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1 Introduction

In this lecture we start a new section of the course. We have studied proof systems
for substructural logics and their properties, such as cut and identity elimination.
We have also seen that substructural inference itself can express certain algorithms
(e.g., for parsing) at a high level of abstraction. We can summarize this with the
slogan “computation is proof construction”. The final answer is a proof, or sometimes
just the information of whether a proof exists or not.

Now we look at a connection where proofs themselves are programs, and com-
putation proceeds by proof reduction rather than proof construction. The new slogan
is “computation is proof reduction”. This notion of computation inherits many desir-
able properties from logic and proof theory, but it is certainly not without its own
set of challenges and difficulties. We will come back to these challenges in Lecture
7, once we have developed an intuitive understanding of the relationship.

Here is the basic table of correspondences:

Logic Programming
Proposition Type

Proof Program
Reduction Computation

The specifics of the correspondence are dramatically dependent on the following
variables (and maybe more):

• The logic. Ordered logic is different from linear logic, which is be different
from structural logic, and several of these come in intuitionistic as well as
classical versions. Other examples are temporal logics, modal logics, epis-
temic logics, and so on, each with their opportunity for computational mean-
ing.
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• The proof system. Since proofs are programs, the specifics of each proof sys-
tem determine the structure of programs. And different proof systems have
different notion of reduction, which induce different forms of computation.

Such variations are not trivial, but fundamentally change the way we think about
programs and their computation. For example, early work by Curry [1934] es-
sentially assigned computational meaning to axiomatic proofs in Hilbert-style sys-
tems. Such computation is in the form of combinatory reduction which can be seen
at the root of the APL programming language. Later work by Howard [1969] es-
tablished a relationship between Gentzen’s system of natural deduction [Gentzen,
1935, Prawitz, 1965] and Church’s typed λ-calculus [Church, 1940]. Here, compu-
tation proceeds by substitution which is at the root of modern functional program-
ming languages.

In today’s lecture, we begin to establish a connection between linear logic [Gi-
rard, 1987, Girard and Lafont, 1987] presented as a sequent calculus, and message-
passing processes. The propositions of linear logic express communication pro-
tocols, giving a post-hoc logical justification for session types [Honda and Tokoro,
1991, Honda, 1993, Honda et al., 1998]. The connection in this form was first es-
tablished by Caires and Pfenning [2010] and followed up in various ways (e.g.,
[Wadler, 2012, Caires et al., 2016]).

But enough of the generalities. Let’s get started! Instead of ordered logic which
has been mostly our focus so far, we now move to linear logic because of the wider
variety of programs it supports.

2 Cut as Process Composition

The first two fundamental ideas are the following:

• Proofs represent processes.

• Cut corresponds to the parallel composition of two processes with a private
communication channel connecting them.

In order to see how processes are connected, exactly, we label antecedents as we did
in Lecture 4. This removes ambiguity, for example, when we have more than one
antecedent with a particular proposition A. In addition, we also label the succedent
with a channel in order to clarify which of the antecedents in the other premise of a
cut it is connected to. Without an explicit proof term, the sequent then would have
the form

x1 : A1, . . . , xn : An︸ ︷︷ ︸
channels used

⊢ x : A︸ ︷︷ ︸
channel provided

A process provides exactly one channel and may use multiple channels. All the
variables xi and x must be distinct.
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We need cut as a primitive rule now because cut reduction induces computa-
tion. Without cut, there will be no computation! We call the process P (= the proof
of the first premise) the provider (or server) and the the process Q (= the proof of the
second premise) the client.

P
∆ ⊢ (x : A)

Q

∆′, x : A ⊢ (z : C)

∆,∆′ ⊢ (z : C)
cut

The variable x represents the channel of communication between provider and
client. This channel is private in the sense that P and Q are the only two endpoints,
which is guaranteed by our convention about the uniqueness of variable names.

Because the variables in a sequent represent channels, we often just refer to
them as channels, just like we might say “the integer x” when x is a variable stand-
ing for an integer.

3 Cut Reduction as Communication

The next question is how cut reduction corresponds to communication. We have
seen that there are three different kinds of cut reduction:

1. principal reductions, where a right rule for a connective meets a corresponding
left rule;

2. identity reductions, where one of the premises is an identity rule; and

3. permuting reductions, where an inference is applied to an antecedent or succe-
dent not involved in the cut.

It turns out that only the first two are of interest computationally while the third
represents a form of equality reasoning between processes.

