thread Through the Research and Education Labyrinth.
Educause. June (2000), 15–18.

[10] Corbin, J. and Strauss, J. 2008. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage.

[11] Cranston, K. and Evolutionary, N. 2013. A grassroots
approach to software sustainability. Proc. Workshop in
Sustainable Software for Science: Practice and Experience
(WSSSPE) (2013).

[12] Crowston, K., Wei, K., Howison, J. and Wiggins, A. 2012.
Free/Libre open-source software development: what we
know and what we do not know. ACM Computing Surveys.
44, 2 (Feb. 2012), 1–35.

[13] Dabbish, L., Stuart, C., Tsay, J. and Herbsleb, J. 2012. Social
Coding in GitHub: Transparency and Collaboration in an
Open Software Repository. Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work
(2012), 1277–1286.

[14] Database Interop Hackathon:
https://www.nescent.org/wg/evoinfo/index.php?title=Databa
se_Interop_Hackathon. Accessed: 2014-06-13.

[15] Ducheneaut, N. 2005. Socialization in an Open Source
Software Community: A Socio-Technical Analysis.
Computer Supported Cooperative Work (CSCW). 14, 4 (Jul.
2005), 323–368.

[16] Fabri, A. and Pion, S. 2009. CGAL: the Computational
Geometry Algorithms Library. Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems (2009), 538–539.

[17] Fang, Y. and Neufeld, D. 2009. Understanding Sustained
Participation in Open Source Software Projects. Journal of
Management Information Systems. 25, 4 (Apr. 2009), 9–50.

[18] Gaertner, S. and Dovidio, J. 2000. Reducing intergroup
conflict: From superordinate goals to decategorization,
recategorization, and mutual differentiation. Group
Dynamics: Theory, Research, and Practice. 4, 1 (2000), 98–
114.

[19] Gentleman, R.C. et al. 2004. Bioconductor: open software
development for computational biology and bioinformatics.
Genome biology. 5, 10 (Jan. 2004), R80.

[20] Google Summer of Code: 2013.
https://developers.google.com/open-source/soc/?csw=1.
Accessed: 2014-01-31.

[21] Granovetter, M. 1973. The Strength of Weak Ties. American
journal of sociology. 78, 6 (1973).

[22] Hackathon: http://en.wikipedia.org/wiki/Hackathon.
Accessed: 2014-02-12.

[23] Halfaker, A., Kittur, A. and Riedl, J. 2011. Don’t Bite the
Newbies: How Reverts Affect the Quantity and Quality of
Wikipedia Work. Proceedings of the 7th International
Symposium on Wikis and Open Collaboration (2011), 163–
172.

[24] Henri, F. and Pudelko, B. 2003. Understanding and analysing
activity and learning in virtual communities. Journal of
Computer Assisted Learning. October 2002 (2003), 474–487.

[25] Howison, J. and Herbsleb, J.D. 2013. Incentives and
integration in scientific software production. Proceedings of
the ACM 2013 conference on Computer Supported
Cooperative Work (New York, New York, USA, 2013), 459–
468.

[26] Howison, J. and Herbsleb, J.D. 2011. Scientific software
production  : incentives and collaboration. Proceedings of the
ACM 2011 conference on Computer Supported Cooperative
Work (2011), 513–522.

[27] Jirotka, M., Procter, R., Rodden, T. and Bowker, G.C. 2006.
Special Issue: Collaboration in e-Research. Computer
Supported Cooperative Work (CSCW). 15, (Sep. 2006), 251–
255.

[28] Katayama, T. et al. 2011. The 2nd DBCLS BioHackathon:
interoperable bioinformatics Web services for integrated
applications. Journal of biomedical semantics. 2, 4 (Jan.
2011), 1–18.

[29] Katayama, T. et al. 2010. The DBCLS BioHackathon:
standardization and interoperability for bioinformatics web
services and workflows. Journal of Biomedical Semantics. 1,
8 (2010), 1–19.

[30] Kraut, R.E. and Resnick, P. 2011. Building Successful Online
Communities. MIT Press.

