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Abstract8

Ordered, linear, and other substructural type systems allow us to expose deep properties of programs9

at the syntactic level of types. In this paper, we develop a family of unary logical relations that allow10

us to prove consequences of parametricity for a range of substructural type systems. A key idea is to11

parameterize the relation by an algebra, which we exemplify with a monoid and commutative monoid12

to interpret ordered and linear type systems, respectively. We prove the fundamental theorem13

of logical relations and apply it to deduce extensional properties of inhabitants of certain types.14

Examples include demonstrating that the ordered types for list append and reversal are inhabited by15

exactly one function, as are types of some tree traversals. Similarly, the linear type of the identity16

function on lists is inhabited only by permutations of the input. Our most advanced example shows17

that the ordered type of the list fold function is inhabited only by the fold function.18
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1 Introduction23

Substructural type systems and parametric polymorphism are two mechanisms for capturing24

precise behavioral properties of programs at the type level, enabling powerful static reasoning.25

The goal of this paper is to give a theoretical account of these mechanisms in combination.26

Substructural type systems have been investigated since the advent of linear logic,27

starting with the seminal paper by Girard and Lafont [11]. Among other applications, with28

substructural type systems one can avoid garbage collection, update memory in place [20, 21],29

make message-passing [9, 7] or shared memory concurrency [10, 28] safe, model quantum30

computation [8], or reason efficiently about imperative programs [19]. Substructural type31

systems have thus been incorporated into languages that seek to offer such guarantees, such32

as Rust, Koka, Haskell, Oxidized OCaml, and ProtoQuipper.33

Parametricity, originally introduced for System F [35], enables the idea that programs34

whose types involve universal quantification over type parameters have certain strong semantic35

properties. This idea supports powerful program reasoning principles such as representation36

independence across abstraction boundaries [23] and “theorems for free” that can be derived37

about all inhabitants of certain types, for example that every inhabitant of ∀α. α → α is38

equivalent to the identity function [38].39

The theory of substructural logics and type systems is now relatively well understood,40

including several ways to integrate substructural and structural type systems [6, 31, 12]. It41

is therefore somewhat surprising that we do not yet know much about how parametricity42

and its applications interact with them. The main foray into substructural parametricity is a43

paper by Zhao et al. [39] that accounts for a polymorphic dual-intuitionistic linear logic. They44
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point out that logical relations on closed terms are problematic because substitution obscures45

linearity. Their solution was to construct a logical relation on open terms, necessitating the46

introduction of “semantic typing” judgments that mirror the syntactic type system, which47

complicates their definition and application.48

In this paper, we follow an approach using constructive resource semantics in the style49

of Reed et al. [32, 34, 33] to construct logical relations on closed terms. We start with50

an ordered type system [30, 29, 17], which may be considered the least permissive among51

substructural type systems and therefore admits a pleasantly minimal definition. However,52

the construction is generic with respect to certain properties of the resource algebra, which53

allows us to extend it also to linear and unrestricted types. Consequences of our development54

include that certain polymorphic types are only inhabited by the polymorphic append and55

reverse functions on lists. Similarly, certain types are only inhabited by functions that swap56

or maintain the order of pairs. The most advanced application shows that the ordered type57

of fold over lists is inhabited only by the fold function.58

We conjecture that the three substructural modes we investigate—ordered, linear, and59

unrestricted—can also be combined in an adjoint framework [6, 12] but leave this to future60

work. Similarly, we simplify our presentation by defining only a unary logical relation since61

it is sufficient to demonstrate proof-of-concept, but nothing stands in the way of a more62

general definition (for example, to support representation independence results).63

2 A Minimalist Fragment64

We start with a small fragment of the Full Lambek Calculus [18, 22], extended with parametric65

polymorphism [36]. This fragment is sufficient to illustrate the main ideas behind our66

constructions. For the sake of simplicity we choose a Curry-style formulation of typing,67

concentrating on properties of untyped terms rather than intrinsically typed terms. This68

allows the same terms to inhabit ordered, linear, and unrestricted types and thereby focus69

on semantic rather than syntactic issues.70

Types A, B ::= α | A • B | A ↣ B | A ↠ B | ∀α. A

Expressions e ::= x

| (e1, e2) | match e ((x, y) ⇒ e′) (A • B)
| λx. e | e1 e2 (A ↣ B, A ↠ B)

71

In this fragment, we have A • B (read “A fuse B”) which, logically, is a noncommutative72

conjunction. We have two forms of implication: A ↣ B (read: “A under B”, originally73

written as A\B) which is true if from the hypothesis A placed at the left end of the antecedents74

we can deduce B, and A ↠ B (read: “B over A”, originally written as B / A) which is true if75

from the hypothesis A placed at the right and of the antecedents we can prove B. Lambek’s76

original notation was suitable for the sequent calculus and its applications in linguistics, but77

is less readable for natural deduction and functional programming.78

Our basic typing judgment has the form ∆ | Ω ⊢ e : A where ∆ consists of hypotheses79

