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Appendix 

Concept 
In the web age of social media and memes and alternate identities, humans have gained an ability 
to exist within two worlds at once. The immense amount of faceless interactions in the digital world 
have led to our living in a state that lacks a quality of depth and introspection. Conventionally, 
humans have pursued depth primarily by finding meaning in life through religion. Although recent 
generations have broken out of more traditional constructs and belief systems, we still use 
heuristics to shape our values and understand how the world works. 
 
A belief system that resonates with a surprising number individuals – especially in the United 
States, is Horoscopes. Horoscopes are a forecast of one’s future based on the relative position of 
the stars and planets at one’s birth. There are 12 horoscopes that align somewhat similarly to the 
months of a year:  
 

Aries 
Taurus 
Gemini 
Cancer 

Leo 
Virgo 
Libra 

Scorpio 

Sagittarius 
Capricorn 
Aquarius 
Pisces 

 

Generally, these 12 horoscope signs are described as experiencing different personas and life 
events when the cosmos align a certain way. The ancient astrological study of personalities with 
respect to the alignment of stars has turned into a daily fortune teller of sorts, instructing people 
what events lie in their destiny and how to best handle them. The method of fortune-telling has 
become very trendy, with daily horoscope features on platforms such as newspapers, Facebook, 
and Snapchat 
 
While many people read their daily horoscopes, they seldom take them to heart. A primary reason 
for this rejection is astrology’s lack of scientific reasoning. As a group, we have also come to 
wonder how much truth there is behind horoscopes.  
 
In this project, we investigate the reproducibility of horoscopes. The task that we are faced with is 
modeling approximately 10 years of daily horoscope data to generate what we hope to be a fun or 
eye-opening series of fortunes. These oracles will either be universally relatable and allow us to 
break down false constructs between ourselves, or give us the means to understand ourselves on 
a deeper level. At the end of it, we believe that anything that spurs self-introspection is incredibly 
valuable. Our ultimate motivation is to advocate for this form of thought in our audience. 
 
Our final project is an extension of project 3. The report and results of project 3 are included in the 
appendix. 
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Process + Techniques 
Data Collection & Pre-Processing (Sophia) 

We used BeautifulSoup to scrape roughly 40,000 lines of data from a daily horoscope archive  1

dating back to August 15, 2009. Each page of the site contains a horoscope for each of the twelve 
astrological signs. The figure below is an example of the Aries horoscope for March 29, 2019:

 

Our scraper collected the date, sign, and horoscope of each entry. The data contains a somewhat 
limited vocabulary set in comparison to the large corporus, which is beneficial for the model to 
generalize to the dataset. We pre-processed the data to extract the day of week, and properly 
appended the day of week followed by a dash in the beginning of the horoscope. We wanted to do 
this because we wanted our horoscopes to be also conditional upon the day of the week, as we 
had more data (40k divided by 7, or the number of days in a week) when we condition it on day of 
week compared to day of year (40k divided by 365). Additionally, we removed all quotation marks 
excluding the apostrophes because we found from Project 3 that our model didn’t do very well 
making sure that the quotation marks were opened/closed. 

Conditional RNN-Sequence Modeling (Sophia) 

We used code  available for lyric generation conditioned on artist to do a character-level sequence 2

generation using Pytorch. The model uses Python to create a dictionary of all printable characters, 
with each character represented in a one-hot-encoded tensor. The model then generates 
sentences by sampling character by character, where we predict the next letter conditional on all of 
the previous letters, similarly to a Markov chain. The model uses a recurrent neural network (RNN), 
applicable to our task because it makes use of sequential information and uses output from the 
previous computation to compute the next character. In a way, RNNs contain contextual 
information because they store memory of what was computed before.  

We tuned the parameters batch_size and num_workers and found that a batch size of 200 and 4 
workers perform best. Due to the lengthy computation time, we tested what worked best for 3 
iterations and adjusted accordingly. 

