
Lecture Notes on
Continuations

15-317: Constructive Logic
Frank Pfenning

Lecture 12
Thursday, February 23, 2023

1 Introduction

We have discussed classical logic in the two principle calculi we have considered so far.
In natural deduction, Gentzen [1935] added the law of the excluded middle as an axiom
A ∨ ¬A for any proposition A. In the sequent calculus, he allowed sequents with multiple
conclusions, Γ =⇒ ∆, which may be read as the conjunction of the propositions in Γ entails
the disjunction of the propositions in ∆.

Another important classical principle is proof by contradiction, that is,

¬A true∗
u

...
⊥ true∗

A true∗
PbCu

where we wrote true∗ to remind ourselves that this is a judgment of classical truth. It is an
interesting exercise to show that the different forms of obtaining classical logic are equiva-
lent (from the point of view of provability).

There is a slight variant of proof by contraction which we call CC that avoids the use of
⊥, namely

¬A true∗
u

...
A true∗

A true∗
CCu

In the next section we will prove that CC and PbC are equivalent. However, the CC rule
is interesting because it allows a computational interpretation as the so-called call-with-
current-continuation construct that is available in the (dynamically typed) programming
language Scheme. The relation to classical logic was established by Griffin [1990], echoing
previous discoveries such as the Gödel-Gentzen translation [Gödel, 1933, Gentzen, 1936]
from Peano (classical) to Heyting (intuitionistic) arithmetic, and Friedman’s [1978] trans-
lation.

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

Continuations L12.2

2 Equivalence of PbC and CC

Let’s assume the rule of proof by contradiction. We have to show that CC is derivable. The
following in such a derivation. It shows that if we have a hypothetical proof of A true∗ from
¬A true∗ (labeled u) then we can conclude A true∗ using the rule of proof by contradiction.

¬A true∗
u

¬A true∗
u

...
A true∗

⊥ true∗
⊃E

A true∗
PbCu

Next, let’s assume we have the rule CC. We have to derive the rule PbC.

¬A true∗
u

...
⊥ true∗

A true∗
⊥E

A true∗
CCu

3 Evaluation Contexts

Our current definition of the dynamics for a functional language is based on two basic
judgments: M −→ M ′ and M value, plus a multi-step relation derived from the first. Un-
fortunately, the rules defining M −→ M ′ are not well-suited to define the computational
meaning of CC. Instead we follow the approach of Wright and Felleisen [1994]. Without
changing the extent of the judgment M −→ M ′, we rewrite its definition by factoring out
the congruence rules so it is defined by the following single rule that extends local reduc-
tion:

M =⇒R M ′

C[M] −→ C[M ′]

where C[] is the notation for an evaluation context C with a hole, and C[M] denotes the
result of plugging M into this hole.

We transform the collection of congruence rules into rules defining permissible evalu-
ation contexts. Formally, we would have a judgment C evctx and rules like the following

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

Continuations L12.3

(shown here for functions):

General Rule

[] evctx

Evaluation Context Previous Congruence Rule

C evctx
C N evctx

M −→ M ′

M N −→ M ′N

M value C evctx
M C evctx

N −→ N ′

M N −→ M N ′

We won’t prove that the two systems are indeed equivalent, and while it requires some
effort it is not particularly difficult. We summarize the admissible evaluation contexts in
EBNF form. Here we write V for terms M such that M value.

Evaluation contexts C ::= [] (general)
| fstC | sndC (A ∧B)
| C N | V C (A⊃B)
| inlC | inrC | case(C, u.N,w.P) (A ∨B)
| (none) (⊤)
| abortC (⊥)

Let’s return to the example from and recast it with this new notation. We defined:

bool = 1 + 1 (∼ ⊤ ∨⊤)
true = inl ⟨ ⟩
false = inr ⟨ ⟩

we might expect
snd (fst ⟨ ⟨true, false⟩, true ⟩) −→2 false

We show at each step how the term is decomposed and then recomposed.

snd (fst ⟨ ⟨true, false⟩, true ⟩)

