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Throughout this talk, “proof” = “refutation.”
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Fr=xVZ)AFVZ)AN(XVYyVZ)A(xVY)A(yV2)

Tree-like:

z xVyVz yVz yVvVz

x|
<
NI

xVy xVy z

Sequence-like:

z, xVy, x, X, L
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This talk: Relative strengths of different weak versions of ER



Results
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Why care?

They correspond to being able to say “without loss of generality”
without needing to introduce new variables.

Upper bounds
® Pigeonhole principle
e Bit pigeonhole principle
® Parity principle
e Clique-coloring principle

® Tseitin tautologies

OR-ification, XOR-ification, lifting with indexing gadgets

Without loss of generality, pigeon n+ 1 is mapped to hole n. ..
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Definition
A clause C is redundant with respect to a formula T if
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Lemma
A clause C is redundant with respect to a formula I if and only if
there exists a partial assignment 7 such that

FrAN=CE(ACQC).
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C=xVyV-z
F=(—xVay)A(-xVz)A(yVz)

C is blocked for x with respect to T'.
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Syntactic criteria for redundancy

Definition (Blocked clause)

A clause C = x \V (' is blocked for x with respect to a formula I if,
for every clause D of the form —x Vv D’ in T,

C’' v D' is tautological.

Redundancy of a blocked clause

Claim. If assignment 7 sets x =1, then [ A =C = (I' A C)|,.
Consider some total assignment « that satisfies ' A =C.

Claim. ' A C is satisfied by o o 7, which is a with «(x) flipped.

Clauses of the form —x VvV D’ might be falsified by a o 7, but there is
some y € C’' such that -y € D’ and « o 7 still sets y to a(y) = 0.



Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x \V (' is blocked for x with respect to a formula I if,
for every clause D of the form —x Vv D’ in T,

C' v D' is tautological.

Definition (Resolution asymmetric tautology*)

A clause C = x vV C'" is a RAT for x with respect to a formula [ if,
for every clause D of the form —xV D" in T,

C' v D' is tautological or subsumed by I



Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x \V (' is blocked for x with respect to a formula I if,
for every clause D of the form —x Vv D’ in T,

C' v D' is tautological.

Definition (Set-blocked clause)

A clause C = L\ C"is an SBC for L with respect to a formula T if,
for every clause D in I such that DN —L +# @ and DN L = &,

(C\ L)V (D\ —L) is tautological.



The proof systems

e BC

e BC™
e DBC
e DBC™

* SPR

resolution + extension

resolution + blocked clause addition
BC without new variables

BC with deletion

BC with deletion and without new variables

resolution + “SBC x RAT" addition
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Effectively*, BC™ simulates ER

Lemma
Suppose that a formula I has an ER proof of size m and that

X =(yVx1V---Vxn) Ay has no variables in common with I
Then ' A X has a BC™ proof of size O(m).

Proof. Consider a use of the extension rule in the ER proof that
introduces x; <> p A q. WLOG, the literals p and g are not new.

Add the clauses
—x;V-oyVp —x;V-yVgqg xi V—-pV —q

in sequence as blocked clauses. Resolve against y.
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Guarded extension variables

Let I be a formula with an ER proof of size m = |I'|9(1),
Recall X = (y Vx1 V-V xm) Ay, which made ' A X easy for BC™.

To separate P and Q, incorporate extension variables into ' in ways
that are useful to only one of the two systems.

Idea: Guard the variables by clauses to make them hard to access.
P will somehow use the included variables to simulate the ER proof.
Q will be unable to achieve any speedup using the included variables.

Example

With respect to the formula (—x V y) A (=x V —y), any clause
blocked for x has to include both —y and y.
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Example: lower bound

Lemma
F(M) =T AAZ[(xi VT) A (=x; V)] is no easier than I for BC™.

Proof.

1. View a BC™ proof of f(I') as a resolution proof of f(I') A A,
where A is derived by a sequence of blocked clause additions.

2. No clause in A can be blocked for some x; wrt f(I).

3. Since ' C f(I'), every clause in A is in particular blocked wrt T

4. For the assignment a(x;) =1, we have (F(N) AA)|o =T A A,
where A’ is possible to derive from I in BC™.

5. Resolution is closed under restrictions, which implies that
f(F) A A is at least as hard for resolution as ' A A'.

6. If I A A’ is easy for resolution, then T is easy for BC™. O
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Separating constructions

Let T be a formula with an ER proof of size m = |I|9(1).

RAT™ % GER™
RAT™ # SBC™

m

g =TA /\ [(—|x,- Vyi)A(xi V —|y,')]

g(l) is easy for both GER™ and SBC™ (for different reasons).
g(l) is at least as hard as I' for RAT .



Separating constructions

Let T be a formula with an ER proof of size m = |I|9(1).

SBC™ # GER™

m S

hs(F) =T A /\ /\ [(xi V yj V =z)) A (=% V y; V —z))]

i=1j=1
S

ANy VZ) A V) A (mz VT
j=1

hs(I") is easy for GER™ (regardless of whether I is).
hs(I) is at least as hard as I' for SBC™ with suitable choice of s.



Open questions

Lower bounds for SPR™ and above

Separations using “natural” principles

Any subsystem of Frege above resolution that DBC™ simulates

Other uses of the high-level idea in proof complexity



Results

/

' BC~ <4 GER™ <|—~#—— DBC~

/

. —> simulates
DSBC —/ /> stronger

- - - incomparable




References

[BT21] Sam Buss and Neil Thapen.
DRAT and propagation redundancy proofs without new variables.
Logical Methods in Computer Science, 17(2:12), 2021.

[HKB20]  Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Strong extension-free proof systems.
Journal of Automated Reasoning, 64(3):533-554, 2020.

[KRHB20] Benjamin Kiesl, Adrian Rebola-Pardo, Marijn J. H. Heule, and Armin Biere.
Simulating strong practical proof systems with extended resolution.
Journal of Automated Reasoning, 64(7):1247-1267, 2020.

[Kri85] Balakrishnan Krishnamurthy.
Short proofs for tricky formulas.
Acta Informatica, 22(3):253-275, 1985.

[KSTB18] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere.
Local redundancy in SAT: Generalizations of blocked clauses.
Logical Methods in Computer Science, 14(4:3), 2018.

[Kul99] Oliver Kullmann.
On a generalization of extended resolution.
Discrete Applied Mathematics, 96—97:149-176, 1999.



