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ABSTRACT 
Community code engagements — short-term, intensive software 
development events — are used by some scientific communities 
to create new software features and promote community building. 
But there is as yet little empirical support for their effectiveness. 
This paper presents a qualitative study of two types of community 
code engagements: Google Summer of Code (GSoC) and 
hackathons. We investigated the range of outcomes these 
engagements produce and the underlying practices that lead to 
these outcomes. In GSoC, the vision and experience of core 
members of the community influence project selection, and the 
intensive mentoring process facilitates creation of strong ties. 
Most GSoC projects result in stable features. The agenda setting 
phase of hackathons reveals high priority issues perceived by the 
community. Social events among the relatively large numbers of 
participants over brief engagements tend to create weak ties. Most 
hackathons result in prototypes rather than finished tools. We 
discuss themes and tradeoffs that suggest directions for future 
empirical work around designing community code engagements. 

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation (e.g., HCI)]: 
Group and Organization Interfaces – computer supported 
cooperative work, organizational design.  

Keywords 
Community code engagements, Google Summer of Code (GSoC), 
hackathons, scientific software. 

1.   INTRODUCTION 
How do you go from a small number of people with a common 
interest to a full-fledged community? The active body of research 
on this problem (e.g., [17, 30, 31]) is a testament to the role of 
community building in collaborative work practices.  

Active communities are essential to the sustainability of software. 
Without a community around the code distribution, key issues of 

the software’s future may not be addressed, e.g.: in 4 years’ time, 
will the software still be available? Will it work? Will there be 
pool of participants with the right set of technical skills who can 
respond to bug reports and feature requests? Successful 
communities find ways to get code contributions from their 
members and to incorporate successive generations of newcomers 
after the original developers leave [30]. 

There is an additional twist for software that scientists write. 
Although scientists are directly funded to produce new 
knowledge, they spend significant time searching for, using, and 
developing software that enables those results. The sustainability 
of scientific software – the ability to maintain the software in a 
state where scientists can understand, replicate, and extend prior 
reported results that depend on that software – has sometimes 
been an afterthought because scientists are rewarded for the 
publications they write, not the software they create and support 
[25, 26]. This software, however, is a critical link in the chain of 
evidence establishing new scientific knowledge, and thus other 
scientists need to be able to run this software in order to 
understand and replicate this new knowledge, and apply it to new 
problems.  

A few scientific communities in the life sciences have begun 
experimenting with short-term focused community engagements, 
such as Google Summer of Code (GSoC) and hackathons. 
Although there is reason to believe from previous research on 
online communities (e.g., [30]) that these engagements may 
enhance the sustainability of scientific software, there is as yet 
little empirical support. Moreover, evidence about when various 
types of engagements are likely to succeed is scant.  

In this paper, we aim to understand the range of outcomes these 
engagements produce and the underlying practices that lead to 
these outcomes. We hope to highlight concrete engagement 
design issues that community leaders and funding agencies might 
consider in order to optimize the outcomes they desire. 

2.   BACKGROUND 
2.1   Sustainability of Scientific Software 
Software is of vital importance to science. The role of software in 
data analysis, simulation, and visualization is widely 
acknowledged [9, 27, 38]. A 2005 NSF Workshop Report [5] 
clarified the importance of software in cyberinfrastructure, which 
is the “infrastructure based upon distributed computer, 
information, and communication technology”[2]. Much scientific 
software, however, is not infrastructural.  For instance, there are 
many “workbench” applications for end user scientists (e.g., Dan 
Gezelter’s directory [34] lists almost 500 programs). This list does 
not even include the myriad scripts and data conversion utilities 
scientists write to translate data into intermediate forms required 
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by tools in the later stages of workflows [26]. Although NSF 
sponsored workshops have repeatedly called attention to 
cyberinfrastructure maintenance [5],  there is less clarity into how 
scientific software more generally can be sustained over time, 
even though it is a crucial part of scientific research, development, 
and delivery [44]. 
Informal evidence suggests that scientific software is increasingly 
a key problem of interest to individual researchers and research 
institutions. For example, the First Workshop on Sustainable 
Software for Science [51] was recently held collocated with an 
annual conference on High Performance Computing. A simple 
head count revealed that one third of the workshop participants 
only attended the conference for the workshop. As further 
evidence, the Water Science Software Institute has developed a 
model for software development specifically aimed to support the 
maintenance of scientific software [6]. 

Scientific software exists in a variety of states from “as persistent 
as the next grant supporting maintenance” to “supported by a very 
small community of volunteers” [44].  But if that software has 
gained widespread use outside of the lab and served a valuable 
role in assisting other scientists in making new discoveries, it 
should be able to be refined and extended for use by other 
scientists who can use it to produce new knowledge. 

2.2   The Promise of Open-Source 
In discussions of software sustainability, the open-source software 
model is invariably held up as a promising approach. For instance, 
position papers from the 2009 NSF funded workshop on 
“Cyberinfrastructure Software Sustainability and Reusability” 
[44] led to the report’s recommendation that cyberinfrastructure 
software should be released under an open-source license.  

Directly applying the open-source model to scientific software 
development, however, neglects crucial differences between open-
source scientific software and open-source software in general. 
The primary difference is in the incentive structure for 
contribution [25, 26]. For open-source developers, reputation in 
the open-source community is a primary motivation, where the 
number of “followers” a developer has is a symbol of social status 
[13]. Scientists who write software, in contrast, operate in a 
“reputation economy of science” that rewards software production 
only indirectly through publication [26].  

Because scientists need tools for their own work, however, there 
is built-in motivation to put time and effort into developing them. 
Although scientist developers are reluctant to build software they 
themselves do not need, scientists are, under certain conditions, 
willing to undertake extra work needed to turn their personal tools 
into a community resource [48]. For example, if scientists 
understand users’ needs well enough, they will be more inclined 
to devote effort to building features that meet those needs.  