α type, and Ω is an ordered context (x1 : A1) . . . (xn : An). We make the standard presuppo-80

sitions that ∆ ⊢ A type and ∆ ⊢ Ai type for every xi : Ai in Ω, and that both type variables81

and term variables are pairwise distinct. The rules are show in Figure 1.82

Here are a few example judgments that hold or fail. We elide the context ∆ =83

(α type, β type, γ type).84



C. B. Aberlé and Chris Martens and Frank Pfenning XX:3

∆ | x : A ⊢ x : A
hyp

∆ | Ω (x : A) ⊢ e : B

∆ | Ω ⊢ λx. e : A ↠ B
↠I

∆ | Ω ⊢ e1 : A ↠ B ∆ | ΩA ⊢ e2 : A

∆ | Ω ΩA ⊢ e1 e2 : B
↠E

∆ | (x : A) Ω ⊢ e : B

∆ | Ω ⊢ λx. e : A ↣ B
↣I

∆ | Ω ⊢ e1 : A ↣ B ∆ | ΩA ⊢ e2 : A

∆ | ΩA Ω ⊢ e1 e2 : B
↣E

∆ | ΩA ⊢ e1 : A ∆ | ΩB ⊢ e2 : B

∆ | ΩA ΩB ⊢ (e1, e2) : A • B
•I

∆ | Ω ⊢ e : A • B ∆ | ΩL (x : A) (y : B) ΩR ⊢ e′ : C

∆ | ΩL Ω ΩR ⊢ match e ((x, y) ⇒ e′) : C
•E

∆, α type | Ω ⊢ e : A

∆ | Ω ⊢ e : ∀α. A
∀I

∆ | Ω ⊢ e : ∀α.A(α) ∆ ⊢ B type

∆ | Ω ⊢ e : A(B)
∀E

Figure 1 Ordered Natural Deduction

⊢ λx. x : α ↣ α

⊢ λx. x : α ↠ α

̸⊢ λx. λy. x : α ↠ (β ↠ α) (no weakening)
̸⊢ λx. (x, x) : α ↠ (α • α) (no contraction)
⊢ λx. λy. (x, y) : α ↠ (β ↠ (α • β))
̸⊢ λx. λy. (x, y) : α ↣ (β ↣ (α • β)) (no exchange)

f : β ↠ (α ↣ γ) ⊢ λx. λy. (f y) x : α ↣ (β ↠ γ) (“associativity”)
g : α ↣ (β ↠ γ) ⊢ λy. λx. (g x) y : β ↠ (α ↣ γ)

g : (α • β) ↠ γ ⊢ λx. λy. g (x, y) : α ↠ (β ↠ γ) (currying)
f : α ↠ (β ↠ γ) ⊢ λp. match p ((x, y) ⇒ f x y) : (α • β) ↠ γ (uncurrying)

85

The strictures of the typing judgment imply that certain types may be uninhabited, or86

may be inhabited by terms that are extensionally equivalent to a small number of possibilities.87

To count the number of linear functions, translate (A ↠ B)L = (A ↣ B)L = AL ⊸ BL and88

(A • B)L = AL ⊗ BL and similarly for unrestricted functions.89

Types Ordered Linear Unrestricted
α ↠ α 1 1 1
α ↠ (α ↠ α) 0 0 2
α ↠ (α ↠ (α • α)) 1 2 4
α ↠ (α ↣ (α • α)) 1 2 4
α ↠ (β ↠ (β • α)) 0 1 1
α ↠ (β ↠ (α • β)) 1 1 1

90

Because our intended application language based on adjoint natural deduction [12] is91

call-by-value, we can give a straightforward big-step operational semantics [15] relating an92

expression to its final value. Because this evaluation does not directly interact with or benefit93

from substructural properties, we show it without further comment in Figure 2. It has the94

property of preservation that if · ⊢ e : A and e ↪→ v then · ⊢ v : A. Jang et al. give an95
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account [12] that exploits linearity and other substructural properties, although not the lack96

of exchange.

λx. e ↪→ λx. e

e1 ↪→ λx. e′
1 e2 ↪→ v2 [v2/x]e′

1 ↪→ v

e1 e2 ↪→ v

e1 ↪→ v1 e2 ↪→ v2

(e1, e2) ↪→ (v1, v2)

e ↪→ (v1, v2) [v1/x, v2/y]e′ ↪→ v′

match e ((x, y) ⇒ e′) ↪→ v′

Figure 2 Big-Step Operational Semantics
97

3 An Algebraic Logical Predicate98

Because of our particular setting, we define two mutually dependent logical predicates: JAK99

for closed expressions and [A] for closed values. In addition, the relation is parameterized100

by elements from an algebraic domain which may have various properties. For the ordered101

case, it should be a monoid, for the linear case a commutative monoid. However, the rules102

themselves do not require this for the pure sets of terms. We use m ·n for the binary operation103

on the monoid, and ϵ for its unit.104

Ignoring polymorphism for now, we write m ⊩ e ∈ JAK and m ⊩ v ∈ [A], which is defined105

by106

m ⊩ e ∈ JAK ⇐⇒ e ↪→ v ∧ m ⊩ v ∈ [A]

m ⊩ v ∈ [1] ⇐⇒ m = ϵ ∧ v = ( )
m ⊩ v ∈ [A • B] ⇐⇒ ∃m1, m2. m = m1 · m2 ∧ v = (v1, v2) ∧ m1 ⊩ v1 ∈ [A] ∧ m2 ⊩ v2 ∈ [B]
m ⊩ v ∈ [A ↠ B] ⇐⇒ ∀k. k ⊩ w ∈ [A] =⇒ m · k ⊩ v w ∈ JBK
m ⊩ v ∈ [A ↣ B] ⇐⇒ ∀k. k ⊩ w ∈ [A] =⇒ k · m ⊩ v w ∈ JBK

