
Assignment 3
Linear Message-Passing Programs

15-836: Substructural Logics
Frank Pfenning

Due Monday, September 25, 2023
80 points

In this assignment we explore linear message-passing programs, based on the propositions-as-
types correspondence between linear logic and session types.

You should hand in two files:

• hw3.pdf with the solutions to Problem 2.

• hw3.mps with the programs written in the MPASS language as specified in Problem 1. This
file is autograded. If you have difficulty with the syntax or semantics of the language, please
use Piazza for help.

The handout has the following structure:

• src/, the implementation of MPass.

• starter/, the starter code for this assignment, including a template for hw3.mps

• hw3.pdf, this assignment spec

• *.{tex,sty}, LaTeX source, macros, and style files

1 Linear Message-Passing Programs (50 pts)

In all the problems below, you may define auxiliary processes as you with. Efficiency is not an
consideration, just correctness. In lecture, we use metavariable like A and B to stand for arbitrary
propositions (= types), but these are not supported in the current implementation so we use lists
and stores of binary numbers instead.

Task 1 We define Booleans with

type bool = +{ ’false : 1, ’true : 1 }

Define each of the following processes on Booleans.

(i) a : bool ⊢ not :: (c : bool)

(ii) a : bool, b : bool ⊢ and :: (c : bool)
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(iii) a : bool, b : bool ⊢ or :: (c : bool)

Task 2 We define the binary numbers with

type bin = +{ ’e : 1, ’b0 : bin, ’b1 : bin }

where the least significant bit is the first message. The numbers should have no “leading” zeros,
that is, ϵ 1 1 0 is six, but ϵ 0 1 1 0 is disallowed.

Define the predecessor pred
x : bin ⊢ pred :: (y : bin)

of zero to be zero. You may assume x does not send any leading zeros, and must ensure it for y.

Task 3 We define lists of binary numbers with

type list = +{ ’nil : 1, ’cons : bin * list }

Define a process reverse that reverses a given input list l to the output list r.

l : list ⊢ reverse :: (r : list)

Task 4 We cannot define the usual functional map

map (f : A → B) (l : listA) : list B

because f may be used many times, including zero if l is empty. But we can use iteration instead
and remain linear.

type iterator = &{ ’next : bin -o (bin * iterator) , ’done : 1 }

(i) Define a different version of map

iter : iterator, l : list ⊢ map :: (r : list)

that applies the given iterator to each element in l in order to yield r.

(ii) Define isucc
· ⊢ isucc :: (i : iterator)

that increments each element.

Task 5 We define a store interface with

type store = &{ ’ins : bin -o store,
’del : +{ ’none : 1, ’some : bin * store } }

In lecture, we gave an implementation that behaved as a stack. Give an alternative implementation
that behaves like a queue.

(i) · ⊢ empty queue :: (s : store)

(ii) x : bin, t : store ⊢ node queue :: (s : store)
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2 Weakening and Contraction (30 pts)

In (purely) linear logic, we can define propositions inductively

propositions A,B ::= P | A⊗B | A ⊸ B | 1 | A⊕B | 0 | A N B | ⊤

Now consider the rules of weakening and contraction, which are not sound for linear logic.

∆ ⊢ C

∆, A ⊢ C
weaken

∆, A,A ⊢ C

∆, A ⊢ C
contract

Task 6 Give an inductive characterization of a class of propositions in linear logic for which both
weakening and contraction are admissible, that is, every instance of the rule is correct. It does not
need to be the largest such class, but it should have a simple definition.

Task 7 Prove the admissibility of weakening for propositions in your class. You should clearly state
the structure of your proof. You may freely use the admissibility of cut and identity. If your proof
is by induction, show one base case and one inductive case.

Task 8 Prove the admissibility of contraction for propositions in your class. You should clearly
state the structure of your proof. You may freely use the admissibility of cut and identity. If your
proof is by induction, show one base case and one inductive case.

Task 9 In MPASS we do not have atomic types P but we have recursive types. How does the class
of propositions admitting weakening and contraction change? Speculate about how you may or
may not want to extend MPASS to take advantage of this property. Use examples to illustrate your
thoughts.
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