
Lecture Notes on
Negative Types

15-417/817: HOT Compilation
Frank Pfenning

Lecture 7
February 4, 2025

1 Introduction

So far, our language has been entirely “first-order”, that is, we could not pass functions as argu-
ments or return them from functions or store them in pairs, etc. As one of the teaching assistants
put it: “How much longer can we call this course Higher-Order Typed Compilation without higher-order
functions.” In today’s lectures we complete the picture of type constructors by introducing nega-
tive types for functions A→ B and lazy records N{ℓ : Aℓ}ℓ∈L (also known as objects). This is also
a good opportunity to revisit the key components of our development such as the ND and Sax
languages, their type systems, their dynamics, and their compilation.

2 Function Types in ND

The most obvious extension towards a higher-order language is to introduce general function
types A → B. For the moment, such functions will remains linear, so a more explicit notation
would be A⊸ B. However, within a few lectures we will move on to a language in which linear,
affine, and other forms of functions coexist, so we stick with A→B as a unifying notation.

The obvious way to introduce a function is via λ-abstraction, the obvious way to eliminate is
via application.

Γ, x : A ⊢ e : B

Γ ⊢ λx. e : A→B
→I

Γ ⊢ e1 : A→B ∆ ⊢ e2 : A

Γ ; ∆ ⊢ e1 e2 : B
→E

In the case for application we need to split the context to account for linearity.
We went from this to an algorithm for type-checking in two steps: in the first step we make it

bidirectional; in the second step we generate additive output contexts of variables actually used.
For the bidirectional rules, we need to remember that a hypothesis x : A is, bidirectionally, a

shorthand for x =⇒ A. Then:

Γ, x : A ⊢ e ⇐= B

Γ ⊢ λx. e ⇐= A→B
→I

Γ ⊢ e1 =⇒ A→B ∆ ⊢ e2 ⇐= A

Γ ; ∆ ⊢ e1 e2 =⇒ B
→E

As expected, the each judgment reverses direction between the introduction and elimination
rules. Let’s quickly verify the elimination rules, making sure all information is available when it

LECTURE NOTES FEBRUARY 4, 2025

Negative Types L7.2

needs to be. We show everything that is known at each stage during type-checking in green.

Γ ⊢ e1 =⇒ A→B ∆ ⊢ e2 ⇐= A

Γ ; ∆ ⊢ e1 e2 =⇒ B
→E

For now, we assume we can calculate Γ and ∆ from Γ ; ∆, even though this will not actually be
realized until we add output contexts. Also, since e1 e2 is known, so are e1 and e2.

Γ ⊢ e1 =⇒ A→B ∆ ⊢ e2 ⇐= A

Γ ; ∆ ⊢ e1 e2 =⇒ B
→E

At this point we cannot actually check e2 against A, because we don’t know what A is (yet). But
we can synthesize a type for e1 instead, which (if type-correct) gives us A→B.

Γ ⊢ e1 =⇒ A→B ∆ ⊢ e2 ⇐= A

Γ ; ∆ ⊢ e1 e2 =⇒ B
→E

From this we can extract A and B, the first which is needed to check e2, and the second one is
what the application e1 e2 synthesizes.

Γ ⊢ e1 =⇒ A→B ∆ ⊢ e2 ⇐= A

Γ ; ∆ ⊢ e1 e2 =⇒ B
→E

Using an input context containing all variables that are lexically in scope we can refine this
into

Γ, x : A ⊢ e ⇐= B / Ξ

Γ ⊢ λx. e ⇐= A→B / (Ξ \ x)
→I

Γ ⊢ e1 =⇒ A→B / Ξ1 Γ ⊢ e2 ⇐= A / Ξ2

Γ ⊢ e1 e2 =⇒ B / (Ξ1 ; Ξ2)
→E

One fundamental difference between values of positive and negative type is that the former
can be explicitly observed, while the latter can only be interacted with. For example, functions are
compiled and their structure may be lost, but they can be applied to obtain an observable result.
This is true in all main-stream functional languages, in part because it supports modularity and
allows the compiler to generate efficient code without having to maintain a source representation.
The λ-calculus [Church and Rosser, 1936] was not developed, however, with such a distinction in
mind. It emerged only later, through the study of proof theory and its connection to programming
(see, for examples, Levy’s call-by-push-value [Levy, 2006]). Levy’s analysis also explains why
functions here evaluate their arguments, unlike the notion of conversion underlying the original
λ-calculus.