107

We can see how the algebraic structure of the monoid tracks information about order if its108

operation is not commutative.109

The key step, as usual in logical predicates of this nature, is the case for universal110

quantification and type variables. We map type variables α to relations RB between monoid111

elements and values in [B] where B is a closed type. We indicate this mapping from type112

variables to sets of values S and write it as a superscript on ⊩.113

m ⊩S v ∈ [α] ⇐⇒ m S(α) v

m ⊩S v ∈ [∀α. A(α)] ⇐⇒ ∀B, RB . m ⊩S,α 7→RB v ∈ [A(α)]114

The mapping S is just passed through identically in the cases of the relation defined above.115

We can already verify some interesting properties. As a first example we show that the116

logical predicates are nonempty.117

▶ Theorem 1.

ϵ ⊩ λx. λy. (x, y) ∈ J∀α. α ↠ (α ↠ (α • α))K118

Proof. Because the λ-expression is a value, we need to check119

ϵ ⊩ λx. λy. (x, y) ∈ [∀α. α ↠ (α ↠ (α • α))]120
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By definition, this is true if for an arbitrary A and relation m RA v we have121

ϵ ⊩α 7→RA λx. λy. (x, y) ∈ [α ↠ (α ↠ (α • α))]122

Using the definition of the logical predicate for right implication twice and one intermediate123

step of evaluation, this holds iff124

m · k ⊩α7→RA (λy. (v, y)) w ∈ Jα • αK125

for all m, k with m ⊩α7→RA v and k ⊩α7→RA w. By evaluation, this is true iff126

m · k ⊩α7→RA (v, w) ∈ [α • α]127

Now we can apply the definition of [A • B], splitting m · k into m and k and reducing it to128

m ⊩α7→RA v ∧ k ⊩α7→RA w129

Both of these hold because, by assumption, m RA v and k RA w. ◀130

More interesting, perhaps, is the reverse.131

▶ Theorem 2. If132

ϵ ⊩ e ∈ J∀α. α ↠ (α ↠ (α • α))K133

then e is extensionally equal to λx. λy. (x, y). In particular, it can not be λx. λy. (y, x).134

Proof. We choose our monoid to be the free monoid over two generators a and b and we135

choose an arbitrary closed type A and two elements v and w. Moreoever, we pick RA relating136

only a RA v and b RA w.137

From the definitions (and skipping over some simple properties regarding evaluation), we138

obtain139

a · b ⊩α 7→RA e v w ∈ Jα • αK140

By the clauses for Jα • αK, [α • α] and α we conclude that141

e v w ↪→ (u1, u2)142

for some values u1 and u2 with a RA u1 and b RA u2. Because the only value related to a is143

v and the only value related to b is w, we conclude u1 = v and u2 = w. Therefore144

e v w ↪→ (v, w)145

Since v and w were chosen arbitrarily, we see that e is extensionally equal to λx. λy. (x, y). ◀146

4 The Fundamental Theorem147

The fundamental theorem of logical predicates states that every well-typed term is in the148

predicate. Our relations also include terms that are not well-typed, which can occasionally149

be useful when one exceeds the limits of static typing.150

We need a few standard lemmas, adapted to this case. We only spell out one.151

▶ Lemma 3 (Compositionality). Define RA such that k RA w iff k ⊩ w ∈ [A]. Then152

m ⊩S,α 7→RA v ∈ [B(α)] iff m ⊩S v ∈ [B(A)]153
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Proof. By induction on B(α). ◀154

We would like to prove the fundamental theorem by induction over the structure of the155

typing derivation. Since our logical relation is defined for closed terms, we need a closing156

substitution η. We define:157

m ⊩S (x 7→ v) ∈ [x : A] ⇐⇒ m ⊩S v ∈ [A]
m ⊩S (η1 η2) ∈ [Ω1 Ω2] ⇐⇒ ∃m1, m2. m = m1 · m2 ∧ m1 ⊩S η1 ∈ [Ω1] ∧ m1 ⊩S η2 ∈ [Ω2]
m ⊩S (·) ∈ [·] ⇐⇒ m = ϵ

158

Due to the associativity of the monoid operation and concatenation of contexts, this consti-159

tutes a valid definition.160

▶ Theorem 4 (Fundamental Theorem (purely ordered)). Assume ∆ | Ω ⊢ e : A, a mapping S161

with domain ∆, and closing substitution m ⊩S η ∈ [Ω]. Then m ⊩S η(e) ∈ JAK.162

Proof. By induction on the structure of the given typing derivation. We show a few cases.163

Case:

∆ | x : A ⊢ x : A
hyp

164

Then m ⊩S η(x) ∈ [A] by assumption and definition, and m ⊩S η(x) ∈ JAK since η(x) is165

a value.166

Case:

∆ | Ω (x : A) ⊢ e : B

∆ | Ω ⊢ λx. e : A ↠ B
↠I

167

m ⊩S η ∈ [Ω] Given
k ⊩S v ∈ [A] Assumption (1)
k ⊩S (x 7→ v) ∈ [x : A] By definition
m · k ⊩S (η, x 7→ v) ∈ [Ω (x : A)] By definition
m · k ⊩S (η, x 7→ v)(e) ∈ JBK By ind. hyp.
m · k ⊩S (η(λx. e)) v ∈ JBK By reverse evaluation, v closed
m ⊩S η(λx. e) ∈ [A ↠ B] By definition, discharging (1)
m ⊩S η(λx. e) ∈ JA ↠ BK By definition

