
Weak versions of extended resolution

Emre Yolcu

Computer Science Department
Carnegie Mellon University

eyolcu@cs.cmu.edu

Resolution

Refutes a propositional formula in conjunctive normal form
(i.e., a set of clauses) by using the single rule

A ∨ x B ∨ ¬x
A ∨ B

to derive the empty clause.

Throughout this talk, “proof” ≡ “refutation.”

Resolution

Refutes a propositional formula in conjunctive normal form
(i.e., a set of clauses) by using the single rule

A ∨ x B ∨ ¬x
A ∨ B

to derive the empty clause.

Throughout this talk, “proof” ≡ “refutation.”

Example: resolution proof

Γ = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

Tree-like:

x ∨ y

y ∨ z y ∨ z

z x ∨ y ∨ z

x ∨ y

x

y ∨ z y ∨ z

z x ∨ z

x

⊥
Sequence-like:

x ∨ z , y ∨ z , x ∨ y ∨ z , x ∨ y , y ∨ z , z , x ∨ y , x , x , ⊥

Example: resolution proof

Γ = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

Tree-like:

x ∨ y

y ∨ z y ∨ z

z x ∨ y ∨ z

x ∨ y

x

y ∨ z y ∨ z

z x ∨ z

x

⊥

Sequence-like:

x ∨ z , y ∨ z , x ∨ y ∨ z , x ∨ y , y ∨ z , z , x ∨ y , x , x , ⊥

Example: resolution proof

Γ = (x ∨ z) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

Tree-like:

x ∨ y

y ∨ z y ∨ z

z x ∨ y ∨ z

x ∨ y

x

y ∨ z y ∨ z

z x ∨ z

x

⊥
Sequence-like:

x ∨ z , y ∨ z , x ∨ y ∨ z , x ∨ y , y ∨ z , z , x ∨ y , x , x , ⊥

Extended resolution (ER)

At any step, derive
x ↔ p ∧ q,

where p, q are arbitrary literals and x is a new variable.

This talk: Relative strengths of different weak versions of ER

Extended resolution (ER)

At any step, derive
x ↔ p ∧ q,

where p, q are arbitrary literals and x is a new variable.

This talk: Relative strengths of different weak versions of ER

Results

BC−

SBC−

RAT−

SPR−

GER− DBC−

DSBC−

DRAT−

DSPR−

simulates
stronger
incomparable

Why care?

They correspond to being able to say “without loss of generality”
without needing to introduce new variables.

Upper bounds
• Pigeonhole principle
• Bit pigeonhole principle
• Parity principle
• Clique-coloring principle
• Tseitin tautologies
• OR-ification, XOR-ification, lifting with indexing gadgets

Without loss of generality, pigeon n + 1 is mapped to hole n. . .

Why care?

They correspond to being able to say “without loss of generality”
without needing to introduce new variables.

Upper bounds
• Pigeonhole principle
• Bit pigeonhole principle
• Parity principle
• Clique-coloring principle
• Tseitin tautologies
• OR-ification, XOR-ification, lifting with indexing gadgets

Without loss of generality, pigeon n + 1 is mapped to hole n. . .

Why care?

They correspond to being able to say “without loss of generality”
without needing to introduce new variables.

Upper bounds
• Pigeonhole principle
• Bit pigeonhole principle
• Parity principle
• Clique-coloring principle
• Tseitin tautologies
• OR-ification, XOR-ification, lifting with indexing gadgets

Without loss of generality, pigeon n + 1 is mapped to hole n. . .

Redundancy

Definition
A clause C is redundant with respect to a formula Γ if

Γ and Γ ∧ C are equisatisfiable.

Lemma
A clause C is redundant with respect to a formula Γ if and only if
there exists a partial assignment τ such that

Γ ∧ ¬C |= (Γ ∧ C)|τ .

Redundancy

Definition
A clause C is redundant with respect to a formula Γ if

Γ and Γ ∧ C are equisatisfiable.

Lemma
A clause C is redundant with respect to a formula Γ if and only if
there exists a partial assignment τ such that

Γ ∧ ¬C |= (Γ ∧ C)|τ .

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Example (Blocked clause)

C = x ∨ y ∨ ¬z
Γ = (¬x ∨ ¬y) ∧ (¬x ∨ z) ∧ (y ∨ z)

C is blocked for x with respect to Γ.

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Redundancy of a blocked clause

Claim. If assignment τ sets x = 1, then Γ ∧ ¬C |= (Γ ∧ C)|τ .

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Redundancy of a blocked clause

Claim. If assignment τ sets x = 1, then Γ ∧ ¬C |= (Γ ∧ C)|τ .
Consider some total assignment α that satisfies Γ ∧ ¬C .

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Redundancy of a blocked clause

Claim. If assignment τ sets x = 1, then Γ ∧ ¬C |= (Γ ∧ C)|τ .
Consider some total assignment α that satisfies Γ ∧ ¬C .

Claim. Γ ∧ C is satisfied by α ◦ τ , which is α with α(x) flipped.

