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Introduction 
“Art is a language, an instrument of knowledge, an instrument of communication” (Jean 

Dubuffet).  Our team also  believes the converse to be true; language is a form of art.  However, 
this luxury of communication is not always accessible to everyone. 

Consequently, our team was interested in the possibility of utilizing machine learning to 
primarily assist in real-time American Sign Language recognition. Our secondary goal was to 
create a device that would allow a person who utilizes ASL to communicate with a blind person.  

 

    →  
       Fig 1. Digits in American Sign Language        Fig 2. Digits in Braille 

Approach 
A. Capturing and Preprocessing Image  

 
1) Capturing the Hand Gestures  

We used OpenCV to create a simple user interface in capturing the hand 
gestures. Once the system is up and running, the user will see the Webcam’s view of 
themselves on a window that pops up. We have boxed out a portion of the Webcam’s 
view which will be captured and passed into the neural network and classified. This 
portion is shown by a green square on the user interface window. The image in the 
green square is captured once every 0.01 second and sent over to be preprocessed.  

 
Fig 3. User Interface 



2) Preprocessing the Images  
The captured image is run through two preprocessing steps: skin-masking and 

resizing. In the skin-masking stage, the image is converted into grayscale and basically 
differentiates between the hand (skin) and background images. Then, it is rescaled to 
28x28 pixel which is the input image size for CNN. 

 

 
Fig 4. Preprocessed image 

 
B. Convolutional Neural Network  

 
1) The Basics of Neural Network  

Neural networks are typically organized in layers. Layers are made up of a 
number of interconnected 'nodes' which contain an 'activation function'. Patterns are 
presented to the network via the 'input layer', which communicates to one or more 
'hidden layers' where the actual processing is done via a system of weighted 
'connections'. The hidden layers then link to an 'output layer' where the answer is a 
probability of a classification. 

Detailed model of CNN is shown in Fig. 5. 
 



 
Fig 5. CNN model 

 
2) Dataset  

Since we are not provided with any of the dataset, we needed to collect enough 
samples and make our own dataset. We collected 1000 samples for each gesture (0-9 
digits in sign language and ‘nothing’) of certain distance and scale. We chose to make 
the image size to be 28x28 pixel, since greater quality of image takes much longer time 
to train. We figured out the 28x28 image size is enough for CNN to discriminate each 
one. It took about 5 hours to train. 

For measuring the accuracy of our CNN, we used K-cross validation method. 
From 10000 samples, 7500 are used to train and rest of 2500 samples are used to 
validate. We had 20 epochs in total to reach higher accuracy. Accuracy graph is shown 
in Fig. 7. 
 



C. Arduino 
 

1) Receiving data from CNN 
We used pyserial module to make connection between arduino and CNN. Arduino 

reads the classified output generated from CNN on our laptop through the serial 
connection at 9600 baud rate. Based on the received data, it lights up the corresponding 
LEDs. 
 
2) LED wiring 

Six LEDs that represent each pin of 6-dot braille are connected to six different 
digital I/O pins on arduino. 220 ohm resistors are used to control the current through the 
LEDs. 

 

 
Fig 6. Arduino circuit wiring 

 

Our Results 
A. Accuracy 

As shown in Fig. 7, we achieved a training accuracy of 0.9895, a training loss of 0.0361, 
a testing accuracy of 0.9949, and a testing loss of 0.0147. 



 
Fig 7. Accuracy of CNN classification 

 
B. Visualization 

We managed to successfully transfer the data over to arduino, and light up the 
corresponding LEDs. However, there is a bit of delay (~0.5 seconds) until the data is completely 
sent over through the serial port.  

We also built a box made out of semi-transparent material to cover up the wires and see 
the braille representation more clearly. 
 
 

Reflection 
Our team successfully trained a CNN network to recognize static ASL gestures, 

specifically numerical digits 0-9. Furthermore, we also successfully created a conceptual 
prototype for ASL to braille conversion. Due to our limited resources, we were unable to create 
a working braille machine, and thus created a proof-of-concept model using LEDs to represent 
the correct corresponding braille patterns.  With more resources, our team hopes to create a 
fully functioning real-tim ASL to braille machine that could facilitate communication to those with 
hearing and vision impairments.  
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