
Lecture Notes on
Adjoint Types

15-417/817: HOT Compilation
Frank Pfenning

Lecture 10
February 13, 2025

1 Introduction

At this point we have an expressive functional language with higher-order types, but all defini-
tions are purely linear. We have been able to get by using explicit functions to copy or drop values
of purely positive type. However, both from a programming and a efficiency perspective, copying
data is not desirable or sustainable. Furthermore, values of negative type such as functions cannot
be copied (because their structure is not observable) and therefore higher-order functions like map
and fold cannot be written.

The solution is to parameterize types by modes, where different modes have different struc-
tural properties. The term “modes” comes from modal logic, where we might distinguish different
modes of truth, such as validity, knowledge, or truth at a particular time or in a particular world.

What are these structural properties? We have contraction, which computationally means that
we can use a variable more than once, and weakening, which means that we do not need to use a
variable. The origin of these terms lies in the sequent calculus [Gentzen, 1935] with the rules

Γ, A,A ⊢ C

Γ, A ⊢ C
contraction

Γ ⊢ C

Γ, A ⊢ C
weakening

If we read them top-down, the name makes sense: contraction identifies two copies of A and
weakening goes from a stronger to a weaker property by adding an unused antecedent.

If we read these rules bottom up, we see that contraction allows us to use a variable more than
once (or create an alias for an existing variable), while weakening allows us not to use a variable.

From a programmer’s perspective using explicit rules in this form is unnecessarily tedious. It
would be much better if we could simply use a variable more than once (contraction) or not at all
(weakening). We will takes this path and develop an system of typing rules in which this will be
the case, leading to adjoint natural deduction [Jang et al., 2024], which in turn is based on the adjoint
sequent calculus [Reed, 2009, Pruiksma et al., 2018]. The ancestor of these formulations is Benton’s
mixed linear/non-linear logic [1994]. It departs from Girard’s formulation of linear logic [1987]
not only by being intuitionistic [Barber, 1996] but also by decomposing the exponential modality
!A.

The present lecture material is adapted from Jang et al. [2024]. Specifically, we simplify the
system by omitting empty sums and lazy records.

LECTURE NOTES FEBRUARY 13, 2025

Adjoint Types L10.2

2 A Preorder of Modes

The programmer specifies a set of modes m,n, k, . . . subject to a preorder m ≥ k. Each type has an
intrinsic mode, indicated by writing Am. The preorder specifies the allowed dependencies: when
we write

Γ ⊢ e ⇐⇒ Ak

we presuppose that for every x : Am in Γ we have m ≥ k.
In addition, the programmer specifies a set of structural properties allowed for each mode,

σ(m) ⊆ {W,C}. The preorder must be monotonic with respect to the structural properties, that is,
if m ≥ k then σ(m) ⊇ σ(k). This, together with independence, is paramount to guarantee that the
structural properties associated with each mode are suitably enforced.

For example, consider Am ⊗ Bm where m is an affine mode, that is σ(m) = {W}. Then in
match e ((x, y) ⇒ e′) we have x : Am and y : Am in the typing of e′. Because m admits weakening,
neither x nor y need to be used. But if there were linear variables in e, they might ultimately not
be used because the components of the pair they construct might not be used. Analogous remarks
apply to modes admitting contraction. At the technical level, for the sequent calculus, the all-
important property of cut elimination would fail [Benton, 1994, Pruiksma et al., 2018].

We use the following names to refer to a mode m with particular properties:

• Linear if σ(m) = { } (x : Am must be used exactly once)

• Affine if σ(m) = {W} (x : Am may be used at most once)

• Strict if σ(m) = {C} (x : Am must be used at least once)

• Structural (or unrestricted) if σ(m) = {W,C}. (x : Am may be used arbitrarily many times)

For the purpose of the specification and this course, we proceed as if the dynamics for each
mode is exactly the same. In other words, e ↪→ v for · ⊢ e : Am applies regardless of the mode
m. However, the system is set up such that different modes can have different interpretations, for
example, sequential, parallel with shared memory, message-passing, or even more exotic effects.
In each case we’d have to make sure the intended semantics is compatible with properties of the
mode. As a small example of this we observe that the reuse optimization from Lecture 6 applies
only to linear or affine modes, while the cut/identity optimization applies to all modes.