Newcomers, however, will likely face multiple barriers to entry: 
for example, installing the tools, learning technical aspects of the 
codebase, and learning social conventions, such as where to post 
questions or issues and how to contribute code. As we review 
below, research suggests that a healthy community can help lower 
the barriers to participation and contribution. The reverse is also 
true: lowering the barriers helps grow a healthy community. 

2.3   Online Communities 
At a recent workshop on the sustainability of scientific software 
[51], over half of the 57 papers accepted mentioned community as 
a crucial ingredient in the recipe for success of scientific software 
sustainability. A community is a group of people who share a 

common interest, purpose, or goal. Practitioners who learn from 
each other to develop themselves personally and professionally 
(e.g., a less experienced scientist developer works with a more 
experienced developer to develop features of increasing difficulty) 
constitute a community of practice [33], whereas people who 
share information with others but who are not necessarily 
practitioners themselves (e.g., an end user scientist answers a 
question about the tool’s installation procedure on the mailing list) 
constitute a community of interest [24]. In a community of 
practice, learning is always situated in practice. Prior studies of 
open-source software communities have used situated learning to 
describe the socialization and sustained participation of 
newcomers [17].  This suggests that community of practice is the 
type of community important for the sustainability of scientific 
software. 
The literature on communities suggests that in order to be 
successful, communities must address two primary challenges: 
receiving contributions and attracting newcomers. 

2.3.1   Contributions 
Communities need contributions from participants ([30], p. 2-
5). In software development, contributions might comprise a 
working base of source code that serves people significantly better 
than the competition. For example, BLAST, the widely used 
open-source tool for comparing biological sequence information 
[1] achieved such early success because it was so much faster than 
previous algorithms available at the time. Assuming a newcomer 
is at least interested in modifying or contributing to the software, 
the barrier to entry must be low to modify and extend the existing 
contributions to meet their own needs. Because most contributors 
to open-source software projects leave after their personal needs 
are met [41], it is important to attract enough newcomers in order 
to find those who will continue to contribute and act as stewards 
of the code base. 

2.3.2   Attracting Newcomers 
To survive over the long-term, communities must find ways to 
attract new generations of members to replace the ones who 
leave ([30], p. 179). For example, in recent years leaders of the 
online encyclopedia Wikipedia have expressed discontent over the 
fact that the growth rate of new contributors does not compensate 
for the number of experienced article editors who drop out [3]. 
Incorporating newcomers can be challenging for three reasons.  
First, newcomers have not yet developed the same commitment to 
the group as older members. Second, newcomers will not know 
how to contribute as effectively as older members. Third, they 
will not be aware of the norms and objectives guiding the group. 
In open-source software projects, learning how to contribute to the 
codebase is often informal and undocumented, placing the onus 
on the would-be developer instead of the group [15, 31].   

2.3.3   Designing Communities 
Research on online communities also tells us that the features of 
online communities can be designed and managed to achieve 
the goals that their members desire ([30], p. 6). For example, 
designers of communities can encourage new participants and 
prepare them to make contributions by providing them with 
welcoming activities, safe spaces for exploration, and formal 
training opportunities. The size of the community can make a 
difference as well; more participants can potentially contribute 
more content. Furthermore, tasks taken on by members can be 
independent or interdependent, and they can be embedded in 
social experiences. Rewarding or sanctioning users in response to 
the actions they take can motivate or demotivate them to make 
additional contributions. 



The fact that communities are so important to software 
sustainability, and that they are amenable to management and 
design, suggests that we can improve the sustainability of 
scientific software by intervening to improve the state of its 
community. 

2.4   Community Code Engagements 
Prior studies suggest that there is reason to believe that community 
code engagements – short term, intensive, software development 
events – may be an effective way to put scientific software 
projects on sustainable trajectories [6, 47]. Open-source scientific 
software communities, particularly those in the life sciences, have 
started employing two types of engagements: Google Summer of 
Code (GSoC) and hackathons. 

2.4.1   Google Summer of Code (GSoC) 
Google Summer of Code (GSoC) is an annual program that pays 
university students stipends to develop features for various open-
source software projects. It aims to familiarize students with open-
source software development and enable projects to more easily 
identify and bring in new contributors [20].  

The GSoC application requires mentoring organizations, 
individuals or organizations running an active open-source 
software development project, to provide details about the 
organization, previous participation in GSoC, communication 
methods, plans for project management and participant 
engagement, and a URL to their project “idea list.” The idea list 
contains descriptions of potential projects, potential mentors, and 
required skills for students.  Mentors are community members 
who volunteer to provide students technical and social support. 

If Google accepts an organization’s application, students then 
submit proposals to the organization describing features they wish 
to develop. Students can expand on projects in the idea lists, or 
propose new projects.  The organization reviews and ranks student 
proposals, assigns project mentors and students, and requests 
project slots from Google.  
Google allocates each accepted organization a certain number of 
project slots, and the organization assigns students and mentors to 
those slots. Before coding begins, mentors introduce students to 
the community’s culture and practices, select communication 
channels to use, and decide on the frequency and form of status 
reports. Throughout the coding period, mentors oversee their 
students, providing help and guidance. Coding lasts three months, 
after which students submit their final projects to Google. Google 
pays students once at the beginning of the coding period, and at 
the middle and end, provided that they pass mid-term and final 
evaluations. 

2.4.2   Hackathons 
Hackathons are events typically lasting two to seven days where 
people meet face to face and collaborate intensively on software. 
Hackathon experience reports tend to place emphasis on the 
number of new tools, prototype functionality, and lines of code 
produced (e.g., [28, 29, 32]). Because the number of participants 
at hackathons can be high (having at least 30 participants is 
common, according to papers in our review), these events have 
the potential to significantly contribute to a codebase. Hackathons 
also provide opportunities for networking and relationship 
building, which may facilitate incorporating new generations of 
newcomers. 

