Supplementary Notes on
Exceptions

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 9
September 25, 2002

In this lecture we first give an implementation of the C-machine for the
fragment containing integers, booleans, and functions using higher-order
functions. We then discuss exceptions as an extension of the C-machine
[Ch. 13]

The implementation of the C-machine is to represent the stack as a con-
tinuation that encapsulates the rest of the computation to be performed.!

First, in our implementation, both expressions and value have type exp .
We nonetheless use different names to track our intuition, even though the
type system of ML does not help use verify the correctness of this intuition.

type value = exp
e . exp
v . value

Next, the stack £ is represented by an ML function

k : value -> value

Applying this function to a value v will carry out the rest of the compu-
tation of the machine, returning the final answer. Finally, we have two
functions

'We give some code excerpts here; the full code can be found at
http://www.cs.cmu.edu/ fp/courses/312/code/09-exceptions/

SUPPLEMENTARY NOTES SEPTEMBER 25, 2002

L9.2 Exceptions

eval : exp -> (value -> value) -> value
return : value -> (value -> value) -> value

satisfying the specification:

(i) eval e k | aiffk >e—}oe<a

(ii) return v k | aiffk<v—le<a

In order to implement stacks as ML functions, it is useful to introduce
some new auxiliary functions to represent the frames. We give in the table
below the association between forms of the stack and the corresponding
ML function. We omit only the case for primops which requires a simple
treatment of lists.

k>if (O,e2,e3) (fn vl => ifFrame (v1, e2, e3) k)

k>apply (O,e2) (fn vl => applyFramel (v1, e2) k)
k>apply (vi,0) (fn v2 => applyFrame2 (v1, v2) k)
kE>let (O,z.e2) (fn vl => letFrame (v1, ((), e2)) k)
. (fn v =>v)

The case of the empty stack corresponds to the initial continuation,
which simply returns the value passed to it as the result of the overal com-
putation

Now we can piece together the whole code elegantly, as advertised. We
have elided only the case for primitive operations, which can be found with
the complete code at the address given above.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2002

Exceptions L9.3

fun eval (v as Int) k = return v k
(* elided primops *)
| eval (v as Bool) k = return v k

| eval (If(el, e2, e3)) k =
eval el (fn vl => ifFrame (v1, e2, e3) k)
| eval (v as Fun) k = return v k
| eval (Apply(el, e2)) k =
eval el (fn vl => applyFramel (v1, e2) k)
| eval (Let(el, ((), e2))) k =
eval el (fn vl => letFrame (v1, ((), e2)) k)
(* eval (var _) k impossible by MinML typing *)
and ifFrame (Bool(true), e2, e3) k = eval e2 k
| ifFrame (Bool(false), e2, e3) k = eval e3 k
(* other expressions impossible by MinML typing *)
and applyFramel (v1, e2) k =
eval e2 (fn v2 => applyFrame2 (v1, v2) k)
and applyFrame2 (vl as Fun(S o (0, 0, el)), v2) k =
eval (Subst.subst (v1, 2, Subst.subst (v2, 1, el)) k
(* other expressions impossible by MinML typing *)
and letFrame (v1, ((), e2)) k = eval (Subst.subst (v1, 1, e2)) k
and return v k = k v

The overall evaluation just starts with the initial continuation which
corresponds to the empty stack.

fun evaluate e = eval e (fn v => v)

This style of writing an interpreter is also refered to as continuation-
passing style. It is quite flexible and elegant, and will be exercised in As-
signhment 4.

Next we come to exceptions. We introduce a new form of state

k < fail

which signals that we are propagation an exception upwards in the control
stack k, looking for a handler or stopping at the empty stack. This “un-
caught exception” is a particularly common form of implementing run-
time errors. We do not distinguish different exceptions, only failure. For
more complex variations of exceptions, see [Ch. 13] and Assignment 4.