3 Shifts

All type constructors we have introduced so far have components at the same mode as the type
itself. This means that, for example, if they whole program is linear than everything can written
down exactly as we have written it so far. Or if the whole program is to be interpreted structurally,
again, we just work with a single mode across the whole program and no changes are required.

But there are many examples where we would like to mix modes in the functions or the data
structures. For example, we might want to have a linear list whose elements are unrestricted (for
example, share structure). Or in a binary search tree, we have to compare the key with elements
many times while traversing the tree, but at the same time the tree itself might be used linearly, as
an ephemeral data structure. Or consider linear lists with a map function:

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’nil : 1, ’cons : bin * list}

LECTURE NOTES FEBRUARY 13, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25//lectures/06-optimizations.pdf

Adjoint Types L10.3

defn map (f : bin -> bin) (l : list) : list =
match l with
| ’nil() => ’nil()
| ’cons(hd, tl) => ’cons(f hd, map f tl)
end

We see that the function f is not used linearly: it is not used at all in the case of ’nil(), and
it is used twice in the case of ’cons(ht, tl). On the other hand, it should be possible for the
argument and result to be linear lists, since the list itself is actually used linearly.

The solution is to use explicit shift modalities that switch between modes. It turns out there are
two: a positive downshift ↓kmAk that goes from k ≥ m down to m, and a negative upshift ↑mn An

that goes from n to m ≥ n. With that, we can define the language of types indexed by modes.

Positive types Am, Bm ::= Am ⊗Bm | 1 | ⊕{ℓ : Aℓ
m}ℓ∈L | ↓kmAk (k ≥ m)

Negative types | Am →Bm | N{ℓ : Aℓ
m}ℓ∈L | ↑mn An (m ≥ n)

The polarity of the shifts derives from their proof-theoretic properties in the sequent calculus
[Pruiksma et al., 2018]: The downshift is invertible on the left while the upshift is invertible on
the right. This also implies that the downshift is an eager constructor while the upshift is lazy. We
will discuss the dynamics when we come to these operators.

Our syntax of types is mostly derived from intuitionistic linear logic, but for some modes
there would be a corresponding, say, nonlinear notation that we don’t use. For example, for an
unrestricted mode U, one might write AU ×BU instead of AU ⊗BU. For function types, the reverse
is the case and one would typically write AL ⊸ BL for a linear mode L.

4 Adjoint Typing for ND

We have already set up the rules for linear ND such they will generalize to the adjoint case. It
turns out, surprisingly few adjustments need to be made. For each rule and operation, we need
to carefully track (a) independence, and (b) the structural properties. We will also see that except
for the shifts, the language of expressions doesn’t need to change at all. We now go through the
connectives one by one, determining the changes to be made.

In general, for the judgment
Γ ⊢ e ⇐⇒ Am / Ξ

we have that Γ tracks all variables that are lexically in scope, while Ξ contains the variables actually
used in the typing of e. We note that independence does not apply to Γ, but to Ξ! That’s because
we want e to only depend on y : Ak for k ≥ m for the variables actually used in e, not the all
variables that are lexically in scope.

So our guiding principles will be to enforce:

If Γ ⊢ e ⇐⇒ Am / Ξ then Ξ ≥ m and variables in Ξ must be used in e in accordance
with their permitted structural properties.

Eager pairs, A⊗B. First, the constructor.

Γ ⊢ e1 ⇐= Am / Ξ1 Γ ⊢ e2 ⇐= Bm / Ξ2

Γ ⊢ (e1, e2) ⇐= A1 ⊗A2 / Ξ1 ; Ξ2

⊗I

By our invariant, we will have Ξ1 ≥ m and Ξ2 ≥ m. As a result, Ξ1 ; Ξ2 ≥ m should also hold and
independence comes for free.