Hackathon organizers typically solicit participants, who may be 
developers of scientific software, or end user scientists, through 
private invitation or open calls on mailing lists.  Before the event 

starts, organizers may hold “bootcamps,” short tutorials designed 
to help developers new to a toolkit get acquainted with the 
codebase and the functionality it offers. When the hackathon 
starts, participants make presentations on topics they would like to 
work on. Based on these presentations, participants collectively 
consolidate and prioritize development tasks and then form sub-
groups of about five people based on common interests and 
project affiliations. For the duration of the hackathon, sub-groups 
work collocated in a large room on their respective tasks and hold 
short meetings at the beginning of every day in which group 
members give status updates on their work. At the end of each 
day, there is often a dinner, reception, or short excursion where 
participants eat, drink, and socialize with each other. 

We note that hackathons have been widely applied in areas 
outside of science, such as Yahoo! Open Hack Day, where 
developers create applications using Yahoo! APIs. For a fairly 
comprehensive list of the varieties of hackathons, see [22]. In this 
paper, we focus on hackathons used in the sciences. 

3.   METHOD 
To understand the range of outcomes GSoC and hackathons 
produce and the underlying practices that lead to these outcomes, 
we performed a multiple case study of 22 GSoC projects within 6 
different scientific software projects across 3 different domains 
(Table 1). Searching the project lists on the GSoC home page [20] 
for scientific software, we found that the proportion of 
bioinformatics GSoC projects is high compared with other 
scientific domains, which is reflected in our sample.  Another 
criterion was to pick projects with a track record of participation 
in GSoC so that we could tell if participants’ project activities 
carried over into subsequent years. Our last criterion was to pick 
active projects, which would indicate that the software serves a 
current scientific need.  

We found very active projects in Biopython, Cytoscape, 
Wikipathways, CGAL, Bioconductor, and VTK. Each project has 
consistent development activity, a well-used wiki for 
documentation and discussion and publicly available mailing lists. 
Biopython is a set of Python libraries for biological computation 
[7]. Cytoscape is a software platform for visualizing molecular 
interaction networks [42]. Wikipathways is a wiki for contributing 
and maintaining content related to biological pathways [36]. The 
Computational Geometry Algorithms Library (CGAL) is a 
software library that provides access to efficient algorithms for 
computational geometry [16]. Bioconductor provides R packages 
for analysis and comprehension of genomic data [19]. 
Visualization Toolkit (VTK) is a software tool for 3D computer 
graphics, image processing, and visualization [39]. For each 
project in our sample, we looked at the software community’s 
website and mailing list archives in order to identify the mentors 
and students and discussions of project ideas and feedback. 

3.1   Data Collection 
To find instances of hackathons, we conducted a review of the 
research literature on hackathons using Google Scholar and 
regular web searches. If we found a publication describing a 
particular hackathon, we triangulated information about the 
number and types of participants, activities, objectives, and 
outcomes described in the publication with information from any 
planning documents (e.g., agendas, calls for participation, write-
ups of work accomplished) linked to on the engagement’s web 
page. This process resulted in a list of 42 hackathons. 

In addition to collecting archival data, we conducted semi-
structured interviews with 38 scientific software developers.  



Table 1. Scientific software projects and number of GSoC 
projects in our sample. 

 

We also targeted scientist developers who attended hackathons, 
some of whom attended the same hackathon, and some of whom 
attended different ones, in order to see variations in their 
perceptions of the benefits, challenges, and outcomes. We 
conducted interviews using either Google Hangout or Skype. 
Each interview lasted 45 minutes on average. If participants could 
not commit to an interview, we e-mailed them questions from our 
interview protocol. Twenty-four people participated in GSoC; 15 
participated as students, 5 participated as mentors, and 4 
participated as both students and mentors. Six of our 38 
participants participated in hackathons. Two participated in the 
2012 and 2013 OpenBio Codefest Hackathons [8], 2 participated 
in the 2013 RMassBank Hackathon, 1 participated in the 2012 
NESCent Phylotastic Hackathon [35], and 1 participated in the 
2012 SWAT4LS Hackathon [46]. Three people participated in 
both GSoC and hackathons.   

3.2   Data Analysis 
We applied a grounded approach [10] to analyze our interview 
data, and started analysis while the data was being collected. All 
interviews were recorded, transcribed, and prepared for analysis in 
the Dedoose qualitative data analysis software [43]. We began 
analysis by conducting open coding on statements about practices 
and outcomes associated with GSoC and hackathons. Our 
research group met weekly to define and discuss codes, compare 
instances of coded excerpts to previously examined examples, and 
unify them where there was commonality. Moreover, we 
triangulated statements in the interviews, such as references to 
mentors, students, and project status with the archival data we 
collected on GSoC and hackathons. In the next phase of analysis, 
we wrote, shared, and discussed descriptive memos about the role 
of GSoC and hackathons.  

4.   RESULTS 
We found that each engagement has periods where participants 
define development targets and interact with other community 
members. These phases result in similar outcomes, but in different 
ways. We describe these processes and their outcomes in the 
sections below. 

4.1   GSoC 
A GSoC project is often structured such that the student works on 
a particular module that is independent of the rest of the codebase. 
For example, in the Biopython project, we observed that students 
created a separate GitHub branch for their code. In the 
Bioconductor project, students worked on a standalone package 
that contained all the code necessary to implement one piece of 

functionality. GSoC projects proceed without concerns that the 
development will break functionality in the existing code 
distribution.  

4.1.1   Defining Development Targets 
Among other things, the GSoC application requires each 
mentoring organization to submit an idea list. The idea list is 
meant to introduce contributors to the needs of the project and to 
provide inspiration to would-be students. It is framed as a starting 
point for student applications, but we observed a range of projects, 
from those expanding on a proposed idea, to those not mentioning 
items in the idea list at all.  

We investigated where the ideas in the idea list came from, how 
those ideas were prioritized, and how student projects were 
established. 