= snd [fst ⟨ ⟨true, false⟩, true ⟩]

−→ snd [⟨true, false⟩]

= snd ⟨true, false⟩

= [snd ⟨true, false⟩]

−→ [false]

= false

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/10-proglang.pdf

Continuations L12.4

4 Call with Current Continuation

Now we are prepared to assign a proof term to the CC rule. In fact, we will do a little more,
introducing ¬A as a new connective with the following two rules:

¬A true∗ A true∗

C true∗
¬E

¬A true∗
k

...
A true∗

A true∗ CCk

All other rules remain the same as for intuitionistic logic. Note that there is no introduction
rule for ¬A, so the only way we can obtain it is as a hypothesis from the CC rule.

Adding proof terms:

M : ¬A N : A

throwM N : C
¬E

k : ¬A
k

...
M : A

callcc (k.M) : A
CCk

The key idea of the dynamics is that a value of type ¬A is an evaluation context with a hole
of type A. The rule for callcc captures the evaluation context in which the callcc occurs
and substitutes it for k. The rule for throw essentially returns to the state of computation
as it was when callcc was invoked.

C[] value

C[callcc (k.M)] −→ C[[C[]/k]M]

V value
C[throwC ′[]V] −→ C ′[V]

Values of the form C[] : ¬A are runtime artifacts, captured by uses of callcc, and can
cannot explicitly appear in an expression before it is evaluated. Allowing this would lead
to a failure of type preservation.

A significant aspect of the throw rule is that it abandons the current evaluation context
C, resurrecting the context C ′ that was captured at an earlier stage and substituted for a
k : ¬A.

We also have to extend evaluation contexts to account for the components of throw
that mirror the ones for function application M N

Evaluation contexts C ::= . . .
| throwC N | throw V C (¬A)

We next review some examples to get an intuition for the behavior of callcc and throw.
To make these more intuitive, we assume have a primitive type int or nat with the usual
arithmetic operations.

First, if a continuation is not thrown to we simply return the value of the body of the
callcc.

callcc(k. 1 + 3) −→∗ 4

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

Continuations L12.5

If we throw to a continuation we abandon the local context.

1 + callcc(k. 2 + throw k 3)
= 1 + [callcc(k. 2 + throw k 3)]
−→ 1 + (2 + throw (1 + []) 3)
= 1 + (2 + [throw (1 + []) 3])
−→ 1 + [3]
= 1 + 3
= [1 + 3]
−→ [4]
= 4

Since the throw itself abandons the local context, its result type is arbitrary (as you can
also see from the its typing rule). For example, the expression below is well-typed and
also evaluates to 4 as the previous example.

1 + callcc(k. 2 + fst(throw k 3)) −→∗ 4

5 Using Continuations Like Exceptions

One use for continuations is similar to exceptions in the sense that they can be used for the
same purpose: to escape a local computation context. But while continuations are lexically
scoped, exceptions are typically dynamically scoped.

We use the form of callcc available in Standard ML:

1 type ’a cont (* not A *)
2 val callcc : (’a cont -> ’a) -> ’a (* callcc (fn k => M) *)
3 val throw : ’a cont -> ’a -> ’b (* throw M N *)

Examples similar to the ones from the previous section work as expected.

1 open SMLofNJ.Cont;
2
3 val ex1 = callcc (fn k => throw k 4); (* = 4 *)
4 val ex2 = callcc (fn k => 5); (* = 5 *)
5 val ex3 = 7 + callcc (fn k => 3 + throw k 2); (* = 9 *)

Here is a standard example where we short-circuit multiplication of elements in a list
once we encounter a 0. The key here is not that we avoid multiplication with later elements
in the list, but that we bypass multiplication of all the prior elements.

1 open SMLofNJ.Cont;
2
3 (* mult : int cont -> int list -> int *)
4 fun mult k nil = 1
5 | mult k (x::xs) = if x = 0 then throw k 0
6 else x * mult k xs

Similarly, here is an example of short-circuiting a conjunction if the first boolean argu-
ment is false. This is somehow tricky to do in a call-by-value language and the usual
technique would be to pass in function unit -> bool. With continuations, we can pass in

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

Continuations L12.6

a continuation which is the destination for the result of the conjunction. This allows us to
escape the local context and avoid evaluating the second boolean argument to conjoin.