LECTURE NOTES FEBRUARY 13, 2025

Adjoint Types L10.4

Secondly, we need to make sure that only variables whose mode admits contraction are used
in both Ξ1 and Ξ2. So we refine the definition of the merge operator. A variable can in fact appear
on both sides, but only if its mode admits contraction.

(Ξ1, x : Am) ; (Ξ2, x : Am) = (Ξ1 ; Ξ2), x : Am provided C ∈ σ(m)
(Ξ1, x : Am) ; Ξ2 = (Ξ1 ; Ξ2), x : Am provided x ̸∈ Ξ2

Ξ1 ; (Ξ2, x : Am) = (Ξ1 ; Ξ2), x : Am provided x ̸∈ Ξ1

(·) ; (·) = (·)

One point to note is that if all modes in the program admit contraction (for example, if we check
a program that is entirely unrestricted) then the merge operation can never fail. Another note is
that the prior definition is a special case, because for every linear mode m with have σ(m) = { }.

Let’s review the prior elimination rule, writing in modes, including r for the mode of the
succedent.

Γ ⊢ e =⇒ Am ⊗Bm / Ξ1 Γ, x : Am, y : Bm ⊢ e′ ⇐= Cr / Ξ2

Γ ⊢ (match e with (x, y) ⇒ e′) ⇐= Cr / Ξ1 ; ((Ξ2 \ x) \ y)
⊗E?

First we note that if the mode m allows weakening, then (Ξ2 \ x) \ y should succeed even if x and
y do not occur in Ξ2. So we refine the previous definition.

(Ξ, x : Am) \ xm = Ξ
(Ξ, y : Ak) \ xm = (Ξ \ xm), y : Ak for x ̸= y
(·) \ xm = (·) provided W ∈ σ(m)

Again, if all modes admit weakening this cannot fail, and if all modes are linear than it specializes
to the previous definition.

But we are not quite home free yet: we also need to consider independence. From our invariant
we conclude Ξ1 ≥ m and Ξ2 ≥ r. What we need is Ξ1 ;((Ξ2 \ xm) \ ym) ≥ r. Because of transitivity
of the preorder between modes, this only requires m ≥ r. Rewriting the rule with all of this in
mind:

Γ ⊢ e =⇒ Am ⊗Bm / Ξ1 (m ≥ r) Γ, x : Am, y : Bm ⊢ e′ ⇐= Cr / Ξ2

Γ ⊢ (match e with (x, y) ⇒ e′) ⇐= Cr / Ξ1 ; ((Ξ2 \ xm) \ ym)
⊗E

Our previous update for the join operator makes sure that only variables with a mode that permits
contraction can be used in both premises.

Variables. The rule for variables is straightforward because both independence and any sub-
structural requirements are automatically satisfied.

Γ ⊢ x =⇒ Am / x : Am

var

Subtyping. Recall that the only use of subtyping appears in the transition from synthesis to
checking.

Γ ⊢ e =⇒ Am / Ξ Am ≤ Bm

Γ ⊢ e ⇐= Bm / Ξ
⇒/⇐

Here we just need to make sure both types have the same mode, and extend the coinductive rules
for subtyping to account for the shifts covariantly.

LECTURE NOTES FEBRUARY 13, 2025

Adjoint Types L10.5

Functions Am →Bm. Usually, negative types require quite different consideration from positive
ones, but not in this case. The main operations are context join and removal, both of which we
already generalized to account for multiple modes.