4.1.1.1   Creating the Idea List 
The decision for participating in GSoC usually emerged from 
discussion among core community members, those who were 
actively involved in project management, or who contributed the 
majority of the code. Because of their experience and expertise, 
they were sometimes quite sure about what ideas should be 
implemented as part of GSoC:  
“...we did it in a controlled kind of a way, that we discussed it 
internally and amongst the [group name], which are, say a group 
of power users that...And from there we identified projects that 
would be useful to pursue.” (P31) 
One member of the core team informed us that most projects will 
have a to-do list or wish list that community members would like 
people to work on. GSoC provides an opportunity to get these 
ideas rolling. As he said: 

“…there are some ideas on the Wiki, and also in the bug tracker, 
and sometimes they just sort of get passed around on the project 
mailing lists.  But the developers, in general, have more ideas 
than time on their hands…” (P4) 
Those initial ideas generated by the core team members would be 
placed on a webpage designed for showing existing ideas and 
providing details about them1. Core team members also 
encouraged community members and potential student applicants 
to contribute their ideas, or build on the existing ideas presented 
on the webpage. 

We found that sometimes the core team member would send the 
call for ideas to the community mailing lists. Biopython also used 
a Wiki page to facilitate contribution of ideas [4]. The ideas 
reflected the visions and needs of individuals. Most ideas came 
from their own research, problems they faced, lack of certain 
features in the software, new things they wanted to explore, or 
common needs that were discussed among members. 

4.1.1.2   Prioritizing Ideas and Establishing Projects 
Since only a few proposals will be accepted, the task of ranking 
and prioritizing the proposals becomes important. The criteria to 
prioritize these ideas depend on the views of the core team 
members. Typically, ideas must be generally useful, practical, and 
able to be completed within the GSoC time frame. 

The availability of mentors and the potential of student applicants 
were also taken into account. We found that, in general, the match 
between mentors and students had a big influence on which ideas 
were prioritized over others. Ideas proposed by experienced 
                                                                    
1 For an example of a project idea page, see 

https://www.cgal.org/project_ideas.html 

Scientific 
Software Name 

Scientific 
Domain 

Number of 
GSoC Projects 

Biopython Bioinformatics 8 

Cytoscape Scientific 
Visualization 3 

Wikipathways Bioinformatics 3 

CGAL Mathematics 4 

Bioconductor Bioinformatics 2 

VTK Scientific 
Visualization 2 



mentors that attracted students who showed a strong promise to 
complete the work and potential to continue to make contributions 
after GSoC, were assigned high priority. 

The number of ideas that would be selected depended on the slots 
allocated by Google for the mentoring organization. Once the 
mentoring organization selected ideas based on the number of 
project slots, the mentors and the students could define the 
directions of the project by themselves. The code of the student 
projects was usually visible and the community members were 
welcome to give them feedback. 

4.1.2   Relationship Building: Interactions with 
Mentors Create Strong Ties; Sharing Updates 
Creates Weak Ties 
GSoC students build relationships with mentors as well as other 
members of the community. We use the term strong tie to refer to 
relationships that involve frequent communication, which may 
lead to bonding. We use weak tie refer to relationships that 
involve occasional communication, which may lead to exposure 
to novel information [21].  

4.1.2.1   Strong Ties 
One of the recurring themes among GSoC students was the 
strength of the mentor-student relationship. Almost all students 
we interviewed expressed a deep sense of bonding with their 
mentor. Students begin their interaction with mentors during the 
proposal phase of the project, usually via private emails or video 
chats. There are usually very few face-to-face interactions and yet 
we found that over time, students developed a strong relationship 
with their mentor. One student expressed this as follows: 
“Communication with my mentor was great, initially it was email 
communication and in July I attended the Bioconductor’s 
conference that they have every year. After the conference we kind 
of transitioned into this Google hangouts weekly. And now he is 
actually going to serve on my thesis committee.” (P48) 
We found that GSoC students get direct feedback from their 
mentors on a frequent basis, which supplements our previous 
findings from a quantitative analysis of communications between 
students and mentors in Biopython GSoC projects [47]. As such, 
students are able to focus more on getting work done instead of 
collating feedback from different members of the community, 
which is typical of open-source software communities [15].  

Prior to GSoC, a number of students had only limited software 
development experience (e.g., P5, P27) and others had none at all 
(e.g., P34). Mentors help these students develop skills around unit 
testing, APIs, GitHub, object-oriented programming, and reading 
others’ code.  
We found that mentoring is often far-ranging, not just about 
developing source-code. For example, mentors give GSoC 
students advice on choosing career paths: 
“A lot of the students that we get are probably in the middle of 
grad school, which is the time when you’re most like I don’t know 
what’s going on. So people have asked me about career paths and 
those sort of questions. So definitely I’ve tried to help people in 
that way too. And because I had all those same experiences. So 
it’s like I can at least relate to them.” (P1) 
We also found evidence that students are likely to stay in touch 
with their mentors after GSoC ends. Students across different 
projects in our sample (e.g., P33, P38, P40, P43) mentioned that 
they were only in touch with their mentors, suggesting that they 
did not continue to communicate with other project members. 

4.1.2.2   Weak Ties 
The way students interact with other members of the community 
during the course of their project depends on how their progress is 
shared. We found two distinct ways in which this was done: 
private communication and announcement of updates on mailing 
lists. In the case of private communication, students typically 
maintain their code in a private repository shared only with 
mentors. In such cases, sharing updates on their progress is 
sometimes implicit, which involves submitting changes to the 
shared repository without explicitly updating their progress via 
emails, as one participant from Bioconductor described: 

“Most of the updates went to either <mentor>(P26) or <a core 
member>, basically everything was done through SVN. So, at any 
point they could come and check what changes I have made.” 
(P48) 
Upon probing further about receiving any requests or feedback 
from other members, the participant (P48) mentioned that there 
was not much engagement on the mailing list except for a short 
period after his package was included in a Bioconductor release. 

On the other hand, in Biopython, we found that in addition to 
private communication between students and mentors, it was 
mandatory for students to share their progress on mailing lists and 
blogs. This increased visibility and the potential to garner 
feedback and different points of view from other members. 
Making the code available on a public repository like GitHub 
during the development phase was also another way of increasing 
community engagement. One of the Biopython participants who 
was also a GSoC mentor, explained this process as follows: 

“Some discussion actually happens on Github itself through the 
commenting on there. And we also wanted our students to do a 
weekly blog post. So every week they would try and summarize 
what they'd been doing. And then post the link on the mailing list, 
and post it up on our blog as well.” (P7) 
In sum, we observed that establishing a formal protocol of making 
GSoC project updates available to the community allowed 
students to form weak ties with other community members. 