Case:

∆ | Ω ⊢ e1 : A ↠ B ∆ | ΩA ⊢ e2 : A

∆ | Ω ΩA ⊢ e1 e2 : B
↠E

168

m ⊩S η ∈ [Ω ΩA] Given
m1 ⊩S η1 ∈ [Ω] and m2 ⊩S η2 ∈ [ΩA]
for some m1, m2, η1, and η2 with m = m1 · m2 and η = η1 η2 By definition
m1 ⊩S η1(e1) ∈ JA ↠ BK By ind. hyp.
m2 ⊩S η2(e2) ∈ JAK By ind. hyp.
η1(e1) ↪→ v1 with m1 ⊩S v1 ∈ [A ↠ B] By definition
η2(e2) ↪→ v2 with m2 ⊩S v2 ∈ [A] By definition
m1 · m2 ⊩S v1 v2 ∈ JBK By definition
(η1 η2)(e1 e2) = (η1(e1)) (η2(e2)) By properties of substitution
m ⊩S η(e1 e2) ∈ JBK Since m = m1 · m2 and η = (η1 η2)
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Case:

∆, α type | Ω ⊢ e : A

∆ | Ω ⊢ e : ∀α. A
∀I

169

m ⊩S η ∈ [Ω] Given
RB an arbitrary relation k RB v Assumption (1)
m ⊩S,α 7→RB η ∈ [Ω] Since α fresh
m ⊩S,α 7→RB η(e) ∈ JAK By ind. hyp.
m ⊩S η(e) ∈ J∀α. AK By definition, discharging (1)

Case:

∆ | Ω ⊢ e : ∀α.A(α) ∆ ⊢ B type

∆ | Ω ⊢ e : A(B)
∀E

170

m ⊩S η ∈ [Ω] Given
m ⊩S η(e) ∈ J∀α. A(α)K By ind. hyp.
Define k RB v iff k ⊩S v ∈ [B]
m ⊩S,α 7→RB η(e) ∈ JA(α)K By definition
m ⊩S,α 7→RB v ∈ [A(α)] for η(e) ↪→ v By definition
m ⊩S v ∈ [A(B)] By compositionality (Lemma 3)
m ⊩S η(e) ∈ JA(B)K By definition

◀171

Because typing implies that the logical predicate holds, the earlier examples now apply172

to well-typed terms.173

▶ Theorem 5 ((Theorem 2 revisited)). If174

· ⊢ e : ∀α. α ↠ (α ↠ (α • α))175

then e is extensionally equivalent to λx. λy. (x, y).176

Proof. We just note that177

ϵ ⊩ e ∈ J∀α. α ↠ (α ↠ (α • α))K178

since (·) ∈ [·] and (·)e = e and the empty mapping S suffices without any free type variables.179

Then we appeal to the reasoning in Theorem 2. ◀180

5 Unrestricted Functions181

We are interested in properties of functions such as list append or list reversal, or higher-order182

functions such as fold. This requires inductive types, but the functions on them are not used183

linearly. For example, append has a recursive call in the case of a nonempty list, but none184

in the case of an empty list. We could introduce a general modality !A for this purpose. A185

simpler alternative that is sufficient for our situation is to introduce unrestricted function186

types A → B (usually coded as !A ⊸ B in linear logic or !A ↠ B in ordered logic). This187

path has been explored previously [30] with different motivations. There, an open logical188

relation was defined on the negative monomorphic fragment in order to show the existence189

of canonical forms, a property that is largely independent of ordered typing.190
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Adding unrestricted functions is rather straightforward in typing by using two kinds of191

variables: those that are ordered and those unrestricted. Then, in the logical predicate,192

unrestricted variables must not use any resources, that is, they are assigned the unit element193

ϵ of the monoid during the definition.194

The generalized judgment has the form ∆ | Γ ; Ω ⊢ e : A where Γ contains type195

assignments for variables that can be used in an unrestricted (not linear and not ordered) way.196

All the previous rules are augmented by propagating Γ from the conclusion to all premises.197

Because our term language is untyped, no extensions are needed there. Similarly, the rules198

of our dynamics do not need to change.199

∆ | Γ, x : A ; · ⊢ x : A
hyp

∆ | Γ, x : A ; Ω ⊢ e : B

∆ | Γ ; Ω ⊢ λx. e : A → B
→I

∆ | Γ ; Ω ⊢ e1 : A → B ∆ | Γ ; · ⊢ e2 : A

∆ | Γ ; Ω ⊢ e1 e2 : B
→E

Figure 3 Unrestricted functions

We extend the logical predicate using arguments not afforded any resources.200

m ⊩ v ∈ [A → B] ⇐⇒ ∀w. ϵ ⊩ w ∈ [A] =⇒ m ⊩ v w ∈ JBK201

The fundamental theorem extends in a straightforward way.202

▶ Theorem 6 (Fundamental Theorem (mixed ordered/unrestricted)). Assume ∆ | Γ ; Ω ⊢ e : A,203

a mapping S with domain ∆, and two closing substitutions ϵ ⊩S θ ∈ [Γ] and m ⊩S η ∈ [Ω].204