Γ, x : Am ⊢ e ⇐= Bm / Ξ

Γ ⊢ λx. e ⇐= Am →Bm / (Ξ \ xm)
→I

Γ ⊢ e1 =⇒ Am →Bm / Ξ1 ∆ ⊢ e2 ⇐= A / Ξ2

Γ ; ∆ ⊢ e1 e2 =⇒ Bm / Ξ1 ; Ξ2

→E

Definitions F [∆] : Am = e. Since we just considered functions, let’s consider top-level defini-
tions. To check F [∆] : Am = e we check

∆ ≥ m ∆ ⊢ e ⇐= Am / Ξ Ξ \ ∆ defined

F [∆] : Am = e valid
defn

The first condition checks independence, which is a kind of well-formedness required for the type
of F which abstracts over a whole context. The removal Ξ \ ∆ removes each variable in ∆ in turn,
checking that variables that do not permit weakening are indeed used. At the call site we have

F [∆] : Am = e Γ ⊢ σ ⇐= ∆ / Ξ

Γ ⊢ F [σ] =⇒ Am / Ξ
call

Γ ⊢ σ ⇐= ∆ / Ξ1 Γ ⊢ e ⇐= Am / Ξ2

Γ ⊢ (σ, x 7→ e) ⇐= (∆, x : Am) / Ξ1 ; Ξ2 Γ ⊢ (·) ⇐= (·) / (·)

Here, there is additional global requirement for Ξ since different types in the context ∆ may have
different modes. All of these modes are above m, so all of the Ξi and therefore Ξ are also above m,

Lazy Records N{ℓ : Aℓ
m}ℓ∈L. This is one of the most pervasive changes. Let’s annotate the previ-

ous rule from Lecture 7 with modes to start. Because we use the mode m as a subscript, we write
the label index ℓ as a superscript.

(Γ ⊢ eℓ ⇐= Aℓ
m / Ξ) (∀ℓ ∈ L)

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ
m}ℓ∈L / Ξ

NI?

In the linear case, there will be one projection from the record, so all branches need to use the
same Ξ. Now, due to weakening, there is the possibility that some branches do not use some of
the variables. For this purpose we need a new operation, Ξ1 ⊔ Ξ2. It is defined as follows

(Ξ1, x : Am) ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, x : Am) ⊔ Ξ2 = (Ξ1 ⊔ Ξ2), x : Am provided W ∈ σ(m)
Ξ1 ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am provided W ∈ σ(m)
(·) ⊔ (·) = (·)

In the case that all modes allow weakening, this is always defined. If all modes are linear, then it
specializes to the case where Ξ1 and Ξ2 need to be equal. We then define

⊔
ℓ∈L Ξℓ as the iterated

binary least upper bound operation. We assumed that lazy records are never empty (L ̸= { })
precisely so that this is always well-defined. If empty records are allowed, we require something
called provisional bindings [Jang et al., 2024], a complication we wish to avoid here since the payoff
is small.

LECTURE NOTES FEBRUARY 13, 2025

http://www.cs.cmu.edu/~fp/courses/15417-s25//lectures/07-negatives.pdf

Adjoint Types L10.6

We can then rewrite the rule correctly as

(Γ ⊢ eℓ ⇐= Aℓ
m / Ξℓ) (∀ℓ ∈ L) Ξ =

⊔
ℓ∈L Ξℓ

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ
m}ℓ∈L / Ξ

NI

In contrast, the elimination rule is straightforward.

Γ ⊢ e =⇒ N{ℓ : Aℓ
m}ℓ∈L / Ξ (k ∈ L)

Γ ⊢ e.k =⇒ Ak
m / Ξ

NE

Sums ⊕{ℓ : Aℓ
m}ℓ∈L. We have already seen the key idea in lazy records, so we present the rules

without further comment.

(k ∈ L) Γ ⊢ e ⇐= Ak
m / Ξ

Γ ⊢ k(e) ⇐= ⊕{ℓ : Aℓ
m}ℓ∈L / Ξ

⊕I

Γ ⊢ e =⇒ ⊕{ℓ : Aℓ
m}ℓ∈L / Ξ1 (m ≥ r) (Γ, xℓ : Aℓ

m ⊢ eℓ ⇐= Cr / Ξℓ) (∀ℓ ∈ L) Ξ2 =
⊔

ℓ∈L(Ξ
ℓ \ xℓ)