4.1.3   Project Outcomes 
4.1.3.1   Actively Used Software 
The primary objective of GSoC projects is to produce code. 
However, it is unclear how this code is used and maintained few 
years after a GSoC project ends. Fourteen of the 22 GSoC 
students responded that their code written as part of GSoC was 
still being used and maintained. The most common way to gauge 
the usefulness of the code was by identifying if it was included in 
the official release. We saw instances, however, where the project 
resulted in scientific publications (e.g. P46) and in one case the 
software itself was being cited in other scientific publications (e.g. 
P42). All 14 participants who expressed positively that their code 
was being used were also aware of how their code was currently 
being maintained, and in some cases the participants continued to 
maintain the code after GSoC. 
Some of the reasons why the participants thought their code was 
not useful or were not aware if their code was being maintained 
were change in field of work and re-implementing their code 
using a different technology: 

“Once GSOC finished I had almost zero contact with the project. 
This was also because my line of work after graduating did not 
fall in line with the project (am doing clinical instead of research-
related work). A few months after GSOC, there was an email 
thread going on regarding how to best deploy the work done after 



my mentor made several improvements on it, but by then my 
interest on the project had faded so I did not look much into it.” 
(P43) 

4.1.3.2   Student Retention 
One of the motivations of this process of facilitating ties between 
newcomers and other members of the community is to retain their 
engagement and future contributions. We found that the 
possibility of students continuing to be involved in the community 
was also one of the criteria in selecting students. The following 
quote summarizes the rationale behind student selection: 

“Sometimes people just work for the summer and that's it. And 
then sometimes they continue. And we really try to keep this in 
mind when people are selected.  You really want someone that's 
going to keep going and keep contributing to the community.” 
(P1) 
While some students ramped down their involvement post GSoC, 
other students went on to become mentors, active contributors and 
users. Among the 22 GSoC projects we studied we found that 
18% of students went on to become mentors later, a reasonably 
strong indication of retaining new comers in a community. One 
participant who has been actively involved in the community for 
several years since being a student said:  

“I am still involved. I co-mentored and mentored some Cytoscape 
projects from 2009-2011, joined a couple of retreats, published a 
book on Cytoscape, and some of my other research are still 
closely related to Cytoscape though I am not part of the core 
development.” (P46) 
There were few participants who mentioned their involvement 
with the community stopped after their GSoC project ended, 
although we found that they had still retained some of their ties 
that they formed during course of their project: 
“No contact once GSOC ended. Shortly after the GSOC though, a 
professor in close relationship to the project came to visit 
Singapore and I met him plus one other GSOC student and had a 
chit-chat together. It was nice, but no activity after that.” (P43) 

4.2   Hackathons 
Whereas the GSoC format works well for independent work, the 
hackathon format seems more designed for interdependent work. 
Participants recalled that hackathon organizers purposefully select 
objectives that require intensive coordination and collaboration 
because it is maybe the only time they will be able to do this kind 
of work (e.g., P7, P20). For example the goals of the 2008 
DBCLS Biohackathon [29], and the 2006 NESCent 
Phyloinformatics Hackathon [32] were to increase the level of 
interoperability and standardization of bioinformatics databases, 
services, and tools. By their nature, standardization and 
interoperability require cooperation from independent tool 
builders, database providers, and standards bodies. These 
stakeholders, however, are often geographically dispersed across 
multiple time zones, and live interactions such as conference calls 
would have to be scheduled outside normal office hours.  

Hackathons last up to several days in length (the average length in 
our sample was 3.3 days), which provides a long but limited span 
of uninterrupted time to work. A short period of issue 
prioritization and development target identification precedes 
intensive and focused coding sessions. 

4.2.1   Defining Development Targets 
Hackathons begin with an agenda setting phase in a large shared 
room, where the output is a list of tasks that participants will work 

on for the duration of the event. Each participant who wants to 
raise an issue gets the opportunity to speak before the group. One 
participant summarized the process as follows: 

“…the very first day, we had a few presentations to kind of give 
the scope of the hackathon, what we wanted to accomplish… 
[presenters] would say, ‘I think that would further our goals 
would be to develop this. And I’m looking for collaborators to 
work on this with me.’” (P30) 
After hearing from presenters, attendees collectively consolidate 
the total number of issues, translate them into development 
targets, and prioritize them into two categories: (1) issues that can 
be directly addressed at the event and (2) issues that cannot be 
addressed in the time allotted. For example, a hackathon planning 
document from the 2006 NESCent Phyloinformatics Hackathon 
[32]  indicates that 6 out of the original 19 “use cases” proposed 
by participants were ultimately selected for development targets. 
The following comment on the “Population Analysis” use case 
seems to indicate that, while not selected for the hackathon, it is 
still of value to the community: 
“This [use case] is outside the scope of the current hackathon but 
will be addressed in a future one --Tjv 10:26, 21 October 2006 
(EDT)” [49] 
Through this process, participants can effectively identify and 
prioritize the common challenges facing the community. When 
otherwise geographically and temporally dispersed from their 
closest collaborators, scientists may wonder whether the issues 
they struggle with matter to others in the same way. The 
hackathon answers this question with clarity. Once participants 
sort these issues out, they break into sub-groups and work 
intensively on the development targets they identified. 

4.2.2   Relationship Building: Sub-group Work 
Creates Strong Ties; Social Events Create Weak Ties 
Hackathon participants gather together from all over the world. 
While they may know the names of their colleagues and 
something about the kinds and level of their activities from project 
mailing lists, issue trackers, and source-code repositories, they 
have fewer opportunities to get to know them. We found that 
working in sub-groups creates few strong ties among members, 
and that social events create weak ties among a relatively larger 
number of people. 

