
Lab 2
Natural Deduction and Compilation

15-417/817: HOT Compilation
Frank Pfenning

Due Thu Feb 6 (tests), Thu Feb 13 (compilers)
150 points

In this second lab we study the first version of our source language ND with a linear type
system. We further restrict ourselves to the first-order fragment where all types are positive, aug-
mented with metavariables that internalize the typing judgment. Extensions will continue to be
the core of our compiler throughout the semester. Finally, you will have a chance to implement
the first optimizations!

1 Submissions

Your submissions should be handed in directly to Gradescope from Github or Bitbucket. You may
hand in as often as you like.

1.1 Test Cases (30 points)

Your handin should have a directory tests/ that contains 10 distinct test files with a variety of
ND programs <file>.nd. Your files should have a mix of negative tests (which are required
to fail) and positive tests. Among the positive tests should be definitions with parameters and
those with without. We will provide a script ˜fp/bin/nd-split to split each file into several
files <file>.<i>.nd containing programs that no longer contain fail definitions (as described
below); some of these programs may pass all static checks and some not.

Your compilers will parse and perform static checks (including typechecking) on each file re-
sulting from splitting. Those that pass should then be compiled to <file>.<i>.nd.sax. As
in Lab 1, parameterless definitions in the target file will be executed by the reference imple-
mentation, and the resulting <file>.nd.sax.val compared to the reference values. You may
validate your test files using the reference implementation of ND available at ˜fp/bin/nd and
˜fp/bin/nd-test on the linux.andrew machined.1

Some of your test files should implement some interesting algorithms. Efficiency of execution
is becoming somewhat of an issue, so some passing test cases should perform nontrivial compu-
tation.

1Availability will be announced on Ed Discussion.

ASSIGNMENTS DUE THU JAN 23 (TESTS), THU JAN 30 (COMPILERS)

Lab 2 L2.2

1.2 Compiler (120 points)

Your handin should contain a Makefile at the top level that compiles your sources to create the
executable ./nd. This executable should take a single <file>.nd as an argument and write a
file <file>.nd.sax if static checking succeeds. It may be empty if there are no definitions in
<file>.nd.

There is a parser available in OCaml and Rust. You may use another implementation language,
but you should contact the course staff to make sure it is available in the correct configuration in
the autograder on Gradescope.

2 Grammars

2.1 Lexical Analysis

We change the syntax for comments from Sax to be more typical for functional languages.

% ... \n or % ... <eof> for single-line comments
(* ... *) for multi-line (nested) comments

<whitespace> ::= [\t\r\n]

<idstart> ::= [a-zA-Z_]
<idchar> ::= [a-zA-Z_0-9]
<id> ::= <idstart> <idchar>*
<label> ::= ’ <idchar>+

<keywords> ::= ’type’ | ’defn’ | ’fail’
| ’match’ | ’with’ | ’end’
| ’proc’ | ’read’ | ’write’ | ’cut’ | ’id’ | ’call’ | ’reuse’
| ’value’

Keywords cannot be used as identifiers <id>. The character $ is legal in identifiers in Sax but
not in ND. This allows you to generate fresh names without fear of conflicting with the source.
Similarly, we have declared the keywords of Sax as keywords to avoid unpleasant needs to rename
variables in the translation.

2.2 ND Grammar (files *.nd)

<testfile> ::= <test>*

<test> ::= <defn>
| ’fail’ <defn>

<prog> ::= <defn>*

<defn> ::= ’type’ <id> ’=’ <tp>
| ’defn’ <id> <parm>* ’:’ <tp> ’=’ <exp>

<exp> ::= <atom>

ASSIGNMENTS DUE THU JAN 23 (TESTS), THU JAN 30 (COMPILERS)

Lab 2 L2.3

| <id> <atom>+
| <exp> ’,’ <exp>
| <label> <exp>
| ’match’ <exp> ’with’ <branch>+ ’end’

<atom> ::= <id>
| ’(’ ’)’
| ’(’ <exp> ’)’

<branch> ::= ’|’ <pat> ’=>’ <exp>

<pat> ::= <id>
| <pat> , <pat>
| ’(’ ’)’
| <label> <pat>
| ’(’ <pat> ’)’

<parm> ::= ’(’ <id> ’:’ <tp> ’)’

<tp> ::= ’+’ ’{’ <alts> ’}’
| <tp> ’*’ <tp>
| ’1’
| <id>
| ’(’ <tp> ’)’

