
Assignment 4
Subtyping

15-836: Substructural Logics
Frank Pfenning

Due Friday, October 6, 2023
90 points

In this assignment we explore subtyping on message-passing programs.
You should hand in two files:

• hw4.pdf with the solutions to Problems 1 and 2.

• hw4.mps with the programs written in the MPASS language as specified in Problem 3. This
file is autograded.

The handout has the following structure:

• src/, the implementation of MPass.

• starter/, the starter code for this assignment, including a template for hw4.mps

• hw4.pdf, this assignment spec

• *.{tex,sty}, LaTeX source, macros, and style files

1 Admissibility of Subsumption (30 pts)

Here are the properties of left and right subsumption, formulated as an admissible inference rule.

∆ ⊢ P :: (x : A) A ≤ B

∆ ⊢ P :: (x : B)
SubR

A ≤ B ∆, x : B ⊢ Q :: (z : C)

∆, x : A ⊢ Q :: (z : C)
SubL

Task 1 Prove that left and right subsumption are admissible. You only need to show the cases for
⊸R, ⊸L∗ (as revised in Lecture 8), and id. Clearly state the overall structure of your proof. You
may use reflexivity and transitivity of subtyping as you see fit.

2 Generating Counterexamples (30 pts)

Task 2 Define a judgment for A ̸≤ B by inference rules. Your judgment should be defined induc-
tively and every proof should correspond to a counterexample. For this task it is important that
we do not allow ⊕{} and N{ } (a restriction also enforced by MPASS). Channels of these types
would not allow any messages to be sent along them.

ASSIGNMENTS DUE FRI OCT 6, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf

Assignment 4 A4.2

We defined message prefixes (inductively) by

Message prefixes p ::= !() | !k.p | !(p)._ | !(_).p
| ?k.p | ?(p)._ | ?(_).p
| _

Here, ! means a message is sent by the provider, ? means a message is received by the provider. The
underscore ‘_’ is the end of the prefix. Message prefixes they have the following interpretation:

• () is the unit message, without a continuation

• k.p is a label k followed by a prefix p

• (p)._ represents (sending or receiving) of a channel b with continued messages p on b

• (_).p represents the (sending or receiving) of a channel b, with continued messages p on the
original channel a

• _ represents the end of the message prefix.

We use message prefixes to express counterexamples to subtyping. For example, the message pre-
fix !succ.!zero._ is a counterexample to nat ≤ even as shown in the Lecture 8 notes. The prefix ?ins._
is a counterexample to store2 ≤ store1. If we define lists of binary numbers (list, as defined in lec-
ture) and lists of binary numbers with no leading zeros (std list), then the prefix !cons.!(!b0.!e._)._
would be a counterexample to list ≤ std list.

Task 3 Extend the judgment A ̸≤ B to p : A ̸≤ B where p is a message prefix that is a counterex-
ample to A ≤ B. Show the instrumented inference rules.

Task 4 Define a family of type storeA, parameterized over a type A as

storeA = N{ ins : A ⊸ storeA,
del : ⊕{ none : 1, some : A⊗ storeA } }

Determine whether storepos ≤ storestd and storestd ≤ storepos, where pos and std are defined as in
lecture. For those that are false, give counterexamples. You do not need to show any derivations
in your system, but you should ensure they exists.

3 Programming with Subtyping (30 pts)

In this problem you will explore the extent to which you can successfully use subtyping in MPASS.
These problems will be autograded. Remember that you have to invoke MPASS with the --subtyping
flag.

In all cases you may define auxiliary types and processes as you see fit. Not all of the types of
processes may be implementable with the proposed typing, so be on your toes.

Task 5 Write, with the given more precise types:

proc zero (x : std) =
proc succ (x : pos) (y : std) =
proc pred (x : std) (y : pos) =
proc dbl (x : std) (y : std) =

ASSIGNMENTS DUE FRI OCT 6, 2023

Assignment 4 A4.3

Here, dbl is supposed to double the number received on y and send the bits along x. The prede-
cessor pred is like the process from the previous assignment, except that is it guaranteed to get a
positive number as input.

Task 6 On binary numbers (this time leading zeros are allowed), define mult3 ≤ bin such that
mult3 contains exactly the multiples of three. Then define a function times3 that multiplies its
input by 3.

type mult3 =
proc times3 (x : mult3) (y : bin) =

In the next task we deal with infinite streams of zeros and ones.

type stream = +{’b0 : stream, ’b1 : stream}

Task 7 Define a subtype stream0x0 of stream where there are no two consecutive zeros, and a
processes that takes an arbitrary stream and compresses consecutive zeros into a single zero and
passes the ones through unchanged.

type stream0x0 =
proc compress (x : stream0x0) (y : stream) =

ASSIGNMENTS DUE FRI OCT 6, 2023

	Admissibility of Subsumption (30 pts)
	Generating Counterexamples (30 pts)
	Programming with Subtyping (30 pts)