4.2.2.1   Strong Ties 
 The number of people who attend the hackathon can influence 
the degree to which participants build upon their current 
relationships, because there is a limit to the time they can interact 
outside of sub-groups. As one participant described: 

“At larger hackathons, like the BioHackathon series which has 
had about 80 participants, inevitably as with a similarly sized 
workshop/conference I am unlikely to get to speak to everyone. I 
would hope at least to remember key people giving talks or 
representing a sub group in progress meetings/wrap-up sessions.” 
(P7) 
We found that sub-group work creates strong ties among group 
members. Participants spend the majority of their time working 
together in sub-groups. During this time, debugging code, 
explaining thought processes, asking for feedback, and offering 
tips and suggestions lead to frequent interactions. Working 
together allows participants to develop deeper relationships with 
individuals within the group:  

 “I find you get to know the people better if you actually work 
together with them and see how they react to problems along the 



way. I really need to know this about a person to be able to work 
with them well.” (P36) 

4.2.2.2   Weak Ties 
 Outside of sub-group interactions, social events provide social 
networking opportunities with the larger group. Of the hackathons 
in our sample, 79% (33/42) included short social events, such as 
coffee breaks, group dinners, and group excursions to nearby 
landmarks of interest. These events provide participants with 
opportunities to chat informally with other hackathon attendees, 
creating weak ties that expose them to information about: 

Interesting tool developments or research in one’s area. 
Several of the developers we talked with spent a lot of time 
discussing technologies and tools that might benefit their research. 
We interviewed a developer (P20) who introduced an end-user 
(P36) to an online community that distributes R packages for 
conducting analyses of genomic data. The end-user is now an 
active reader of that community’s forums and user of the packages 
that the developer writes. They have also co- authored articles, 
worked together at subsequent hackathons, and provided feedback 
on each other’s work. 
Suggestions for future conferences of interest. Participants 
reported hearing about conferences and people working on related 
things through researchers that they met at hackathons (P7, P23, 
P36). In some cases, they led participants to whole software 
communities. One of our participants, for example, reported that a 
developer she met at a hackathon introduced her to the 
Bioconductor community (P36). 
News of job vacancies. The participants we spoke with also told 
us that hackathons are a useful way to hear about job openings 
that open up, both academic positions and positions in industry 
(e.g., P7). 

Invitations to tutor or speak at other conferences. One 
participant told us that he just got back from contributing to a 
Python part of a workshop tutorial on “keystone skills for 
bioinformatics.” (P7) Another scientist who he had first met at a 
hackathon invited him. 

4.2.3   Project Outcomes: Limited Time Results in 
Unfinished but Promising Outcomes 
Participants we spoke with indicated that it is rare that “finished” 
software is produced as a result of the hackathon. As one 
participant recalled, “we did a lot of programming in that meeting 
but had a long way to go still.” (P36). We found that participants 
often attributed the reason for this to the limited time allotted for 
the hackathon: 

“Of course we came across more problems than anticipated and 
didn't get as much done as we wanted…the task was much bigger 
than 1 day.” (P36) 
Instead, software outcomes ranged from “not anything to write 
home about” (P31) to “discarded—serving as inspiration for a 
second attempt” to something “useful enough that the authors 
can polish it afterward.” (P7) 
We found that the most common software products were: 

4.2.3.1   Integration of Existing Tools, Web Services, 
and Databases  
Outcomes improved the interoperability of existing tools with 
other tools, services, and databases. For example, at the NESCent 
2006 hackathon [32], developers of the Bio* toolkits (i.e., 
BioPerl, BioJava, and Biopython), expanded their coverage of 
data types and analyses commonly used in phylogenetics. At 

BioHackathon 2009 [28], developers of the G-language project 
implemented web service interfaces so that the G-language 
functions would be available to workflows available in the 
popular workflow workbench application Taverna. 

4.2.3.2   Proof-of-Concept  
Some tools only demonstrated a concept’s feasibility, but 
motivated the authors to develop a more sophisticated version 
after the hackathon. One example from the O|B|F CodeFest 2013 
report was a visualization tool that made it possible to visualize an 
RNA sequence analysis while browsing the genome. This 
prototype later inspired a version of the tool that scheduled 
animation updates more efficiently, leading to smoother 
animations and more accurate windows.  
Other useful community resources included: 

4.2.3.3   Mailing Lists  
In some instances, hackathon participants created mailing lists to 
sustain the energy of the hackathon after the event. For instance, 
after the NESCent hackathon for comparative methods in R, a 
hackathon that aimed to ensure compatibility and data flow 
between R packages, the participants created a mailing list for 
users and developers of the packages. Five years after the 
hackathon, the mailing list has 962 subscribers and an average of 
over 50 posts per month [11]. 

4.2.3.4   Documentation  
Documentation is an additional important outcome of a 
hackathon. We observed that there is both documentation in the 
form of “records of the event” and documentation in terms of how 
to use the software that is produced. Examples of activities that 
participants document include use cases, the names of sub-groups, 
their progress in addressing the use cases, and future work [14]. 

Participants also created extensive documentation of the tools 
themselves, both for tools already in wide use, and for tools 
created at the hackathon. For instance, due to increased interest in 
using CloudBioLinux, a project providing machine images for 
bioinformatics on cloud computing platforms participants from 
the “Infrastructure management” group at Codefest 2013 created 
extensive documentation on the ReadTheDocs website [37]. 

4.2.3.5   Training and Tutorials on New Tools  
Some developers we spoke with attended “bootcamps,” short 
tutorials designed to help developers new to a toolkit to get 
acquainted with its basic design and coding principles (P7, P23, 
P36). We found evidence that these tutorials enabled some 
effective cross-project interactions. For instance, a developer from 
the HyPhy project added an interface to the Biopython codebase. 
In another example, a creator of PhyloXML contributed a NEXUS 
parser to the BioRuby project [32].  

5.   DISCUSSION 
Below, we draw on our results to suggest how four different 
themes that cross-cut our work may have implications for 
organizing community code engagements:  task interdependence, 
ties, transparency of contributions, and appropriate mix of experts 
and novices. We place these themes in the context of community 
growth and code contributions. We also discuss other possible 
forms of community code engagements, additional outcomes of 
interest beyond contributions and community growth, how the 
type of community results in different outcomes, and implications 
for Information and Communication Technologies (ICTs). 