The conditional RNN sequence model is conditioned on two parts: the horoscope sign and the 
input sequence, which we made the day of week. As mentioned in the pre-processing step, we 
made the day of week the input sequence to condition for which day of week the horoscope was 
for. We found that horoscopes were more optimistic for the week on Mondays (“Your 

1 https://sagittarius.com/archive/ 
2 http://warmspringwinds.github.io/pytorch/rnns/2018/01/27/learning-to-generate-lyrics-and-music-with 
  -recurrent-neural-networks/ 
3 https://github.com/keras-team/keras/blob/master/examples/lstm_text_generation.py 
4https://github.com/atpaino/deep-text-corrector 

http://warmspringwinds.github.io/pytorch/rnns/2018/01/27/learning-to-generate-lyrics-and-music-with
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ambitiousness could be heightened at this time “) compared to on a Friday (“It's possible you've 
arrived where you are in a current situation through a trial-and-error process of some kind”).  

We also tuned the temperature parameter, used to control the randomness. When the temperature 
is higher, we generate a higher volume of random horoscopes. When temperature is lower, we 
generate sentences that are more similar to sentences that we’ve seen before in our dataset. We 
did not want temperature to be too low, as we wanted our generated text to be somewhat unique 
– however, we also refrained from producing nonsensical gibberish. Given this, we decided that 
the optimal temperature for text that makes sense was between 0.8 and 1.0. 

We generated 20 horoscopes for each horoscope sign for each day of week (20 x 12 x 7), using a 
random temperature between 0.8 and 1.0, and stored it in a data frame to be accessed when a 
page was shown. 

Grammar and Spelling Checker (Sophia) 

First, we split off the final sentence of the horoscope by cutting it off at the last punctuation mark of 
the horoscope. This was to ensure we had full, complete sentences. We used Python’s 
grammar-check library to quickly modify any simple grammar errors to make sure the text was 
coherent/ 

Key Term Extraction (Jenn) 

After generating the horoscopes by conditioning on the day of the week, we extracted the 
important symbolic keyword of the text. We used two methods to extract the keywords: python 
Textrank  and NLP frequency extraction.   3

Python Text Rank, also known as pytextrank, is based on the NLP report written by Rada Mihalcea
. Pytextrank is a graph-based ranking algorithm for text analysis. Pytextrank first preprocesses the 4

text by parsing the text to words with their respective part of speech. From the tokenized words, 
we generated a text relational graph. Words with one lexical units are added as nodes of the 
graph.  If there a node with any possible co-occurrence relation with any other nodes, a edge is 
formed within them. We determined whether the two nodes are connected if their respective lexical 
units co-occur within a window of N words, where N words can range from two to ten. By 
analyzing the co-occurrence relation, we can determine if there are semantic links between two 
terms. As we iterate this process multiple times until it converges, each node calculates their own 
score of relational importance. Then by sorting, we were able to extract the most important word. 
However, for the extracting process, we outputted the words that are nouns. 

NLP frequency extraction is simpler than the previous approach. Key term extraction was based on 
the machine learning article “Automated Keyword Extraction from Articles using NLP” . Like the 5

previous approach, we tokenized the text by lexical units and calculated their frequencies. We, 
then, extract the top noun that occurred the least amount of time. Through this key term 
extraction, we want to extract the most unique words. However, due to a simple model, the 
extracted key terms wasn’t that unique or significant. So we also post processed the top 5 - 7 

3https://github.com/DerwenAI/pytextrank 
4http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf 
5https://medium.com/analytics-vidhya/automated-keyword-extraction-from-articles-using-nlp-bfd864f41b34?fbclid=IwAR2mDy9gQuOt
nrzjUOg0O8bfStTNBjDbIo7r7bXmYBKYktog-8_IieO_jk4 

https://github.com/DerwenAI/pytextrank
http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf
https://medium.com/analytics-vidhya/automated-keyword-extraction-from-articles-using-nlp-bfd864f41b34?fbclid=IwAR2mDy9gQuOtnrzjUOg0O8bfStTNBjDbIo7r7bXmYBKYktog-8_IieO_jk4
https://medium.com/analytics-vidhya/automated-keyword-extraction-from-articles-using-nlp-bfd864f41b34?fbclid=IwAR2mDy9gQuOtnrzjUOg0O8bfStTNBjDbIo7r7bXmYBKYktog-8_IieO_jk4
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noun terms with the lowest frequency by manually filtering terms that are too abstract or aren’t 
objects. Filtered words included “something”, “things”, “someone”, and “feel”. 

