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Resolution

Refutes a propositional formula in conjunctive normal form
(i.e., a set of clauses) by using the single rule

A ∨ x B ∨ ¬x
A ∨ B

to derive the empty clause.

Throughout this talk, “proof” ≡ “refutation.”
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Example: resolution proof

Γ = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

Tree-like:
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x
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z x ∨ z

x

⊥
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x ∨ z , y ∨ z , x ∨ y ∨ z , x ∨ y , y ∨ z , z , x ∨ y , x , x , ⊥
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Extended resolution (ER)

At any step, derive
x ↔ p ∧ q,

where p, q are arbitrary literals and x is a new variable.

This talk: Relative strengths of different weak versions of ER
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Why care?

They correspond to being able to say “without loss of generality”
without needing to introduce new variables.

Upper bounds
• Pigeonhole principle
• Bit pigeonhole principle
• Parity principle
• Clique-coloring principle
• Tseitin tautologies
• OR-ification, XOR-ification, lifting with indexing gadgets

Without loss of generality, pigeon n + 1 is mapped to hole n. . .
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Redundancy

Definition
A clause C is redundant with respect to a formula Γ if

Γ and Γ ∧ C are equisatisfiable.

Lemma
A clause C is redundant with respect to a formula Γ if and only if
there exists a partial assignment τ such that

Γ ∧ ¬C |= (Γ ∧ C )|τ .
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Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.



Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Example (Blocked clause)

C = x ∨ y ∨ ¬z
Γ = (¬x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ z)

C is blocked for x with respect to Γ.
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for every clause D of the form ¬x ∨ D ′ in Γ,
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Redundancy of a blocked clause

Claim. If assignment τ sets x = 1, then Γ ∧ ¬C |= (Γ ∧ C )|τ .
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A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.
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Claim. If assignment τ sets x = 1, then Γ ∧ ¬C |= (Γ ∧ C )|τ .
Consider some total assignment α that satisfies Γ ∧ ¬C .

Claim. Γ ∧ C is satisfied by α ◦ τ , which is α with α(x) flipped.
Clauses of the form ¬x ∨ D ′ might be falsified by α ◦ τ , but there is
some y ∈ C ′ such that ¬y ∈ D ′ and α ◦ τ still sets y to α(y) = 0.



Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Definition (Resolution asymmetric tautology*)
A clause C = x ∨ C ′ is a RAT for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological or subsumed by Γ.



Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Definition (Set-blocked clause)
A clause C = L ∨ C ′ is an SBC for L with respect to a formula Γ if,
for every clause D in Γ such that D ∩ ¬L ̸= ∅ and D ∩ L = ∅,(

C \ L
)
∨
(
D \ ¬L

)
is tautological.



The proof systems

• ER resolution + extension

• BC resolution + blocked clause addition

• BC− BC without new variables

• DBC BC with deletion

• DBC− BC with deletion and without new variables
...

• SPR resolution + “SBC × RAT” addition
...



Effectively*, BC− simulates ER

Lemma
Suppose that a formula Γ has an ER proof of size m and that
X = (y ∨ x1 ∨ · · · ∨ xm) ∧ y has no variables in common with Γ.
Then Γ ∧ X has a BC− proof of size O(m).

Proof. Consider a use of the extension rule in the ER proof that
introduces xi ↔ p ∧ q. WLOG, the literals p and q are not new.

Add the clauses

¬xi ∨ ¬y ∨ p ¬xi ∨ ¬y ∨ q xi ∨ ¬p ∨ ¬q

in sequence as blocked clauses. Resolve against y .
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Guarded extension variables

Let Γ be a formula with an ER proof of size m = |Γ|O(1).
Recall X = (y ∨ x1 ∨ · · · ∨ xm)∧ y , which made Γ∧X easy for BC−.

To separate P and Q, incorporate extension variables into Γ in ways
that are useful to only one of the two systems.

Idea: Guard the variables by clauses to make them hard to access.
P will somehow use the included variables to simulate the ER proof.
Q will be unable to achieve any speedup using the included variables.

Example

With respect to the formula (¬x ∨ y) ∧ (¬x ∨ ¬y), any clause
blocked for x has to include both ¬y and y .
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Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.

1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,
where ∆ is derived by a sequence of blocked clause additions.

2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi ) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.
5. Resolution is closed under restrictions, which implies that

f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.
6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.
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Let Γ be a formula with an ER proof of size m = |Γ|O(1).

GER− ̸≥ RAT−

SBC− ̸≥ RAT−

f (Γ) := Γ ∧
m∧
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
f (Γ) is easy for RAT− (regardless of whether Γ is).
f (Γ) is at least as hard as Γ for GER− and SBC−.



Separating constructions

Let Γ be a formula with an ER proof of size m = |Γ|O(1).

RAT− ̸≥ GER−

RAT− ̸≥ SBC−

g(Γ) := Γ ∧
m∧
i=1

[
(¬xi ∨ yi ) ∧ (xi ∨ ¬yi )

]
g(Γ) is easy for both GER− and SBC− (for different reasons).
g(Γ) is at least as hard as Γ for RAT−.



Separating constructions

Let Γ be a formula with an ER proof of size m = |Γ|O(1).

SBC− ̸≥ GER−

hs(Γ) := Γ ∧
m∧
i=1

s∧
j=1

[
(xi ∨ yj ∨ ¬zj) ∧ (¬xi ∨ yj ∨ ¬zj)

]
∧

s∧
j=1

[
(¬yj ∨ zj) ∧ (yj ∨ Γ) ∧ (¬zj ∨ Γ)

]

hs(Γ) is easy for GER− (regardless of whether Γ is).
hs(Γ) is at least as hard as Γ for SBC− with suitable choice of s.



Open questions

• Lower bounds for SPR− and above
• Separations using “natural” principles
• Any subsystem of Frege above resolution that DBC− simulates
• Other uses of the high-level idea in proof complexity
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