5.1   Community Growth 
5.1.1   Task Interdependence  
In the hackathon format, large groups of participants engage in 
face-to-face interactions. Face-to-face is an effective medium for 
highly interdependent tasks. Previous research by others has 
found that groups whose members work cooperatively on 
interdependent tasks tend to be more cohesive and committed to 
the group [18, 50]. Commitment may increase in these 
interdependent tasks as individuals see evidence that the group 
depends on them and values their work ([30], p. 85). Our findings 
indicate that a GSoC project, in contrast, involves a single student 
who works remotely on an isolated task. We speculate that 
independent tasks may make it difficult for students to understand 
the value of their contributions, which may lead to lower levels of 
commitment. It may also partly explain our finding that some 
students were unaware of how their code was being used after 
GSoC. Future study would investigate the relationship between 
task interdependence and community growth. 

5.1.2   Ties 
The benefits of completing highly interdependent work, however, 
may need to be balanced against the creation of strong ties in 
GSoC. Although GSoC tasks are isolated, our findings indicate 
that the longer, intensive mentoring facilitates the creation of 
strong ties between student and mentor. According to previous 
research, people who develop connections to others in a group 
work harder, do more, and tend to stick with the group longer 
([30], p. 77). Therefore, the relative benefit of community growth 
will require more research to assess. 

5.1.3   Transparency of Contributions  
We suggest that the extent to which participants make their 
contributions visible to others will have a positive impact on 
community growth. We found that some Biopython GSoC 
students, for example, created blogs to promote their projects and 
posted links to their source-code on the blogs. Students also 
posted updates on their projects to the mailing list. These 
behaviors prompted other community members to comment on 
students’ projects and help solve problems [47]. In contrast, the 
majority of Bioconductor GSoC students neither shared updates 
on their projects over the mailing list nor created materials 
promoting their projects. We found that Bioconductor community 
members (other than the project mentors) were often unaware of 
students’ GSoC projects altogether.   

Based on this evidence, we propose that if other community 
members do not see students’ work, they will be less likely to 
provide feedback or offer suggestions for improvement. If this is 
true, students will not know if others value their work and may 
not feel strong enough commitment to stick with the community.  

5.1.4   Appropriate Mix of Experts and Novices 
Our findings indicate that community code engagements often 
provide opportunities for mentoring and learning, as novices and 
experts collaborate. GSoC mentors teach students about the 
codebase and community norms, and expose them to other 
community members through blog and mailing list posts. During 
hackathon tutorials, experts teach new contributors about a tool’s 
codebase. According to Lave and Wenger [33], people join 
communities by being present and participating along with experts 
and learning while doing actual work, as “Legitimate peripheral 
participants” (LPP).  Not only is it typical for peripheral 
participants to become core members through situated learning, it 
is apparently an important motivation for the learner to continue 
participating in the community [17].   

There is presumably some ratio where mentoring and learning are 
most efficient, as the ratio influences the number of opportunities 
for situated learning. Future work around this topic is needed.  

5.2   Code Contributions 
5.2.1   Appropriate Mix of Experts and Novices 
Before newcomers can contribute to open-source software, a 
socialization process is triggered [15, 17]. GSoC students, for 
example, go through a process of introducing themselves to the 
community, formulating project ideas, and learning the technical 
aspects of the code base with their mentors. As hackathon 
tutorials illustrate, even experienced developers must learn about 
how to contribute to other tools.  

Seasoned core members of the community are likely to be the 
most expert contributors [12]. We found that these members are 
also aware of what contributions are needed. In GSoC, for 
instance, mentors often seed project idea lists. Moreover, student 
projects are heavily influenced by the vision of mentors. We 
speculate that, all other things (including number of participants 
and engagement duration) being equal, an engagement involving 
only core members would likely contribute more code than an 
engagement with more novices. A mixture of attendees including 
novices not only decreases the mean productivity of participants, 
but may cause the experts to devote time to assisting novices 
instead of coding.  

This suggests a tension between the goals of code contribution 
and community growth: the greater proportion of experts present, 
the more code that will be produced, but the greater the ratio of 
novices present, up to some optimum, the more newcomers will 
join. 
We suggest that there are important tradeoffs involving both 
appropriate mix of experts and novices and task 
interdependence. An engagement in which many novice 
participants are included (up to some optimal number), and/or in 
which highly interdependent tasks are chosen, will contribute 
more to community growth but less to the codebase; and 
conversely an event in which experts work on independent tasks 
will be likely to grow the source code without doing as much to 
grow the community.  

5.3   Hybrid Forms of Community Code 
Engagements 
There are likely hybrid forms of engagements worth exploring 
that mix aspects of GSoC and hackathons. For instance, one issue 
we raised in this work is that GSoC students are seldom exposed 
to other students, mentors, and the larger community. A possible 
variation on GSoC would be, at the midpoint of the project, to 
send the student to a community conference. In addition to 
receiving feedback on their projects, the student could get 
exposure to the networking and relationship building benefits of 
hackathons, such as hearing about job opportunities and meeting 
potential users of their software. On completion of the GSoC 
project, they may feel more connected to the community, feel that 
others value their work, and perhaps be more likely to stick 
around.  
As another example, a variation on the hackathon format would 
be to invite students to a hackathon and pair them off with more 
experienced members of the community. This configuration might 
be a way for the engagement designer to strike a balance between 
code contributions and community growth. As they work side-by-
side with mentors in the sub-group, students would not only learn 
by doing, but also get a sense of real issues that matter to the 



community that they aspire to join. Working on interdependent 
tasks would enhance students’ perceptions that their work has 
value. Mentors could delegate simpler tasks to students therefore 
freeing them up to work on more difficult tasks. Students would 
see how their contributions matter in the “big picture” while 
mentors would be able to devote more of their time to coding. 

5.4   Other Outcomes 
We suggest that there are two important outcomes in addition to 
community growth and code contributions: visibility of 
community needs, and training. 