1 (* conjoin : bool cont -> bool -> bool -> ’a *)
2 fun conjoin k false = C.throw k false
3 | conjoin k true = fn y => C.throw k y
4
5 C.callcc (fn k => conjoin k false true); (* = false *)
6 C.callcc (fn k => conjoin k true false); (* = false *)
7 C.callcc (fn k => conjoin k false (raise Match)); (* = false *)

Some of the most advanced uses of first-class continuations involve returning a capture
continuation, and possibly storing it in a data structure. Many of these uses also involve
mutable store (to save the continuation), so we will not give such examples here. We may
come back to this point in a later lecture when we discuss backtracking search.

6 Bidirectional Typing with Continuations

We wrote a bidirectional type-checker in Lecture 6, based on reading of the inference rules
as a recipe for proof construction. We had a type prop for propositions and term for proof
terms and the following functions:

1 val check : term -> prop -> bool
2 val synth : term -> prop option

They code was extracted from constructive proofs of

check ∀M. ∀A. (M ⇐ A) ∨ ¬(M ⇐ A)
synth ∀M. (∃A.M ⇒ A) ∨ ¬(∃A.M ⇒ A)

One pragmatic downside of this approach is that there no room for error messages. If we
change the return types bool and prop option to account for error messages, the code
because unpleasantly complicated.

Instead, we can pass in a continuation that takes an error message (a string) as an
argument and even simplify the return type.

1 val check : string cont -> term -> prop -> bool
2 val synth : string cont -> term -> prop

We could even simplify further and replace bool by unit, in which case a normal return
indicates that the term checks.

With these simplified types, the code can also be simplified because, for example, we no
longer need to check if synthesis succeeds. If not, it will discard the local context and throw
and error message to the continuation. We show a few lines of this code; our complete live-
coded implementation can be find in tcheck-cont.sml.

1 fun check k (Pair(M,N)) (And(A,B)) = check k M A andalso check k N B
2 | check k (Pair(M,N)) C = throw k "pair/not-and"
3 | check k (Lam(F)) (Imp(A,B)) = check k (F (Hyp A)) B
4 | check k (Lam(F)) C = throw k "lam/not-imp"
5 | check k (Inl(M)) (Or(A,B)) = check k M A

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/06-algo.pdf
http://www.cs.cmu.edu/~fp/courses/15317-s23//lectures/12-cont/tcheck-cont.sml

Continuations L12.7

6 | check k (Inl(M)) C = throw k "inl/not-or"
7 | check k (Inr(M)) (Or(A,B)) = check k M B
8 | check k (Inr(M)) C = throw k "inr/not-or"
9 | check k (Case(M,F,G)) C =

10 (case synth k M
11 of Or(A,B) => check k (F (Hyp A)) C andalso check k (G (Hyp B)) C
12 | _ => throw k "case/not-or")
13 | ...
14
15 and synth k (Hyp(A)) = A
16 | synth k (Fst(M)) =
17 (case synth k M
18 of And(A,B) => A
19 | _ => throw k "fst/not-pair")
20 | synth k (Snd(M)) =
21 (case synth k M
22 of And(A,B) => B
23 | _ => throw k "snd/not-pair")
24 | synth k (App(M,N)) =
25 (case synth k M
26 of Imp(A,B) => if check k N A then B
27 else throw k "app/not-match"
28 | _ => throw k "app/not-implies")
29 | synth k M = throw k "does not synthesize"
30
31 fun check_tp M A = callcc (fn k => if check k M A then "OK" else "

Impossible")

7 The Dark Underside

callcc has been called “the ’goto’ of functional languages”. Despite the fact that the con-
tinuation type ¬A connects to classical propositional logic, its departure from the verifica-
tionist explanation of connectives and propositions means that it has its limitations when
one also includes quantifiers. It has to be considered a “control effect” and as such is not a
pure functional construct [Harper et al., 1993].