In the dynamics, functions appear as a new kind of value, λx. e which itself does not contain
other values but general expressions. Evaluation then becomes

λx. e ↪→ λx. e

e1 ↪→ λx. e(x) e2 ↪→ V2 e(V2) ↪→ V

e1 e2 ↪→ V

In the next lecture, when we discuss closures, we will have a chance to revisit this rules and its
consequences.

LECTURE NOTES FEBRUARY 4, 2025

Negative Types L7.3

3 Lazy Records

Lazy records, which can be used to implement some forms of objects albeit without all the affor-
dances of object-oriented languages, is another new form of type, N{ℓ : Aℓ}ℓ∈L somehow symmet-
ric to sums. This type is inhabited by values {ℓ ⇒ eℓ}ℓ∈L that cannot be directly observed. While
we apply functions to arguments, we instead project fields from lazy records writing e.k for a label
k. The byword “lazy” is to suggest that it contains arbitrary expressions, not values. As for sums,
we require the index set L to be nonempty. This is not a fundamental necessity, but a simplifying
restriction.

Leading with the dynamics for a change:

{ℓ ⇒ eℓ}ℓ∈L ↪→ {ℓ ⇒ eℓ}ℓ∈L

e ↪→ {ℓ ⇒ eℓ}ℓ∈L ek ↪→ V (k ∈ L)

e.k ↪→ V

The typing rules combine aspects of sums and functions.

(Γ ⊢ eℓ : Aℓ) (∀ℓ ∈ L)

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L : N{ℓ : Aℓ}ℓ∈L
NI

Γ ⊢ e : N{ℓ : Aℓ}ℓ∈L (k ∈ L)

Γ ⊢ e.k : Ak

NE

Note that for the introduction rule, all premises must check with the same context Γ. That’s be-
cause due to linearity, at runtime exactly one branch will be projected out, and whichever branch
it is must be well-typed in Γ.

We skip the purely bidirectional intermediate step and go directly to the version with output
contexts.

(Γ ⊢ eℓ ⇐= Aℓ / Ξ) (∀ℓ ∈ L)

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ}ℓ∈L / Ξ
NI

Γ ⊢ e =⇒ N{ℓ : Aℓ}ℓ∈L / Ξ (k ∈ L)

Γ ⊢ e.k =⇒ Ak / Ξ
NE

Note that exactly the same variables Ξ must be used in each field of the record. When we move
away from the purely linear set-up, this will require some changes.

4 Three Small Examples

First, turning what typically might be defined as a metavariable

defn proj1 (x : nat) (y : nat) : nat

into a first-class function. One of the differences is that we can partially apply a first-class func-
tion, that is, proj1 (’zero()) : nat -> nat, which will build a so-called closure at runtime.
This does not apply to metavariables that are always used with all arguments (that is, a full sub-
stitution).

type nat = +{’zero : 1, ’succ : nat}

defn destroy (x : nat) : 1 = match x with
| ’zero() => ()
| ’succ(y) => destroy y
end

defn proj1 : nat -> nat -> nat = fun x => fun y =>
match destroy y with | () => x end

LECTURE NOTES FEBRUARY 4, 2025

Negative Types L7.4

The second example is a (linear) counter object holding a natural number that can receive incre-
ment and decrement messages and responds with ’none() if the number cannot be decremented
(also terminating the object in the process).

type ctr = &{’inc : ctr,
’dec : +{’none : 1, ’some : ctr}}

defn counter (v : nat) = record
| ’inc => counter (’succ v)
| ’dec => match v with

| ’zero() => ’none()
| ’succ(w) => ’some(counter w)
end

end

Third, an example that combines features of functions and objects: a store. Even if not ex-
pressed in the type, this particular implementation of a store constitutes a stack.

type store = &{’ins : nat -> store,
’del : +{’none : 1, ’some : nat * store}}

defn empty : store = record
| ’ins => fun x => elem x empty
| ’del => ’none()
end

defn elem (x : nat) (s : store) : store = record
| ’ins => fun y => elem y (elem x s)
| ’del => ’some (x, s)
end

5 Subtyping

Before moving on from ND to Sax, we consider subtyping because negatives create some new
phenomena. Recall what we consider the defining properties of subtyping: we can consider an
expression to have a larger type without change, and we can consider a variable to have a smaller
type, again without change.