Using the two model, we choose key terms that were more suitable for the next process, the 
Sketch RNN model. Although we used two different methods to extract key terms, since the 
original texts used very similar and abstract terms, most of the generated key terms were repetitive 
and hard to input in the sketch rnn model. Since the input of sketch rnn model are usually objective 
nouns, abstract terms like “issue” and “effect” produced unrelated sketches.  

Quick Draw and Sketch RNN (Sophia) 

We used the text to art generation code  from the christmAIs written by Lj Miranda and 4 other 6

contributors. Here, we only took the parts of the code that takes a the keywords generated in the 
previous step and generates the most similar Quick Draw category. Then, using this, we generated 
9 sketches of this category as our image. We originally used style transfer in the christmAIs code to 
generate more “artistic” work. However, we found that simple sketches left our images looking 
cleaner and more easily interpretable by the readers of the horoscope. We pre-generated the 
images for the horoscopes that we produced.  

Image Manipulation (Jenn) 

Despite the post processing, sentences in the text stilled lacked cohesion. Longer the sentence, 
the harder it was the understand what the sentence meant. When reading the text as a whole, it 
left us, the audience, with a slight confusion to what the horoscope exactly meant. After talking 
with the professor, we decide to split the text line by line in our interactive platform to help reader 
focus on individual sentences rather than the text as a whole. So, we split our key term generated 
sketch into three section and alternated the lines from the text and the split images. We wrote a 
simple image manipulation script to crop each of the sketches into equal dimensions. 

RShiny Application (Julie) 

In creating a more immersive experiencing for our audience, we decided to use an interactive 
platform. By loading our output data into RStudio, we were able to build a RShiny application that 
takes an individual’s birthday and the date, and randomly generates a horoscope-image pairing. 

The application contains a generate() function that takes the birthday and date inputs to select 
random horoscopes that are conditional on horoscope sign and day of the week. The horoscopes 
are then fed into a recombine() function, which splits the horoscope paragraph into 4 groups and 
segments them to be readily available for presentation in line with 3 images. The text groups and 
image paths are then displayed in the application output, in alternating order. We chose this 
approach because the model-generated  text contains stronger individual sentences than 
paragraphs. By using our images to split the sentences, the interface makes more sense. The 
layering of the images also creates more dimensionality on the page. 

Audience Response 

6https://github.com/thinkingmachines/christmAIs 

https://github.com/thinkingmachines/christmAIs


Appendix 

There were a lot responses that our images were pretty interesting. They were very interested in 
how the images were related to the text. Some of commented that horoscope does sound pretty 
relevant to their situations. Some seems confused and unconvinced of the text. 

“Keys Wow Wait some lines are repeated.” 

“This is really cool, Can I take a picture of my horoscope?” 

“I can related to some of them.” 

“This sentence doesn’t really make sense.” 
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Results 

 

 

 

Code: https://github.com/jupiek/AIhoroscopes/ 

Results: https://github.com/jupiek/AIhoroscopes/tree/master/AIhoroscopes 

Interface: https://jupiek.shinyapps.io/ArtxML 

https://github.com/jupiek/AIhoroscopes
https://github.com/jupiek/AIhoroscopes/tree/master/AIhoroscopes
https://jupiek.shinyapps.io/ArtxML/
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Project 3 Report: 
https://docs.google.com/document/d/1tqpza4z-2aQg4vvr7yIqCBVrgK1tBxhgfP3mMZwRZtw/edit 

Project 3 Results: https://github.com/seungye1/artxml3/final_results.txt 

Project 3 Code: https://github.com/seungye1/artxml3/ 

https://docs.google.com/document/d/1tqpza4z-2aQg4vvr7yIqCBVrgK1tBxhgfP3mMZwRZtw/edit
https://github.com/seungye1/artxml3/blob/master/final_results.txt
https://github.com/seungye1/artxml3/blob/master/final_results.txt