<alts> ::= <alt>
| <alt> ’,’ <alts>

<alt> ::= <label> ’:’ <tp>

’*’ is right associative, so A * B * C == A * (B * C)
’,’ is right associative, so x, y, z == x, (y, z)
<label> is a prefix with higher priority than ’,’, so

’cons x, y == (’cons(x), y) and
’succ ’zero () == ’succ (’zero ())

The keyword ’fail’ appears only in the test case sources and never in programs seen by your
compilers. They are used to split up the source into several separate files. A segment is a sequence
<defn>* ’fail’ <defn> which is written to a separate file containing <defn>* <defn>. We
then eliminate ’fail’ <defn> and continue to process the same file. For example,

1 fail
2 type nat = +{zero : 1, ’succ : nat}
3 type nat = +{’zero : 1, ’succ : nat}
4
5 defn succ (x : nat) : nat = ’succ x
6 fail
7 defn pred (x : nat) : nat = match x with
8 | ’succ(x) => x
9 end

ASSIGNMENTS DUE THU JAN 23 (TESTS), THU JAN 30 (COMPILERS)

Lab 2 L2.4

will create three files:

1. With just line 2 (should fail)

2. With lines 3, 4, 5, 7, 8, 9 (should fail)

3. With lines 3, 4, 5 (should succeed)

Here we have put fail on separate lines to more easily describe the outcome of splitting. You
may also just submit files without any fail declarations.

2.3 Statics

As in Sax, all types and definitions may be mutually recursive, respectively. Bound variables can
be renamed arbitrarily, except those bound “simultaneously” (that is, parameters to a top-level
function or variables in a pattern) must be distinct. In addition to linear typing as detailed in the
lecture notes, we have the following static requirements.

1. Sums must be nonempty (enforced by the grammar)

2. Sums may not contain any duplicate labels

3. Type definitions must be contractive, that is, their right-hand side cannot be a type name

4. Branches must be nonempty empty (enforced by the grammar)

5. Type names may be defined at most once

6. Type names that are used must be defined

7. Variables bound in a pattern must all be distinct

8. Top-level functions may be defined at most once

9. Top-level functions that are called must be defined

10. All parameters to a top-level function must be distinct

2.4 Typing

The core of the typing rules can be found in Lecture 3. In these rules, the order of antecedents is
seen as irrelevant, and the comma operator conjoins contexts with disjoints sets of variables. Shad-
owing is allowed which could be implemented via renaming of bound variables, or via keeping
the contexts ordered in your implementation. In particular, top-level function names and variable
names occupy the same name space, and bound variables may shadow metavariables. This is
because otherwise occurrence of metavariables without arguments might be ambiguous.

There are some subtleties regarding the type-checking of nested pattern matching, explained
in Lectures 5 and 6. In addition, we decided against a separate syntax for sequences of patterns,
reusing the syntax for pairs instead (that is e1, . . . , en for the subjects of a match and p1, . . . , pn for
the patterns). This means that we have additional rules for bidirectional typing, where

Γ ⊢ e1 =⇒ A ∆ ⊢ e2 =⇒ B

Γ ; ∆ ⊢ (e1, e2) =⇒ A⊗B
⊗I⇒

Γ ; ∆ ⊢ () =⇒ 1
1I⇒

ASSIGNMENTS DUE THU JAN 23 (TESTS), THU JAN 30 (COMPILERS)

Lab 2 L2.5

We will have occasion to revise this later on. We recommend you use these only to type the subjects
of matches, and otherwise use the checking judgment for pairs and unit.

The coinductive rules for subtyping A ≤ B are given in Section 5 of Lecture 2. These are the
same as for Lab 1, but are applied only in the rule ⇒/⇐.

2.5 Dynamics

We recommend, but do not require, that you implement a direct evaluator for ND, which you may
use to test your code.

2.6 Optimizations

We recommend, but do not require at this point, that you implement the cut/id and reuse opti-
mizations as a form of Sax to Sax transformation. While executing your Sax code, we will measure
various dynamic aspects like the number of allocations, size of the heap, steps executed, etc. These
will be written as comments in the <file>.nd.sax.val files that our interpreter produces.

For this purpose, the folder with the implementation should contain a readme.txt or readme.md
file that explains which optimizations you implemented and any other significant information
about your implementation.

ASSIGNMENTS DUE THU JAN 23 (TESTS), THU JAN 30 (COMPILERS)

http://www.cs.cmu.edu/~fp/courses/15417-s25/lectures/02-typechecking.pdf

	Submissions
	Test Cases (30 points)
	Compiler (120 points)

	Grammars
	Lexical Analysis
	ND Grammar (files *.nd)
	Statics
	Typing
	Dynamics
	Optimizations