As one example of the strangeness of callcc we consider how it is used to prove the
law of excluded middle, and what that means computationally. First, the logical proof.
We avoid here overloading negation because of its new, classical meaning, and just write
A ∨ (A⊃⊥) for the law of excluded middle.

¬(A ∨ (A⊃⊥))
k

A
u

A ∨ (A⊃⊥)
∨I1

⊥
¬E

A⊃⊥
⊃Iu

A ∨ (A⊃⊥)
∨I2

A ∨ (A⊃⊥)
CCk

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

Continuations L12.8

The right way to understand this proof is to construct it using our usual hybrid bottom-
up/top-down strategy, or look at the meaning of the proof term which comes next.

k : ¬(A ∨ (A⊃⊥))
k

u : A
u

inlu : A ∨ (A⊃⊥)
∨I1

throw k (inlu) : ⊥
¬E

λu. throw k (inlu) : A⊃⊥
⊃Iu

inr (λu. throw k (inlu)) : A ∨ (A⊃⊥)
∨I2

callcc (k. inr (λu. throw k (inlu))) : A ∨ (A⊃⊥)
CCk

We define
exmA : A ∨ (A⊃⊥)

= callcc (k. inr (λu. throw k (inlu)))

When we use this as the subject of a case statment

C[case([exmA], x.N, y. P)]

the callcc will capture the current evaluation context C ′[] = C[case([], x.N, y. P)] as k and
then proceed with inr (λu. throwC ′[] (inlu)). This is a value, so in essence exmA claims
that A⊃⊥ holds! So

C[case(exmA, x.N, y. P)]
= C[case(callcc (k. inr (λu. throw k (inlu))), x.N, y. P)]
−→ C[case(inr (λu. throwC ′[] (inlu)), x.N, y. P)] for C ′[] = C[case([], x.N, y. P)]
−→ C[[(λu. throwC ′[] (inlu))/y]P]

Now P could finish normally (without using y), resulting in some value W , and overall
we would obtain C[W] which then further reduces to a final answer.

But how could P use y? Since y : A ⊃ ⊥, it can only use it by applying yM where
M : A. After M has been reduced to a value V , this then becomes throwC ′[] (inlV). But
this is just

C[case(inlV, x.N, y. P)] −→ C[[V/x]N]

In other words, we have returned to the case and now claim that A holds. The evidence V
for that was provided by P itself. This means this original assertion that A⊃⊥ was a lie!

This fib is an example of what makes the whole enterprise of a computational interpre-
tation of classical logic brittle and ultimately unsatisfactory. For example, it is inconsistent
with an extension to a dependent type theory.

References

Harvey Friedman. Classically and intuitionistically provably recursive functions. In D.S.
Scott and G.H. Muller, editors, Higher Set Theory, pages 21–27. Springer-Verlag LNM 699,
1978.

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

Continuations L12.9

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Zeitschrift, 112:493–565, 1936. English translation in M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, 1969.

Kurt Gödel. Zur intuitionistischen arithmetik und zahlentheorie. In Ergebnisses eines mathe-
matischen Kolloquiums, volume 4, pages 34–38, 1933. English translation “On intuitionistic
arithmetic and number theory”, M. Davis, ed., The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems, and Computable Functions, pp. 75–81, Dover Publica-
tions, 1965.

Timothy Griffin. A formulae-as-types notion of control. In F. E. Allen, editor, 17th Sympo-
sium on Principle of Programming Languages, pages 47–58, San Francisco, California, jan
1990. ACM Press.

Robert Harper, Bruce F. Duba, and David B. MacQueen. Typing first-class continuations
in ML. Journal of Functional Programming, 3(4):465–484, 1993.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, November 1994.

LECTURE NOTES THURSDAY, FEBRUARY 23, 2023

	Introduction
	Equivalence of PbC and CC
	Evaluation Contexts
	Call with Current Continuation
	Using Continuations Like Exceptions
	Bidirectional Typing with Continuations
	The Dark Underside

