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Problem

One of the most interesting topics in Machine Learning (ML) for design are gen-
erative models. In contrast to discriminative models, which only learns how to
solve the learning task (classification, clustering, dimensionality reduction, etc.),
generative models also learn how the data was generated, enabling the sam-
pling of synthesized data based on the original distribution. Examples of gener-
ative models are Principal Component Analysis (PCA) , Autoencoders (AE), and
Generative Adversarial Networks (GAN, Goodfellow et al., 2014), with all its vari-
ations and applications (Pix2Pix, CycleGAN, PGGAN, DAGAN, etc.)

However, the potential of generative models in design is still unexplored. Most
of the advancements in generative design systems are problem-oriented
(search, optimization, etc.) or rule-oriented (shape grammars, swarm models,
cellular automata, etc.). There are almost no design application based on big
data and few researches investigate design exploration with data-driven gener-
ative systems. As a consequence of this gap, there are no standards for modes
of interaction, performance, and design representation with ML generative
models for design.

Literature Review

While ML provides techniques that can be directly applied to the evaluation of
building inhabitants data and post occupancy (Davis, 2016), recently, they have
also been incorporated as a component of generative design systems. Sjoberg
et al. (2017) use ML both for visualization and to support design optimization.
Their workflow applies (1) a supervised neural network to predict the user selec-
tion of the population for a Genetic Algorithm, (2) a PCA to embeds the solu-
tions in three-dimensional space and (3) Density-based spatial clustering to
identify clusters with high-performance. Harding and Derix (2011) developed
an algorithm to generate the layout of an exhibition hall. They use a SOM to
embed the feature space of future exhibitions, converting it into a planar graph.
They also apply a custom growing neural network to clusters the multiple
graphs of the future exhibitions according to similar topologies.

However, these examples do not use ML techniques as the core of the genera-
tion process. One notable exception, is the work of Mohamed Zaghloul (2015),
which uses a SOM to explicitly generate and organize new design alternatives
of avilla. The input of the SOM neural-network is the box geometry of six design
alternatives and the output layer is a two-dimensional grid with 15 by 15 cells
containing the original input and generated non-linear morphing samples be-
tween.

DeepCloud

To contribute with generative models for design, we developed a general
design tool that incorporates recent advancements in deep generative models
to conceive 3d point-cloud objects in real-time: DeepCloud. After researching
deep neural networks that can learn with point cloud data (Su et al., 2015; Mat-
urana and Scherer, 2015, Yi et al., 2016; Qi et al., 2017a and Qi et al., 2017b), we
opted to use the Autoencoder (AE) developed by Achlioptas et al. (2017). It
combines a relatively shallow and simple architecture with custom layers and
loss functions (Earth Mover’s Distance and Chamfer Distance) to operate with
point clouds.

In the interface, DeepCloud contains intuitive tools for the manipulation of
high-dimensional data, aiming at the generation of suprising and meaningful
design objects.
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Process

The first step in DeepCloud is to setup and train the AE (fig.1).
In our setting, the encoder should learn how to compress a
point cloud of 2048 points into vectors of size 32 (latent
space) and the decoder should be able to reconstruct the ini-
tial point cloud, using the Chamfer distance to evaluate it. In
this R32 space, point clouds with similar characteristics are em-
bedded in the same neighborhood, and each dimension is as-
sociated with certain characteristics. We trained this AE with
point clouds generated from a database of models (shapeN-
ET) and synthesized models, using categories such as chairs,
hats and buildings.

The trained AE is stored in the back-end of the DeepCloud ap-
plication, written in Python with Tensorflow. It can receive a
vector in R*2and translate it to the respective point cloud (fig.
2). This is a generative model, so it can generate not only the
original objects in the data base but also sample new synthe-
sized objects.

In the front-end, DeepCLoud is a web interface (fig.2 and 3)
that enables the user to manipulate the latent space repre-
sentation and generate new point clouds. The users can (1)
select existing objects from the data base as a starting point
for a new model. Then, they can use two tools: (2) manipulate
features, which enables the control of the features of the
latent space, modifying specific aspects of the base model; (3)
interpolation, which enables the combination of multiple
models to generate a hybrid with shared characteristics. For
future developments, a (4) GAN will be implemented to gen-
erate new starting points for the design.

The interface uses an analogic controller with sliders and
knobs to provide an intuitive exploration of the latent space
(fig. 2 and 3).

The chairs developed in DeepCloud can be saved in the data-
base, which provides a new base models for feature manipu-
lation and interpolation. Besides, they can be exported for 3d
printing (fig.2, 5 and 6).

Fig. 3: Screenshots of the interface

Fig. 4: Point clouds generated by DeepCloud

Fig. 5: Extracting structure from a point cloud
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Fig.1: Architecture of the Autoencoder
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Fig. 2: System architecture of DeepCloud

3d print

Fig. 6: 3d printing of the selected chair