We start with principal reductions, using internal choice A ⊕ B as a guiding
example. There are two—we show the first one, since the second one is entirely
symmetric.

P =


P1

∆ ⊢ x : A

∆ ⊢ x : A⊕B
⊕R1

Q1

∆′, x : A ⊢ z : C

Q2

∆′, x : B ⊢ z : C

∆′, x : A⊕B ⊢ z : C
⊕L

 = Q

∆,∆′ ⊢ z : C
cutA⊕B

−→R

P1

∆ ⊢ x : A

Q1

∆′, x : A ⊢ z : C

∆,∆′ ⊢ z : C
cutA

LECTURE NOTES SEPTEMBER 12, 2023



Linear Message Passing I L5.4

There are some syntactic details to consider, but the first and most important ques-
tion is “What is the flow of information here between the first premise (process P ) and the
second premise (process Q)?” We see that Q, with the ⊕L rule is prepared for both
eventualities: either A might be true or B might be true. This choice is made by
P which ends in either ⊕R1 (A is true) or ⊕R2 (B is true). Therefore, P has to
communicate this information to Q.

We say that P either sends π1 or π2, and Q is set to receive and branch on either
of those two tokens. So we write

P = send x π1 ; P1

Q = recv x (π1 ⇒ Q1 | π2 ⇒ Q2)

where P could also send π2. If we write the process P into the judgment in the
form

∆ ⊢ P :: (x : A)

then we get the following three rules

∆ ⊢ P1 :: (x : A)

∆ ⊢ send x π1 ; P1 :: (x : A⊕B)
⊕R1

∆ ⊢ P2 :: (x : B)

∆ ⊢ send x π2 ; P2 :: (x : A⊕B)
⊕R2

∆, x : A ⊢ Q1 :: (z : C) ∆, x : B ⊢ Q2 :: (z : C)

∆, x : A⊕B ⊢ recv x (π1 ⇒ Q1 | π2 ⇒ Q2) :: (z : C)
⊕L

These rules are actually closely related to the rules for proof terms from the last
lecture, except that our purpose and therefore notation are quite different. For
one, we have labeled the succedent with a variable that represent a communica-
tion channel. For another, we have used the terms send and receive to capture the
communication action.

We now prefer to read these rules as typing rules for the processes P and Q, but
we should keep in mind that erasing all the process information turns them back
into the familiar logical rules.

We can now go back to the cut reduction and annotate each sequent with its
process term. Writing the cut with x as a private channel as P ∥x Q, we can read
off the reduction on processes from the reduction on proofs.

(send x π1 ; P1) ∥x (recv x (π1 ⇒ Q1 | π2 ⇒ Q2)) −→R P1 ∥x Q1

(send x π2 ; P2) ∥x (recv x (π1 ⇒ Q1 | π2 ⇒ Q2)) −→R P2 ∥x Q2

An interesting observation here is that the type of the channel x evolves from A ⊕
B to either A or B, depending on whether the message was π1 or π2. In most
programming languages the type of a variable never changes, but here this seems
essential. We also see that the “outside” channels (the ones in the conclusion of
the cut) which we wrote as ∆,∆′ and z : C do not change their type. This will
be important in Lecture 7 when we investigate the properties of the programming
language as distinct from the properties of the proof system.
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4 Communication and Polarity

With the example of internal choice A ⊕ B, we have seen that the type prescribes
a communication protocol: the provider sends either π1 or π2 and the client must be
prepared to receive either one. Before we look at other connectives, can we predict
whether the provider or the client will have information to send? A key idea is
that the rule for an invertible connective does not have any information. After
all, the premises can be derived if and only if the conclusion can. On the other
hand, noninvertible connectives are noninvertible precisely because applying them
requires a choice. The information contained in this choice (like π1 and π2) is then
communicated to the connected process.

Recall that all positive connectives are noninvertible on the right. Therefore,
taking the provider’s perspective, the right rules for positive connectives will send
a message, while their left rules will receive a message. In linear logic, these are
A⊕B, 1, and A⊗B. Looking at the unit, we have

· ⊢ 1
1R

∆ ⊢ C

∆,1 ⊢ C
1L

1 is not a right invertible connective, because the rule cannot be applied to a section
∆ ⊢ 1 unless ∆ is empty.

· ⊢ (x : 1)
1R

Q

∆′ ⊢ C

∆′, x : 1 ⊢ C
1L

∆′ ⊢ (z : C)
cut

−→R

Q

∆′ ⊢ C

The information conveyed, therefore, is only that the associated process terminates,
which is done by sending the unit message ( ). First, the typing rules and then the
reduction rule.