5.4.1   Visibility of Community Needs  
Both GSoC and hackathons provide the community with an 
occasion to identify, discuss, and prioritize needs in a way that is 
generally visible to everyone. The creation of the idea list in 
GSoC facilitates discussion with potentially new community 
members and existing community members, who may normally 
not have the interest or need to engage one another. The agenda 
setting phase of the hackathon facilitates real-time interactions 
and discussions with community members who may normally 
have a willingness to collaborate, but who otherwise face 
obstacles of geographical and temporal dispersion. Participants 
can therefore establish a common vocabulary for talking about the 
work and develop shared goals before development begins. These 
mechanisms may play an important role in bringing the 
community together around common goals, regardless of what is 
accomplished by any particular engagement. 

5.4.2   Training 
We find that for some students, GSoC is not only their first 
exposure to the project’s codebase, but also to software 
engineering practices in general such as versioning, unit testing, 
and object-oriented programming. During hackathons, 
participants receive training on other software tools and projects 
of interest. This training seems an important component for the 
sustainability of scientific software, since new generations of 
newcomers will need a certain set of technical skills to fill the 
roles of the original authors. Unfortunately, research shows that 
scientists tend to undervalue important software engineering 
concepts like modularity, test-driven development, versioning, 
and tend to underestimate the amount of time required to develop 
the software [40]. This not surprising, as scientists are trained in 
their domain of science, not software engineering. Future work 
should therefore examine how to structure engagements around 
optimizing for training, not just code contributions and 
community growth.  

5.5   Impact of Community Type on Outcomes 
Our findings suggest that situated learning, a concept from 
communities of practice [33], may help explain GSoC outcomes. 
Students learn throughout the process, from introducing 
themselves to the community, proposing project ideas, discussing 
project plans, and resolving issues related to the code they write, 
all with support from their mentors and other community 
members. In general, upon project completion, their code is added 
to the codebase. Afterward, they may continue to develop new 
features (e.g., P4, P5, P8), mentor future students (e.g., P4, P5), or 
both (e.g., P4, P5). Students thus become contributors, they do not 
simply learn about how to contribute.  

The hackathons in our sample, in contrast, had more of a flavor of 
scientific software communities of interest. GSoC involved 
pairing up newcomers who had scientific domain knowledge and 
at least some knowledge of software development with mentors, 
whereas hackathons involved experienced developers working 

with end user scientists who had the domain knowledge. The 
presence of both groups was mutually beneficial; end users played 
an important role in determining requirements for the software 
(i.e., providing use cases), and the developers played an important 
role in demonstrating what software was possible using prototypes 
and proof-of-concepts. Developers often ran tutorial sessions to 
teach other developers, which are examples of knowledge being 
codified and then transferred to others, not situated learning. As 
we discussed previously, there may be promise, however, for 
facilitating situated learning by investigating hybrid forms of 
community code engagements.    

5.6   Implications for Information and 
Communication Technologies (ICTs) 
Although community code engagements have several positive 
outcomes, we also found evidence of many technological 
challenges that participants faced. Among them, there are two 
major issues that we discuss here. 

Ranking Proposals. During the student application period in 
GSoC, mentoring organizations receive a huge number of project 
proposals from students. Since only a few can be accepted, the 
task of ranking these proposals becomes important. Also each 
proposal requires a mentor to be assigned, however, the 
availability of mentors is usually limited. Therefore, the use of 
software tools can assist in the process of ranking proposals, 
sharing with other members and assigning mentors. The 
Biopython community does this by having lots of discussions on 
the mailing list. One Biopython participant (P1) mentioned that 
this results in a flurry of emails and is often difficult to keep up. 
The participant suggested that developing a tool with a Reddit2 
like interface where members can up / down vote proposals, sort, 
comment and share them, could facilitate this process.  

Video Chats as a Substitute for Face to Face Interaction. We 
found that in GSoC, students and mentors almost always 
coordinated remotely. Some of them used emails whereas others 
relied heavily on real time video chat tools such as Google 
Hangouts and Skype. While some mentors (P29) found it 
comfortable to communicate via emails when students were able 
to work independently, other students (P48) and mentors (P26) 
felt they needed more face-to-face interaction. In the latter cases, 
the use of video chat technologies was found to be an appropriate 
substitute for working from the same physical location. One 
participant (P48) acknowledged that this helped them get a better 
sense of what they were trying to communicate and therefore, 
sped up the process. 

6.   CONCLUSION 
In this work we examined two community code engagements: 
Google Summer of Code and hackathons. We sought to 
understand the range of outcomes these engagements produce and 
the underlying practices that lead to those outcomes. We found 
that in GSoC, the vision and experience of core team members 
influences project selection and the mentoring process facilitates 
creation of strong ties. Most GSoC projects result in stable 
features. The agenda setting phase of hackathons reveals high 
priority issues perceived by the community, and social events 
create weak ties. Most hackathons result in promising prototypes 
rather than finished tools. Our findings point to several themes 
and tradeoffs around community code engagement design that we 
hope to explore in future empirical work. 

                                                                    
2 http://www.reddit.com/ 



As is common with case studies, the generalizability of our results 
is limited. On the one hand, some elements from community code 
engagements seem applicable to other types of collaborative 
groups, not just open-source software. For instance, mentorship, 
which facilitates the socialization of newcomers, seems useful to 
explore in Wikipedia, where contributions from newcomers are 
disproportionally rejected due to not following standard policies 
[23]. Moreover, articulating and prioritizing user needs seems 
fundamental to eliciting contributions in any community, because 
contributors will know what to do. On the other hand, these 
elements are likely impractical for software shared only within 
local laboratories, tailored to a particular purpose, and limited to a 
few developers and users. Numerical simulations, for example, 
are difficult to make generally useful, and many scientists are 
reluctant to share, or open up development of the code, lest others 
use it incorrectly and produce spurious results [45].  In addition, 
different scientific fields may value individual skill and reputation 
in developing software over collective achievements. Future work 
could thus elaborate on the conditions under which community 
code engagements are appropriate and likely to have impact. 
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