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Redundancy of a blocked clause

Claim. If assignment τ sets x = 1, then Γ ∧ ¬C |= (Γ ∧ C)|τ .
Consider some total assignment α that satisfies Γ ∧ ¬C .

Claim. Γ ∧ C is satisfied by α ◦ τ , which is α with α(x) flipped.
Clauses of the form ¬x ∨ D ′ might be falsified by α ◦ τ , but there is
some y ∈ C ′ such that ¬y ∈ D ′ and α ◦ τ still sets y to α(y) = 0.

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Definition (Resolution asymmetric tautology*)
A clause C = x ∨ C ′ is a RAT for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological or subsumed by Γ.

Syntactic criteria for redundancy

Definition (Blocked clause)
A clause C = x ∨ C ′ is blocked for x with respect to a formula Γ if,
for every clause D of the form ¬x ∨ D ′ in Γ,

C ′ ∨ D ′ is tautological.

Definition (Set-blocked clause)
A clause C = L ∨ C ′ is an SBC for L with respect to a formula Γ if,
for every clause D in Γ such that D ∩ ¬L ̸= ∅ and D ∩ L = ∅,(

C \ L
)
∨
(
D \ ¬L

)
is tautological.

The proof systems

• ER resolution + extension

• BC resolution + blocked clause addition

• BC− BC without new variables

• DBC BC with deletion

• DBC− BC with deletion and without new variables
...

• SPR resolution + “SBC × RAT” addition
...

Effectively*, BC− simulates ER

Lemma
Suppose that a formula Γ has an ER proof of size m and that
X = (y ∨ x1 ∨ · · · ∨ xm) ∧ y has no variables in common with Γ.
Then Γ ∧ X has a BC− proof of size O(m).

Proof. Consider a use of the extension rule in the ER proof that
introduces xi ↔ p ∧ q. WLOG, the literals p and q are not new.

Add the clauses

¬xi ∨ ¬y ∨ p ¬xi ∨ ¬y ∨ q xi ∨ ¬p ∨ ¬q

in sequence as blocked clauses. Resolve against y .

Effectively*, BC− simulates ER

Lemma
Suppose that a formula Γ has an ER proof of size m and that
X = (y ∨ x1 ∨ · · · ∨ xm) ∧ y has no variables in common with Γ.
Then Γ ∧ X has a BC− proof of size O(m).

Proof. Consider a use of the extension rule in the ER proof that
introduces xi ↔ p ∧ q. WLOG, the literals p and q are not new.

Add the clauses

¬xi ∨ ¬y ∨ p ¬xi ∨ ¬y ∨ q xi ∨ ¬p ∨ ¬q

in sequence as blocked clauses. Resolve against y .

Guarded extension variables

Let Γ be a formula with an ER proof of size m = |Γ|O(1).
Recall X = (y ∨ x1 ∨ · · · ∨ xm)∧ y , which made Γ∧X easy for BC−.

To separate P and Q, incorporate extension variables into Γ in ways
that are useful to only one of the two systems.

Idea: Guard the variables by clauses to make them hard to access.
P will somehow use the included variables to simulate the ER proof.
Q will be unable to achieve any speedup using the included variables.

Example

With respect to the formula (¬x ∨ y) ∧ (¬x ∨ ¬y), any clause
blocked for x has to include both ¬y and y .

Guarded extension variables

Let Γ be a formula with an ER proof of size m = |Γ|O(1).
Recall X = (y ∨ x1 ∨ · · · ∨ xm)∧ y , which made Γ∧X easy for BC−.

To separate P and Q, incorporate extension variables into Γ in ways
that are useful to only one of the two systems.

Idea: Guard the variables by clauses to make them hard to access.
P will somehow use the included variables to simulate the ER proof.
Q will be unable to achieve any speedup using the included variables.

Example

With respect to the formula (¬x ∨ y) ∧ (¬x ∨ ¬y), any clause
blocked for x has to include both ¬y and y .

Guarded extension variables

Let Γ be a formula with an ER proof of size m = |Γ|O(1).
Recall X = (y ∨ x1 ∨ · · · ∨ xm)∧ y , which made Γ∧X easy for BC−.

To separate P and Q, incorporate extension variables into Γ in ways
that are useful to only one of the two systems.

Idea: Guard the variables by clauses to make them hard to access.
P will somehow use the included variables to simulate the ER proof.
Q will be unable to achieve any speedup using the included variables.

Example

With respect to the formula (¬x ∨ y) ∧ (¬x ∨ ¬y), any clause
blocked for x has to include both ¬y and y .

Guarded extension variables

Let Γ be a formula with an ER proof of size m = |Γ|O(1).
Recall X = (y ∨ x1 ∨ · · · ∨ xm)∧ y , which made Γ∧X easy for BC−.

To separate P and Q, incorporate extension variables into Γ in ways
that are useful to only one of the two systems.

Idea: Guard the variables by clauses to make them hard to access.
P will somehow use the included variables to simulate the ER proof.
Q will be unable to achieve any speedup using the included variables.