Right subsumption: If Γ ⊢ e : A and A ≤ B then Γ ⊢ e : B

Left subsumption: If A ≤ B and Γ, x : B ⊢ e : C then Γ, x : A ⊢ e : C.

As a typical example consider

type pos = +{’succ : nat}

If we know e : pos , we can forget this detailed knowledge and treat the expression as if e : nat .
Conversely, if x : nat ⊢ e : C and then x : pos ⊢ e : C should also be okay—e just doesn’t take
advantage of this more precise information.

Recall that the subtyping rules are interpreted coinductively, that is, infinite derivations are
allowed. Based on these considerations, we get

B1 ≤ A1 A2 ≤ B2

A1 →A2 ≤ B1 →B2

LECTURE NOTES FEBRUARY 4, 2025

Negative Types L7.5

For example, a function nat → pos is also a function pos → nat . We say function types are con-
travariant in their argument and covariant in their result.

For lazy records, if
Γ ⊢ e : N{ℓ : Aℓ}ℓ∈L

then we can project only any field ℓ ∈ L. If L ⊇ K, then it also holds that

Γ ⊢ e : N{k : Ak}k∈K

we just don’t know about any hidden fields in L−K that are inaccessible. The upshot is the rule

(L ⊇ K) (Ak ≤ Bk) (∀k ∈ K)

N{ℓ : Aℓ}ℓ∈L ≤ N{k : Bk}k∈K

It also means that if we check a record against a type, we should allow additional fields in the
record. Otherwise, the fundamental property of subtyping would fail.

(L ⊇ K) (Γ ⊢ ek ⇐= Ak / Ξ) (∀k ∈ K)

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{k : Ak}k∈K / Ξ
NE

In summary, large values for ND are now:

Large values V ::= (V1, V2) | () | k(V) (positive)
| λx. e | {ℓ ⇒ eℓ}ℓ∈L (negative)

6 Extending Sax

We also have to extend Sax to include the new types. This actually reveals some symmetries that
are hidden in ND. Let’s remember how this work for pairs. On the logical side, we took the
noninvertible rules and turned them into axioms. We did this so we could type cells. From the
sequent calculus (which we didn’t discuss in depth), we know the right rule is not invertible but
the left rule is. A small example demonstrating this is the proof of B ⊗ A ⊢ A ⊗ B. We also have
to remember that in the process assignment we always read from the variables on left and write
to the variable on the right (which is the destination of the computation). For these typing rules,
we do not take subtyping into account, but that can be incorporated into the system following our
prior approach.

Γ ⊢ A ∆ ⊢ B

Γ ; ∆ ⊢ A⊗B
⊗R

⇝ A,B ⊢ A⊗B
⊗X

⇝ a : A, b : B ⊢ write c (a, b) :: (c : A⊗B)
⊗X

Γ, A,B ⊢ δ

Γ, A⊗B ⊢ δ
⊗L

⇝ (unchanged) ⇝

Γ, x : A, y : B ⊢ P :: δ

Γ, c : A⊗B ⊢ read c (x, y) ⇒ P :: δ
⊗L

For negative types, the properties are reversed: the right rule is invertible while the left rule is not.
So we start with the parts below, leaving ?? where we have to pause and think.