Then m ⊩S (θ ; η)(e) ∈ JAK.205

Proof. By induction on the structure of the given typing derivation. ◀206

An interesting side effect of these definitions is that if we omit ordered functions but207

retain pairs we obtain the “usual” formulation closed logical predicates, including certain208

consequences of parametricity for the ordinary λ-calculus.209

▶ Theorem 7. If210

· ⊢ e : ∀α. α → (α → (α • α))211

then e is extensionally equivalent to one of 4 functions: λx. λy. (x, y), λx. λy. (y, x), λx. λy. (x, x),212

or λx. λy. (y, y).213

Proof. By the fundamental theorem, we have214

ϵ ⊩ e ∈ J∀α. α → (α → (α • α))K215

We use this for an abitrary closed type A with two arbitary values v, and w and relation RA216

with ϵ RA v and ϵ RA w. Exploiting the definition, we get217

ϵ ⊩α7→RA e ∈ Jα → (α → (α • α))K218

Using the definition of function twice and skipping over some evaluation and reverse evaluation,219

we obtain220

ϵ ⊩α7→RA f v w ∈ Jα • αK221
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This means that f v w ↪→ (u1, u2) with ϵ RA u1 and ϵ RA u2. Because of the definition of222

RA there are 4 possibilities for (u1, u2), namely (v, w), (w, v), (v, v) and (w, w). This in turn223

means e is extensionally equal to one of the 4 functions shown. ◀224

6 Unit, Sums, Twist, and Recursive Types225

At this point, we are at a crossroads. Because we would like to prove theorems regarding more226

complex data structures such as lists, trees, or streams, we could extend the development227

with general inductive and coinductive types and their recursors. We conjecture that this228

is possible and leave it to future work. The other path is to work with purely positive229

types, including recursive ones whose values can be directly observed. In this approach, the230

definition of the logical predicate is quite easy to extend. It becomes a nested inductive231

definition: either the type becomes smaller or, once we encounter a purely positive type and232

recursion is possible, from then on the terms become strictly smaller. In this paper we take233

the latter approach, which excludes coinductive types such as streams from consideration,234

but still yields many interesting and intuitive consequences.235

We take the opportunity to also round out our language with unit, sums, and twist (the236

symmetric counterpart of fuse). We use a signature defining equirecursive type names that237

may be arbitrarily mutually recursive. Because such type definitions are otherwise closed,238

they constitute metavariables in the sense of contextual modal type theory [24]. Each type239

definition F [∆] = A+ must be contractive, that is, its definiens cannot be be another type240

name. Moreover, A+ must be purely positive, which is interpreted inductively.241

Types A ::= . . . | A ◦ B | ⊕{ℓ : Aℓ}ℓ∈L | 1
Purely Positive Types A+, B+ ::= A+ • B+ | A+ ◦ B+ | 1 | ⊕{ℓ : A+

ℓ }ℓ∈L | F [θ]
Type Definitions Σ ::= F [∆] = A+ | (·) | Σ1, Σ2
Type Substitutions θ ::= α 7→ A+ | (·) | θ1 θ2

242

The language of expressions does not change much because type names are equirecursive.243

Expression e ::= . . .

| k(e) | match e {ℓ(xℓ) ⇒ e′}ℓ∈L (⊕{ℓ : Aℓ})
| ( ) | match e (( ) ⇒ e′) (1)

244

We add the type A ◦ B (“twist”), symmetric to A • B, since encoding it as B • A requires245

rewriting terms, flipping the order of pairs. For A ◦ B it is merely the typechecking that246

changes. This allows more types to be assigned to the same term. We allow silent unfolding247

of type definitions, so there are no explicit rules for F [θ].248

The logical predicate is also extended in a straightforward manner. We assume the249

signature Σ is fixed and therefore do not carry it explicitly through the definitions.250

m ⊩S v ∈ [1] ⇐⇒ m = ϵ ∧ v = ( )
m ⊩S v ∈ [A ◦ B] ⇐⇒ ∃m1, m2. m = m2 · m1 ∧ v = (v1, v2)

∧ m1 ⊩S v1 ∈ [A] ∧ m2 ⊩S v2 ∈ [B]
m ⊩S k(v) ∈ [⊕{ℓ : Aℓ}ℓ∈L] ⇐⇒ m ⊩S v ∈ [Ak] ∧ k ∈ L

m ⊩S v ∈ [F [θ]] ⇐⇒ m ⊩S v ∈ θ(A+) where F [∆] = A+ ∈ Σ

251

Because we have equirecursive type definitions, the last clause is usually applied silently.252

The definition of the logical predicate is no longer straightforwardly inductive on the structure253

of the type. However, we see that for purely positive types (the only ones involved in recursion),254
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∆ | Γ ; ΩA ⊢ e1 : A ∆ | Γ ; ΩB ⊢ e2 : B