Γ ⊢ match e {ℓ(xℓ) ⇒ eℓ}ℓ∈L ⇐= Cr / Ξ1 ; Ξ2

⊕E

5 Shifts

We have not yet discussed the new operators and their corresponding constructors and destruc-
tors. The constructor for the downshift is ⟨e⟩ : ↓kmAk. Because it is positive, it represents just a
wrapper around a value at a different mode. So:

Large values V ::= (V1, V2) | () | k(V) | ⟨V ⟩ (positive)
| λx. e | {ℓ ⇒ eℓ}ℓ∈L | susp e (negative)

Here we have anticipated the new values for the upshift, susp e. Because the downshift is positive,
its elimination is a match construct. Dynamically, we have

e ↪→ v

⟨e⟩ ↪→ ⟨v⟩

e ↪→ ⟨v⟩ e′(v) ↪→ v′

match e (⟨x⟩ ⇒ e′(x)) ↪→ v′

From the typing perspective we need to check independence as well as structural properties.

Γ ⊢ e ⇐= Ak / Ξ

Γ ⊢ ⟨e⟩ ⇐= ↓kmAk / Ξ
↓I

By our independence invariant, we know Ξ ≥ k from the premise. Because k ≥ m by presupposi-
tion on the shift, we also have Ξ ≥ m and no further checks are needed.

Γ ⊢ e =⇒ ↓kmAk / Ξ1 (m ≥ r) Γ, x : Ak ⊢ e′ ⇐= Cr / Ξ2

Γ ⊢ match e (⟨x⟩ ⇒ e′) ⇐= Cr / Ξ1 ; (Ξ2 \ xk)
↓E

By our invariant Ξ1 ≥ m. Together with m ≥ r that is sufficient to guarantee Ξ1 ≥ r. Also by
invariant Ξ2 ≥ r, so independence is preserved for the conclusion.

LECTURE NOTES FEBRUARY 13, 2025

Adjoint Types L10.7

The upshift is negative and therefore lazy. We write the elimination form in postfix notation
as e.force, which is consistent with function application and record projection. Dynamically, we
have

susp e ↪→ susp e

e ↪→ susp e′ e′ ↪→ v′

e.force ↪→ v′

In the typing rules we just need to be careful to respect independence.

Γ ⊢ e ⇐= An / Ξ

Γ ⊢ susp e ⇐= ↑mn An / Ξ
↑I?

By invariant we know Ξ ≥ n and by presupposition m ≥ n. That’s not enough to know that
Ξ ≥ m, so we need to enforce that with a new condition.

Γ ⊢ e ⇐= An / Ξ (Ξ ≥ m)

Γ ⊢ susp e ⇐= ↑mn An / Ξ
↑I

Note that no condition on weakening would help, since Ξ already contains only the variables
actually used in checking e. No such condition is needed in the elimination rule because Ξ ≥ m
implies Ξ ≥ n by presupposition on the shifts.

Γ ⊢ e =⇒ ↑mn An / Ξ

Γ ⊢ e.force =⇒ An / Ξ
↑E

This completes the set of rules for adjoint natural deduction and auxiliary operations on con-
text.

6 Adjoint Types for Sax

We did not discuss adjoint types for Sax and compilation from ND to sax in this lecture in any
detail. So we postpone this to a future lecture.

7 Some Examples

We show the examples with the research compiler we have developed, because the compiler for
Lab 4 has not been written yet. The syntax may have some slight differences. For example, a
match expression does not have an end marker the way it will have in the course.

We start off by declaring two modes and the preorder between them. The first U is unrestricted
and the second L is linear.

mode U structural :> L
mode L linear

When defining a type, we write

type name[m k1 ... kn] = A

where m is the mode of A, and k1, . . . , kn are additional modes that might be used in the definition
of A. For example, a list of mode m with elements of mode k could be written as

type nat[k] = +{’zero : 1, ’succ : <nat[k]>}
type list[m k] = +{’nil : 1, ’cons : <nat[k]> * <list[m k]>}

LECTURE NOTES FEBRUARY 13, 2025

Adjoint Types L10.8

Here, m and k are mode variables that can be instantiated at concrete use sites. Also note the nota-
tion <A> which stands for ↓kmA, where k and m are determined from context. In the type of natural
numbers, <nat[k]> stands for ↓kknatk. This shift is technically redundant for Sax, but in a future
extension it is used to specify data layout, so any recursive type in this research compiler needs to
be guarded by a shift or negative type constructor.