· ⊢ send x ( ) :: (x : 1)
1R

∆ ⊢ Q :: (z : C)

∆, x : 1 ⊢ recv x (( )⇒ Q) :: (z : C)
1L

send x ( ) ∥x recv x (( )⇒ Q) −→R Q

Before we move on to the meaning of A ⊗ B and the other linear connectives, we
program some small examples that are already expressible with just A⊕B and 1.

5 An Example: Booleans

A very simple type is that of the Booleans.

bool = 1⊕ 1
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Perhaps not coincidentally, 1 + 1 = 2 is also the number of different message se-
quences that can be communicated on a channel x : bool. Namely:

· ⊢ false :: (c : bool)
· ⊢ true :: (c : bool)

false = send c π1 ; send c ( )
true = send c π2 ; send c ( )

It is possible for a process P with the typing · ⊢ P :: (c : bool) to spawn other
processes and perform a lot of computation, but ultimately it can only send π1, ( )
or π2, ( ) along c, because that is what the type of the channel enforces. It might also
fail to terminate if the language permits recursion, which we come to in the next
section.

Before that, let’s consider a process that receives a Boolean and passes on the
negation.

a : bool ⊢ neg :: (c : bool)

neg = recv a (π1 ⇒ recv a (( )⇒ send c π2 ; send c ( ) )
| π2 ⇒ recv a (( )⇒ send c p1 ; send c ( ) ) )

From the purely logical perspective, this is uninteresting because this program rep-
resents a proof of

1⊕ 1 ⊢ 1⊕ 1

There should be four cut-free and identity-free proofs of this proposition that rep-
resents the four unary Boolean functions.

Even though for the moment we have a perfect correspondence between proofs
and programs, there is a shift in perspective. Proofs are primarily thought of as ev-
idence for truth, while programs are primarily thought of as objects that compute.
Through the correspondence each view influences the others, and we can see rela-
tionships and interpretations that may otherwise be missed or found insignificant.

6 Another Example: Natural Numbers

Natural numbers are a mainstay both in logic and programming languages. In
logic, they are studied in Peano Arithmetic, in programming languages they are
either primitive (perhaps with a bounded range) or thought of as an inductive type.

We will put off any investigation of induction and inductive types and instead
go directly to recursion, both at the level of types and at the level of programs. Con-
sider, for example, the type 1 ⊕ 1 ⊕ 1. This has three possible message sequences,
1 ⊕ 1 ⊕ 1 ⊕ 1 has four, and so on. There are infinitely many natural numbers, so
the definition would be infinite:

nat = 1⊕ (1⊕ . . .)
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Using recursion, we can express this directly as

nat = 1⊕ nat

The corresponding message sequences can also be recursively defined:

n = π1 ( ) | π2 n

We see that the use of π1 and π2 is a bit awkward from the programming perspec-
tive, so we generalize the binary sum A⊕B to ⊕{ℓ : Aℓ}ℓ∈L where ℓ are labels (also
called tags) and L is a finite index set. Then the binary sum can be defined with the
index set {π1, π2}, maybe written as A⊕B ≜ ⊕{π1 : A, π2 : B}.

Then we define:

nat = ⊕{zero : 1, succ : nat}

· ⊢ zero :: (n : nat)
zero = send n zero ; send n ( )

In order to define the successor process, it is convenient to consider the computa-
tional interpretation of the identity. First, the cut reductions, which show that cut
and identity “cancel” each other. The structure of A is irrelevant, because the cut is
directly eliminated.

P (x)

∆ ⊢ x : A x : A ⊢ y : A
id

∆ ⊢ y : A
cut

−→R

P (y)

∆ ⊢ y : A

y : A ⊢ x : A
id

Q(x)

∆′, x : A ⊢ z : C

∆′, y : A ⊢ z : C
cut

−→R

Q(y)

∆′, y : A ⊢ z : C

We see that cut reduction in these two cases performs a variable substitution or re-
naming (P (x) becomes P (y) and Q(x) becomes Q(y)). This renaming is necessary
so that the conclusion before and after the reduction remains the same. Compu-
tationally, this is necessary because the channels in the conclusion of the cut are
connected to other processes (either clients or providers), and these other processes
should be able continue to communicate along the same channels as before.