∆ | Γ ; ΩB ΩA ⊢ (e1, e2) : A ◦ B
◦I

∆ | Γ ; Ω ⊢ e : A ◦ B ∆ | Γ ; ΩL (y : B) (x : A) ΩR ⊢ e′ : C

∆ | Γ ; ΩL Ω ΩR ⊢ match e ((x, y) ⇒ e′) : C
◦E

∆ | Γ ; · ⊢ ( ) : 1
1I

∆ | Γ ; Ω ⊢ e : A ◦ B ∆ | Γ ; ΩL ΩR ⊢ e′ : C

∆ | Γ ; ΩL Ω ΩR ⊢ match e (( ) ⇒ e′) : C
1E

(k ∈ L) ∆ | Γ ; Ω ⊢ e : Ak

∆ | Γ ; Ω ⊢ k(e) : ⊕{ℓ : Aℓ}ℓ∈L

⊕I

∆ | Γ ; Ω ⊢ e : ⊕{ℓ : Aℓ}ℓ∈L (∆ | Γ ; ΩL (xℓ : Aℓ) ΩR ⊢ eℓ : Aℓ) (∀ℓ ∈ L)

∆ | Γ ; ΩL Ω ΩR ⊢ match e {ℓ(xℓ) ⇒ eℓ}ℓ∈L : C
⊕E

Figure 4 Ordered Natural Deduction, Extended

( ) ↪→ ( )

e ↪→ ( ) e′ ↪→ v′

match e (( ) ⇒ e′) ↪→ v′

e ↪→ v

k(e) ↪→ k(v)

e ↪→ k(v) [v/xk]ek ↪→ v′

match e {ℓ(xℓ) ⇒ eℓ}ℓ∈L ↪→ v′

Figure 5 Big-Step Operational Semantics, Extended

the value in the definition becomes strictly smaller in each clause if type definitions are255

contractive. In other words, we now have a nested inductive definition of the logical predicate,256

first on the type, and when the type is purely positive, on the structure of the value.257

We can also add recursion to our expression language with the key proviso that we258

either restrict ourselves to certain patterns of recursion (for example, primitive recursion),259

or termination is guaranteed by other external means (for example, using an analysis using260

sized types [1]). This assumption allows us to maintain the structure of the logical predicate,261

even if it is no longer a means to prove termination (which we are not interested in for this262

paper).263

▶ Lemma 8 (Compositionality (including purely positive equirecursive types)). Define RA such264

that k RA w iff k ⊩ w ∈ [A]. Then m ⊩S,α 7→RA v ∈ [B(α)] iff m ⊩S v ∈ [B(A)].265

Proof. By nested induction on the definition of the logical predicate for B(α), first on the266

structure of B and second on the structure of the value when a purely positive type F [θ] has267

been reached. ◀268

▶ Theorem 9 (Fundamental Theorem (including purely positive recursive types)). Assume269

∆ | Γ ; Ω ⊢ e : A, a mapping S with domain ∆, and two closing substitutions ϵ ⊩S θ ∈ [Γ]270

and m ⊩S η ∈ [Ω]. Then m ⊩S (θ ; η)(e) ∈ JAK.271
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Proof. By induction on the structure of the given typing derivation. When reasoning about272

functions and recursion, we need the assumption of termination. ◀273

7 Free Theorems for Ordered Lists274

We start with some theorems about ordered lists, not unlike those analyzed by Wadler [38],275

but much sharper due to substructural typing. We define two versions of ordered lists, one276

that is ordered left-to-right and one that is ordered right-to-left. Both of these use exactly277

the same representation; just their typing is different.278

l list α = ⊕{nil : 1, cons : α • l list α}
rlist α = ⊕{nil : 1, cons : α ◦ rlist α}

The following will be a useful lemma about ordered lists.279

▶ Lemma 10 (Ordered Lists).

m ⊩S v ∈ [l list α] ⇐⇒ m = ϵ ∧ v = nil ( )
∨ ∃m1, m2. m = m1 · m2 ∧ v = cons (v1, v2)

∧ m1 S(α) v1 ∧ m2 ⊩ v2 ∈ [l list α]

m ⊩S v ∈ [rlist α] ⇐⇒ m = ϵ ∧ v = nil ( )
∨ ∃m1, m2. m = m2 · m1 ∧ v = cons (v1, v2)

∧ m1 S(α) v1 ∧ m2 ⊩ v2 ∈ [rlist α]

280

Proof. By unrolling the definitions of the logical predicate and the equirecursive nature of281

the definition of lists. ◀282

For the applications, we abbreviate lists, writing [v1, . . . , vn] for cons(v1, . . . , cons(vn, nil ( ))).283

m ⊩α7→RA v ∈ [l list α] ⇐⇒ m = m1 · · · mn, v = [v1, . . . , vn] where mi RA vi (for some mi, vi)

m ⊩α7→RA v ∈ [rlist α] ⇐⇒ m = mn · · · m1, v = [v1, . . . , vn] where mi RA vi (for some mi, vi)
284