Γ, A ⊢ B

Γ ⊢ A→B
→R

⇝ (unchanged) ⇝

Γ, x : A ⊢ P :: (y : B)

Γ ⊢ write c ?? :: (c : A→B)
→R

Γ ⊢ A ∆, B ⊢ δ

Γ ; ∆, A→B ⊢ δ
→L

⇝ A,A→B ⊢ B
→X

⇝ a : A, c : A→B ⊢ read c ?? :: (b : B)
→X

LECTURE NOTES FEBRUARY 4, 2025

Negative Types L7.6

Let’s consider →R first. Looking at the premise, P is a process reading from x and writing to y.
They are both fresh variables in the premise, so we have

Γ, x : A ⊢ P :: (y : B)

Γ ⊢ write c (x, y) ⇒ P :: (c : A→B)
→R

So we write a continuation (x, y) ⇒ P to a cell. When reading from such a cell, we need to pass it
the function argument (as x) and destination (as y). So:

a : A, c : A→B ⊢ read c (a, b) :: (b : B)
→X

Looking back, we already have a pair of addresses as a small value, and a continuation (x, y) ⇒ P
in our language, we are just using them in new ways. In particular, we now store this form of
continuation in a memory cell, and we pass a pair to a continuation we have read.

So we generalize Sax from small values and continuations to the encompassing concept of a
storable. The fact that writing a continuation into a memory cell is unrealistic, which is why we
introduce closure and closure conversion in the next lecture. Even though we haven’t discussed lazy
records yet, we extrapolate from the other constructors and then illustrates how it comes out. We
also mention ⊥ (which is dual to 1), but which requires a judgment for processes with an empty
succedent. Such processes cannot write an answer, so while there are circumstances where they
may be useful we elide them from the language (at least for now).

Commands P,Q ::= write c S
| read c S
| cut (x : A) P Q
| id a b
| call F d b1 . . . bn

Storables S ::= v | K

Small values v ::= (a, b) (⊗,→)
| () (1, [⊥])
| k(a) (⊕,N)

Continuations K ::= (x, y) ⇒ P (⊗,→)
| () ⇒ P (1, [⊥])
| {ℓ(xℓ) ⇒ Pℓ}ℓ∈L (⊕, with)

Passing a small value to a continuation is now a more symmetric relationship, but the essence is
the same as before.

v ▷◁ K = K ▷◁ v = v ▷K

where
(a, b) ▷ (x, y) ⇒ P (x, y) = P (a, b)
() ▷ () ⇒ P = P
k(a) ▷ {ℓ(xℓ) ⇒ Pℓ(xℓ)}ℓ∈L = Pk(a) (k ∈ L)

and

proc (write c S) −→ cell c S
cell c S, proc (read c S′) −→ proc (S ▷◁ S′)
proc (cut (x : A) P (x) Q(x)) −→ proc P (a), proc Q(a) (a fresh)
cell b S,proc (id a b) −→ cell a S

proc (call F c b) −→ proc P (c, b) where F (x, y) = P (x, y)

LECTURE NOTES FEBRUARY 4, 2025

Negative Types L7.7

Now we finally explain lazy records. We realize we cannot just project a record onto a field
as in ND with .k because the expression in each fields requires a destination! That is, we have to
project instead with .k(a), where a is the destination. But that’s like selecting from a sum, except a
is a destination. Putting these obervations together (and cross-checking with the intuitions of the
dualities conjecture above), we obtain:

(Γ ⊢ Pℓ :: (xℓ : Aℓ)) (∀ℓ ∈ L)

Γ ⊢ write c {ℓ(xℓ) ⇒ P}ℓ∈L :: (c : N{ℓ : Aℓ}ℓ∈L)
NR

(k ∈ L)

c : N{ℓ : Aℓ}ℓ∈L ⊢ read c k(a) :: (a : Ak)
NL

7 Compilation

With all this background on typing and the dynamics, compilation is an afterthought, complicated
only later when we need to address closure conversion.

Jλx. eK d = write d ((x, y) ⇒ JeK y)
Je1 e2K d = cut x1

Je1K x1
cut x2

Je2K x2
read x1 (x2, d)

J{ℓ ⇒ eℓ}ℓ∈LK d = write d {ℓ(xℓ) ⇒ JeℓKxℓ}ℓ∈L
Je.kK d = cut x

JeK x
read x k(d)

References

Alonzo Church and J.B. Rosser. Some properties of conversion. Transactions of the American Math-
ematical Society, 39(3):472–482, May 1936.

Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order
and Symbolic Computation, 19(4):377–414, 2006.

LECTURE NOTES FEBRUARY 4, 2025

	Introduction
	Function Types in ND
	Lazy Records
	Three Small Examples
	Subtyping
	Extending Sax
	Compilation