In the type list[m k], m is the mode of the list, and k the mode of the elements. So <nat[k]>

is ↓kmnatk. The second shift <list[m k]> stands for ↓mmlistm.
In this research compiler, we separate type declarations for metavariables from their actual

definitions so we can assign it multiple types. Here are four different types for the append func-
tion.

decl append (l1 : list[L U]) (l2 : list[L U]) : list[L U]
decl append (l1 : list[L L]) (l2 : list[L L]) : list[L L]
decl append (l1 : list[U U]) (l2 : list[U U]) : list[U U]
decl append (l1 : list[U U]) (l2 : list[L U]) : list[L U]

defn append l1 l2 = match l1 with
| ’nil() => l2
| ’cons(<hd>, <tl>) => ’cons(<hd>, <append tl l2>)
(* end *)

Perhaps most surprising is the last one. It shows that we can make a linear copy of an unrestricted
list by appending the empty list to it. Also note that a type such as list[U L]would be ill-formed,
because L ̸≥ U, violating the presupposition on the downshift. Also illegal would be

decl append (l1 : list[L U]) (l2 : list[L U]) : list[U U] % invalid

because by independence we cannot have an unrestricted result depend on a linear parameter.
Functions often have many different modes, so the research compiler has mode inference to

determine the most general mode. It does so by collecting constraints on mode variables. We will
come back to this in a future lecture.

As an example of an upshift, we consider the map function. Again, multiple modes can be
assigned. However, the function itself is not used linearly, so it should be upshifted if the list
elements are linear.

decl map (f : [U] up[L] (nat[L] -> nat[L])) (l : list[L L]) : list[L L]
decl map (f : [U] up[U] (nat[U] -> nat[U])) (l : list[L U]) : list[L U]
decl map (f : [U] up[U] (nat[U] -> nat[U])) (l : list[U U]) : list[L U]

defn map f l = match l with
| ’nil() => ’nil()
| ’cons(<x>, <xs>) => ’cons(<f.force x>, <map f xs>)
(* end *)

Here [U] up[L] stands for ↑U
L . This first type shows that we can map a linear function over a

linear list, as long as the function’s type is upshifted. This is manifest in the code by applying
f.force x rather than just f x. Again, the most interesting may be the last type which says that
even if the input list is unrestricted, we can construct a linear list as a result.

References

Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347, Department
of Computer Science, University of Edinburgh, September 1996.

LECTURE NOTES FEBRUARY 13, 2025

Adjoint Types L10.9

P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Leszek Pacholski
and Jerzy Tiuryn, editors, Selected Papers from the 8th International Workshop on Computer Science
Logic (CSL’94), pages 121–135, Kazimierz, Poland, September 1994. Springer LNCS 933. An
extended version appears as Technical Report UCAM-CL-TR-352, University of Cambridge.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39:176–
210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Papers of Gerhard
Gentzen, pages 68–131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint natural deduction.
In Jakob Rehof, editor, 9th International Conference on Formal Structures for Computation and De-
duction (FSCD 2024), pages 15:1–15:23, Tallinn, Estonia, July 2024. LIPIcs 299. Extended version
available as https://arxiv.org/abs/2402.01428.

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic. Unpublished
manuscript, April 2018. URL http://www.cs.cmu.edu/˜fp/papers/adjoint18b.pdf.

Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript, May 2009.
URL http://www.cs.cmu.edu/˜jcreed/papers/jdml2.pdf.

LECTURE NOTES FEBRUARY 13, 2025

https://arxiv.org/abs/2402.01428
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf

	Introduction
	A Preorder of Modes
	Shifts
	Adjoint Typing for ND
	Shifts
	Adjoint Types for Sax
	Some Examples