Now we state a first property of lists that follows as a consequence of our parameterized285

logical predicate.286

▶ Theorem 11. If · ⊢ f : ∀α. l list α ↠ l list α then f is extensionally equal to the identity287

function on lists.288

Proof. By the fundamental theorem, we have289

ϵ ⊩ f ∈ [∀α. l list α ↠ l list α]290

To construct a relation RA we pick an arbitary closed type A. For the monoid, we pick the291

one freely generated by a1, a2, . . . and define292

m RA v ⇐⇒ m = ai ∧ v = vi293

for arbitrary elements vi. By definition, we obtain294

ϵ ⊩S f ∈ [l list α ↠ l list α]295

Again by definition, that’s the case iff296

∀m, v. m ⊩S v ∈ [l list α] =⇒ ϵ · m ⊩S f v ∈ Jl list αK297



XX:12 Substructural Parametricity

Here, ϵ · m = m, by the monoid laws. Therefore f v ↪→ w and298

∀m, v. m ⊩S v ∈ [l list α] =⇒ m ⊩S w ∈ [l list α]299

We use this for m = a1 · · · an and v = [v1, . . . , vn]. By our lemma about lists and the arbitrary300

nature of A and vi we conclude that w = v. ◀301

By similar reasoning we can obtain the following properties.302

▶ Theorem 12.303

1. If f : ∀α.rlist α ↠ rlist α then f is extensionally equal to the identity function.304

2. If f : ∀α.rlist α ↠ l list α then f is extensionally equal to the list reversal function.305

3. If f : ∀α.l list α ↠ rlist α then f is extensionally equal to the list reversal function.306

Proof. By very similar reasoning to the one in Theorem 11. ◀307

But can we deduce properties of higher-order functions using ordered parametricity? We308

show one primary example; others such as map follow directly from it or similarly.309

Unlike the usual or even linear parametricity, the type of fold guarantees that it must310

be the fold function! Note that the combining function and initial element are unrestricted311

arguments (one is called for every list element, and one is called only for the empty list), but312

that the combining function’s arguments are ordered.313

▶ Theorem 13. If314

· ⊢ f : ∀α. ∀β. (α • β ↠ β) → β → l list α ↠ β315

then f extensionally equal to the fold function, that is,316

f g b [v1, v2, . . . , vn] = g(v1, g(v2, . . . , g(vn, b)))317

Proof. We use the free monoid over constructors a1, a2, . . .. Furthermore, given a type A318

with arbitrary elements vi we define the relation RA by319

m RA v ⇐⇒ m = ai ∧ v = vi for some i320

Since the type involves another quantified type β, we need to define a second relation RB321

where322

m RB d ⇐⇒ m = ai1 · · · aik
∧ d = g(vi1 , g(vi2 , . . . , g(vik

, b)))323

With these relations and the definition on of the logical predicate we get the following two324

properties.325

1. ∀m1, m2, v, d. m1 RA v ∧ m2 RB d =⇒ m1 · m2 RB g(v, d)326

2. ϵ RB g327

Since328

a1 · · · an ⊩α7→RA [v1, . . . , vn] ∈ [l list α]329

we can use the second and iterate the first property to conclude that330

a1 · · · an RB w for f g b [v1, . . . , vn] ↪→ w331

By definition of RB , this yields332

f g b [v1, . . . , vn] = g(v1, . . . g(vn, b))333

in the sense that both sides evaluate to w. Because functions and values were chosen334

arbitrarily, this expresses the desired extensional equality. ◀335
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8 Free Theorems Regarding Trees336

Consider337

lxrtree α = ⊕{leaf : 1, cons : lxrtree α • α • lxrtree α}
xlrtree α = ⊕{leaf : 1, cons : (xlrtree α ◦ α) • xlrtree α}
lrxtree α = ⊕{leaf : 1, cons : lrxtree α • (α ◦ xlrtree α)}

Here are a few free theorems regarding such trees. Further variations exist.338

▶ Theorem 14.339

1. If f : ∀α. lxrtree α ↠ l list α then f t lists the elements of t following an inorder traversal.340

2. If f : ∀α. xlrtree α ↠ l list α then f t lists the elements of t following a preorder traversal.341

3. If f : ∀α. lrxtree α ↠ l list α then f t lists the elements of t following a postorder traversal.342

Proof. Trees, like lists, are purely positive types. As such, we can prove an analogue of343

Lemma 10. We only show one of them, writing t for tree values.344

m ⊩S t ∈ [lxrtree α] ⇐⇒ m = ϵ ∧ t = leaf( )
∨ ∃m1, k, m2. m = m1 · k · m2 ∧ v = node(t1, v, t2)

∧ m1 ⊩S t1 ∈ [lxrtree α] ∧ k S(α) v ∧ m2 ⊩S t2 ∈ [lxrtree α]
345

◀346

9 From Ordered to Linear Types347

Exploring parametricity for linear types instead of ordered ones is now a rather straightforward348

change. We conflate the left and right implication into a single implication, and similarly for349

conjunction.350

ordered linear structural values
B / A

A ⊸ B A → B λx. e

A ↣ B

A • B

A ⊗ B A × B (v1, v2)
A ◦ B

1 1 1 ( )
⊕{ℓ : Aℓ} ⊕{ℓ : Aℓ} ⊕{ℓ : Aℓ} ℓ(v)

351

We see that in the transition from the linear to the structural case, no further connectives352

collapse. That’s because we would still distinguish eager pairs (A × B) from lazy records353

that we have elided from our development since they do not introduce any fundamentally354

new ideas.355

From the point of view of typing, the easiest change is to just permit the silent rule of356

exchange357

∆ | Γ ; ΩL (y : B) (x : A) ΩR ⊢ e : C

∆ | Γ ; ΩL (x : A) (y : B) ΩR ⊢ e : C
exchange

358

The more typical change is to replace context concatenation ΩL ΩR with context merge359