[31] Von Krogh, G., Spaeth, S. and Lakhani, K.R. 2003.
Community, joining, and specialization in open source
software innovation: a case study. Research Policy. 32, 7
(Jul. 2003), 1217–1241.

[32] Lapp, H., Bala, S., Balhoff, J.P., Bouck, A., Goto, N.,
Holland, R., Holloway, A., Katayama, T., Lewis, P.O.,
Mackey, A.J., Osborne, B.I., Piel, W.H. and Pond, S.L.K.
2007. The 2006 NESCent Phyloinformatics Hackathon: A
Field Report. Evolutionary Bioinformatics. 3, (2007), 287–
296.

[33] Lave, J. and Wenger, E. 1990. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press.

[34] OpenScience Software: http://openscience.org/links/.
Accessed: 2014-01-31.

[35] Phylotastic1: http://www.evoio.org/wiki/Phylotastic1.
Accessed: 2014-06-13.

[36] Pico, A.R., Kelder, T., van Iersel, M.P., Hanspers, K.,
Conklin, B.R. and Evelo, C. 2008. WikiPathways: Pathway
Editing for the People. PLoS Biology. 6, 7 (2008), e184.

[37] Proteomics Data Analysis with CloudBioLinux: http://mass-
spec-data-analysis-with-
cloudbiolinux.readthedocs.org/en/latest/. Accessed: 2014-
06-13.

[38] Ribes, D. and Lee, C.P. 2010. Sociotechnical Studies of
Cyberinfrastructure and e-Research: Current Themes and
Future Trajectories. Computer Supported Cooperative Work
(CSCW). 19, 3-4 (Sep. 2010), 231–244.

[39] Schroeder, W.J., Martin, K.M. and Lorensen, W.E. The
design and implementation of an object-oriented toolkit for

3D graphics and visualization. Proceedings of the 7th
conference on Visualization 93–100.

[40] Segal, J. 2009. Software Development Cultures and
Cooperation Problems: A Field Study of the Early Stages of
Development of Software for a Scientific Community.
Computer Supported Cooperative Work (CSCW). 18, 5-6
(Sep. 2009), 581–606.

[41] Shah, S. 2006. Motivation, Governance, and the Viability of
Hybrid Forms in Open Source Software Development.
Management Science. 52, 7 (2006), 1000–1014.

[42] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T.,
Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. 2003.
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome research. 13, 11
(Nov. 2003), 2498–504.

[43] SocioCultural Research Consultants, L. 2013. Dedoose
Version 4.5, web application for managing, analyzing, and
presenting qualitative and mixed method research data.

[44] Stewart, C.A., Almes, G.T., McCaulay, S. and Wheeler, B.C.
eds. 2010. Cyberinfrastructure Software Sustainability and
Reusability. Indiana University.

[45] Sundberg, M. 2010. Organizing Simulation Code
Collectives. Science studies: an interdisciplinary journal for
science and technology studies. 23, 1 (2010), 37–57.

[46] SWAT4LS 2012:
http://www.w3.org/wiki/HCLS/SWAT4LS2012/Hackathon.
Accessed: 2014-06-13.

[47] Trainer, E., Chaihirunkarn, C. and Herbsleb, J. 2013. The big
effects of short-term efforts: A catalyst for community
engagement in scientific software. Proc. Workshop in
Sustainable Software for Science: Practice and Experience
(WSSSPE). (2013).

[48] Trainer, E.H., Chaihirunkarn, C., Kalyanasundaram, A. and
Herbsleb, J.D. 2015. From Personal Tool to Community
Resource: What’s the Extra Work and Who Will Do It?
Proceedings of the ACM 2015 Conference on Computer
Supported Cooperative Work & Social Computing (2015), to
appear.

[49] Use Cases: http://informatics.nescent.org/wiki/UseCases.
Accessed: 2014-06-13.

[50] Worchel, S., Rothgerber, H., Day, E., Hart, D. and
Butemeyer, J. 1998. Social identity and individual
productivity within groups. British Journal of Social
Psychology. 37, (1998), 389–414.

[51] Working towards Sustainable Software for Science: Practice
and Experiences: 2013.
http://wssspe.researchcomputing.org.uk. Accessed: 2014-01-
31.