Example

With respect to the formula (¬x ∨ y) ∧ (¬x ∨ ¬y), any clause
blocked for x has to include both ¬y and y .

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.

1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,
where ∆ is derived by a sequence of blocked clause additions.

2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.
5. Resolution is closed under restrictions, which implies that

f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.
6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.
1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,

where ∆ is derived by a sequence of blocked clause additions.

2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.
5. Resolution is closed under restrictions, which implies that

f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.
6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.
1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,

where ∆ is derived by a sequence of blocked clause additions.
2. No clause in ∆ can be blocked for some xi wrt f (Γ).

3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.
5. Resolution is closed under restrictions, which implies that

f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.
6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.
1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,

where ∆ is derived by a sequence of blocked clause additions.
2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.

4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,
where ∆′ is possible to derive from Γ in BC−.

5. Resolution is closed under restrictions, which implies that
f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.

6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.
1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,

where ∆ is derived by a sequence of blocked clause additions.
2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.

5. Resolution is closed under restrictions, which implies that
f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.

6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.
1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,

where ∆ is derived by a sequence of blocked clause additions.
2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.
5. Resolution is closed under restrictions, which implies that

f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.

6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Example: lower bound

Lemma
f (Γ) := Γ ∧

∧m
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
is no easier than Γ for BC−.

Proof.
1. View a BC− proof of f (Γ) as a resolution proof of f (Γ) ∧∆,

where ∆ is derived by a sequence of blocked clause additions.
2. No clause in ∆ can be blocked for some xi wrt f (Γ).
3. Since Γ ⊆ f (Γ), every clause in ∆ is in particular blocked wrt Γ.
4. For the assignment α(xi) = 1, we have (f (Γ) ∧∆)|α = Γ ∧∆′,

where ∆′ is possible to derive from Γ in BC−.
5. Resolution is closed under restrictions, which implies that

f (Γ) ∧∆ is at least as hard for resolution as Γ ∧∆′.
6. If Γ ∧∆′ is easy for resolution, then Γ is easy for BC−.

Separating constructions

Let Γ be a formula with an ER proof of size m = |Γ|O(1).

Separating constructions

Let Γ be a formula with an ER proof of size m = |Γ|O(1).

GER− ̸≥ RAT−

SBC− ̸≥ RAT−

f (Γ) := Γ ∧
m∧
i=1

[
(xi ∨ Γ) ∧ (¬xi ∨ Γ)

]
f (Γ) is easy for RAT− (regardless of whether Γ is).
f (Γ) is at least as hard as Γ for GER− and SBC−.

Separating constructions

Let Γ be a formula with an ER proof of size m = |Γ|O(1).

RAT− ̸≥ GER−

RAT− ̸≥ SBC−

g(Γ) := Γ ∧
m∧
i=1

[
(¬xi ∨ yi) ∧ (xi ∨ ¬yi)

]
g(Γ) is easy for both GER− and SBC− (for different reasons).
g(Γ) is at least as hard as Γ for RAT−.

Separating constructions

Let Γ be a formula with an ER proof of size m = |Γ|O(1).

SBC− ̸≥ GER−

hs(Γ) := Γ ∧
m∧
i=1

s∧
j=1

[
(xi ∨ yj ∨ ¬zj) ∧ (¬xi ∨ yj ∨ ¬zj)

]
∧

s∧
j=1

[
(¬yj ∨ zj) ∧ (yj ∨ Γ) ∧ (¬zj ∨ Γ)

]

hs(Γ) is easy for GER− (regardless of whether Γ is).
hs(Γ) is at least as hard as Γ for SBC− with suitable choice of s.

Open questions

• Lower bounds for SPR− and above
• Separations using “natural” principles
• Any subsystem of Frege above resolution that DBC− simulates
• Other uses of the high-level idea in proof complexity

Results

BC−

SBC−

RAT−

SPR−

GER− DBC−

DSBC−

DRAT−

DSPR−

simulates
stronger
incomparable

References
[BT21] Sam Buss and Neil Thapen.

DRAT and propagation redundancy proofs without new variables.
Logical Methods in Computer Science, 17(2:12), 2021.

[HKB20] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere.
Strong extension-free proof systems.
Journal of Automated Reasoning, 64(3):533–554, 2020.

[KRHB20] Benjamin Kiesl, Adrián Rebola-Pardo, Marijn J. H. Heule, and Armin Biere.
Simulating strong practical proof systems with extended resolution.
Journal of Automated Reasoning, 64(7):1247–1267, 2020.

[Kri85] Balakrishnan Krishnamurthy.
Short proofs for tricky formulas.
Acta Informatica, 22(3):253–275, 1985.

[KSTB18] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere.
Local redundancy in SAT: Generalizations of blocked clauses.
Logical Methods in Computer Science, 14(4:3), 2018.

[Kul99] Oliver Kullmann.
On a generalization of extended resolution.
Discrete Applied Mathematics, 96–97:149–176, 1999.