ΩL ▷◁ ΩR which allows arbitrary interleavings of the hypotheses.360
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Our definition of the logical predicates remains that same, except that we assume that the361

algebraic structure parameterizing our definitions is a commutative monoid. This immediately362

validates the rules of exchange and the fundamental theorem goes through as before.363

The results of exploiting the fundamental theorem to obtain parametricity results are no364

longer as sharp. For example:365

▶ Theorem 15. If · ⊢ e : ∀α. α ⊸ α ⊸ α ⊗ α then f is extensionally equal to λx. λy. (x, y)366

or λx. λy. (y, x).367

Proof. By the fundamental theorem, we have368

ϵ ⊩ e ∈ J∀α. α ⊸ α ⊸ α ⊗ αK369

Therefore e ↪→ f and370

ϵ ⊩ f ∈ [∀α. α ⊸ α ⊸ α ⊗ α]371

We use a free commutative monoid with two generators, a and b, arbitrary values v and w372

such that a R v and b R w. By the fundamental theorem:373

ϵ ⊩α7→R f ∈ [α ⊸ α ⊸ α ⊗ α]374

Applying this function to v and w, we obtain that f v w ↪→ p and375

a · b ⊩α 7→R p ∈ [α ⊗ α]376

This is true, again by definition, if for some m and k and p1 and p2 we have377

m · k = a · b ∧ p = (p1, p2) ∧ m ⊩α7→R p1 ∈ [α] ∧ k ⊩α7→R p2 ∈ [α]378

Further applying definitions, we get that for some m, k, p1, and p2, we have379

m · k = a · b ∧ m R p1 ∧ k R p2380

There are 4 ways that a · b could be decomposed into m · k, but the definition of R leaves381

only two possibilities: m = a, k = b, p1 = v and p2 = w or m = b, k = a, p1 = w and p2 = v.382

Summarizing: either383

e v w ↪→ (v, w)384

or385

e v w ↪→ (w, v)386

which expresses that e is extensionally equal to λx. λy. (x, y) or λx. λy. (y, x). ◀387

▶ Theorem 16. If · ⊢ e : ∀α.list α ⊸ list α then e is extensionally equal to a permutation of388

the list elements.389

Proof. As in the proof of the related ordered theorem, we apply the fundamental theorem and390

then the definition for arbitrary values vi with ai R vi where α 7→ R, and the commutative391

monoid is freely generated from a1, a2, . . ..392

Taking analogous steps to the ordered case, we conclude that a1 · · · an = m1 · · · mn393

modulo commutative (and associativity, as always) where each mi is a unique aj . ◀394

In the unrestricted case where various algebraic elements are fixed to be ϵ, we can only395

obtain that every element of the output list must be a member of the input list, because those396

elements are in ϵ R vi. We do not write out the details of this straightforward adaptation of397

foregoing proofs.398
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10 Related Work399

The most directly related work is Zhao et al.’s [40] open logical relation for parametricity400

for a dual intuitionistic-linear polymorphic lambda calculus. In this work, they define an401

open logical relation that includes an analog of typing contexts in the semantic model. While402

our development follows a similar structure, our resource algebraic account allows us to403

eliminate spurious typechecking premises in definitions and permits a more flexible range of404

substructural type systems.405

Ahmed, Fluet, and Morrisett [3] introduce a logical relation for substructural state via406

step-indexing, followed by [4] a linear language with locations (L3) defined by a Kripke-style407

logical relation to account for a language with mutable storage. However, the underlying408

languages in these developments do not support parametric polymorphism. Ahmed, Dreyer,409

and Rossberg later provide a logical relations account of a System F-based language supporting410

imperative state update, and they demonstrate representation independence results for this411

system [2]. The languages modeled in this body of work represent a specific point in the412

design space with respect to imperative state update and references, as opposed to our more413

general schema for substructural types in a functional setting. However, Kripke-style logical414

relations that model a store as a partial commutative monoid have some parallels to our415

development, and drawing out a more precise relationship between these systems represents416

an interesting path of future work.417

Finally, there are a few developments that start from different settings but develop418

semantics with similar properties. Pérez et al. develop logical relations for linear session419

types [26, 27] to establish normalization results, but there is no account of parametricity. The420

Iris system for program reasoning via higher-order separation logic incorporates a semantic421

model initially based on monoids [14], which is later extended to more general resource422

algebras [13]. Their parameterization over resource algebras seems to work similarly to ours,423

but towards the goal of program verification rather than type-based reasoning. The use424

of “resource semantics” more generally to account for the semantics of substructural logics425

extends at least to Kamide [16] and the logic of bunched implications [25], and similar ideas426

have recently gained traction in the context of graded modal type systems [37].427

11 Conclusion428

We have provided an account of substructural parametricity including ordered, linear, and429

unrestricted disciplines. The fewer structural properties are supported, the more precise430

the characterization of a function’s behavior from its type. We have also implemented an431

ordered type checker using a bidirectional type system with so-called additive contexts [5],432

but the details are beyond the scope of this paper. Suffice it to say that all the functions433

such as append, reverse, tree traversals, and fold can actually be implemented in a variety of434

ways and are therefore not vacuous theorems.435

The most immediate item of future work is to support general inductive and coinductive436

types instead of purely positive recursive types. This would allow a new class of applications,437

including (productive) stream processing and object-oriented program patterns. We also438

envision an adjoint combination of different substructural type systems [12], extended to439

include exchange among the explicit structural rules.440
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