We have two new forms of expressions fail (1) (with concrete syntax

SUPPLEMENTARY NOTES SEPTEMBER 25, 2002

L9.4 Exceptions

fail [7])? and try (e1,eq) (with concrete syntax try e; owes). Informally,
try (ei1,e2) evaluates e; and returns its value. If the evaluation of e; fails,
that is, an exception is raised, then we evaluate e instead and returns its
value (or propagate its exception). These rules are formalized in the C-
machine as follows.

k>try (e1,e2) e kotry (Oe2) > e

Evtry (Oye2) <vi e k<u

k> fail (7) —c k< fail

k> f < fail —e k< fail for f #try (O,)

kxtry (O,e2) < fail —¢ k>eo

In order to verify that these rules are sensible, we should prove appro-
priate progress and preservation theorems. In order to do this, we need to
introduce some typing judgments for machine states and the new forms of
expressions. First, expressions:

I'ter:m T'key: 7
PkHfail (7):7 LHtry (er,er): 7

The new judgment for typing states depends on a typing for stacks. A
stack is characterized by the type of the argument it expects and the type
of the final answer it returns. We write p for the type of the final answer.
Note that during the whole computation of a machine, this never changes.
The new judgments are

s OK, state s is well-formed with final answer type p
k : 7 stack, stack k accepts a value of type 7
and returns a final answer of type p

Since p never changes for any run of the machine, we omit the subcript
in some of the rules below. However, keep in mind that it is implicitly
present. Note also that judgments on states and stacks do not need to be
hypothetical judgments, since they never contain free variables. First, the
rules for states which ensure that the type expected by a stack matches the
type of the expression to be evaluated, or value being returned.

*The type is written here in order to preserve the property that every well-typed expres-
sion has a unique type.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2002

Exceptions L9.5

k :7stack, -Fe:T
k>e OK,

k :7stack, -Fwv:7 v value
E<v OK,

k : 7 stack,
k < fail OK,

The rules for stacks are straightforward, given a few examples below.

e : pstack,

k :7ystack -Feg:m
k>apply (O,e2) : 79 — 11 stack

k :mystack kv — 1 vy value
kw>apply (vi,0) : 7o stack

k :7mstack -Fey:7 -Feg:T
koif (O, e2,e3) : bool stack

k :7stack ‘Feg:T
kE>try (O, eq) : 7 stack

k :mystack x:miFeg:m
k>let (O, x.e2) : 7 stack

We can now state (without proof) the preservation and progress prop-
erties. The proofs follow previous patterns (see [Ch. 13]) and Lecture 5 on

Type Safety.
1. (Preservation) If s OK, and s +— s’ then s’ OK,,.
2. (Progress) If s OK, then either

(i) s+ s for some s, or
(ii) s = e < v with v value, or

(iii) s = o < fail.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2002

L9.6 Exceptions

The manner in which the C-machine operates with respect to exceptions
may seem a bit unrealistic, since the stack is unwound frame by frame.
However, in languages like Java this is not an unusual implementation
method. In ML, there is more frequently a second stack containing only
handlers for exceptions. The handler at the top of the stack is innermost
and a fail expression can jump to it directly.

Overall, this machine should be equivalent to the specification of ex-
ceptions above, but potentially more efficient. Often, we want to describe
several aspects of execution behavior of a language constructs in several
different machines, keeping the first as high-level as possible.

In our simple language, the handler stack h contains only frames ow(k;, e2)
while the control stack contains the usual frames, and try () (the “other-
wise” clause has moved to the handler stack). All the usual rules are aug-
mented to carry a control stack and a handler stack, and leave the handler
unchanged.

(h,k) > apply (e1,e2) —c (h,k>apply (Oe2)) > e

(h,k) > try (e1,e2) e (hpow(k,e), k>try (O)) > e
(h>ow(k' e2), ketry (O) <v1 ¢ (hk) <v;
(h>ow(k' e2), k) > fail (1) e (hK') > e

Note that we do not unwind the control stack explicilty, but jump di-
rectly to the handler when an exception is raised. This handler must story
a copy of the control stack in effect at the time the try expression was exe-
cuted. Fortunately, this can be implemented without the apparent copying
of the stack in the rule for try , because we can just keep a pointer to the
right frame in the control stack [Ch. 13].

Note also in case of a regular return for the subject of atry expression,
we need to pop the corresponding handler off the handler stack.

SUPPLEMENTARY NOTES SEPTEMBER 25, 2002