We refer to this operation as forwarding because the identity intuitively forwards
any messages on the x and y channels to the other.

x : A ⊢ fwd y x :: (y : A)
id

The provided channel y here comes first, which may seem unintuitive but is part
of a number of coordinated decisions is the design of the MPASS programming
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language. The reductions:

P (x) ∥x fwd y x −→R P (y)

fwd x y ∥x Q(x) −→R Q(y)

To make sure the forwarder is connected to the correct provider P (x) or client Q(x),
the channel x must actually occur in these processes. Since communication chan-
nels are private and linear, this condition is sufficient to guarantee a correct reduc-
tion.

We can now complete the brief example of natural numbers by writing the suc-
cessor process.

nat = ⊕{zero : 1, succ : nat}

· ⊢ zero :: (n : nat)
zero = send n zero ; send n ( )

m : nat ⊢ succ :: (n : nat)
succ = send n succ ; fwd n m

In programming language parlance, types like nat are equirecursive, which means
here that there is no message associated with the unfolding of the recursion. In
the context of a language such as ML we would think of the type nat as inductive
because we would like values of this type to be isomorphic to the usual natural
numbers. In a non-strict language such as Haskell the type would instead be in-
terpreted coinductively because we can write a simple program that produces an
infinite stream of succ constructors. Similarly, in the context of our message-passing
programming language, a recursive program could easily send an infinite stream
of succ labels. So types in MPASS are interpreted coinductively. This means that
we disallow type definition such as ω = ω: the right-hand side of a type definition
must always start with a constructor so it uniquely represents a potentially infinite
type (that is, a potentially infinite communication protocol) in a finitary way.

For example, the type

bits = ⊕{b0 : bits, b1 : bits}

represents an infinite stream of bits 0 and 1. It is easy to write a transducer process
that negates each bit as it comes in.

7 MPASS Syntax

We introduce the syntax of the MPASS language for the remaining examples of this
lecture and the following two lectures. You can download a version of MPASS from
the course resources page. This contains a readme.txt file with a full grammar
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and other useful information. The examples from this lecture can be found in the
file lecture5.mps.

We can define types recursively at the top level using the type keyword, in-
cluding mutual recursion. Labels must be preceded by a single quote so they are
syntactically distinguished from the names of types, channels, and processes.

% unary natural numbers
type nat = +{’zero : 1, ’succ : nat}

Processes are defined with the proc keyword, followed by the name of the process,
then followed by the channel provided by the process and its type. Continuing the
example:

proc zero (n : nat) = send n ’zero ; send n ()

This avoids the need for a separate type declaration. If the process additionally
uses channels, they follow after the provided one.

proc succ (n : nat) (m : nat) = send n ’succ ; fwd n m

8 Example: Natural Numbers in Binary Form

We have already seen natural numbers in binary form as an example for ordered
inference. Now we think of them in terms of message-passing like the natural
numbers, where the least significant bit is sent first.

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}

proc zero (x : bin) = send x ’e ; send x ()
proc succ (x : bin) (y : bin) =

recv y ( ’b0 => send x ’b1 ; fwd y x
| ’b1 => send x ’b0 ; call succ x y % carry
| ’e => recv y (() => send x ’b1 ; send x ’e ; send x () ) )

We also see an example for the call keyword. Its first argument is a process (here
a recursive call), the second is the provided channel, and the remaining ones are
the used channels passed to the process. These arguments must match the type
declarations in the process header.

To write and understand such a program it is often extremely valuable to cal-
culate the type of every variable at various program points. That’s because they
change, and yet determine what may be possible as a next interaction.

The syntax for cut is, abstractly xA ← P (x) ; Q(x), where P (x) provides x and
Q(x) uses x. The typing rule:

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: (z : C)

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: (z : C)
cut
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The type A indicates the type of the new private channel, which may not be readily
inferable. We do not indicate how the antecedents of the conclusion are to be split
between ∆ and ∆′; instead this is determined by a type-checking algorithm.

Dynamically, cut creates a (globally fresh) channel a, spawns the process P (a)
and continues as Q(a). So there is a small asymmetry here inherent in the nature of
the (intuitionstic) sequent with a single conclusion.

xA ← P (x) ; Q(x) −→ P (a) ∥a Q(a) (a fresh)

Since cut just allocates a fresh channel and spawns a new process, there is no inter-
process communication involved in its operational interpretation.

We can use this to test our small successor programs: we create a channel ini-
tialized to zero and then increment it several times. We show the current state of
the typing judgment after a line of code. For example, the first call to succ will
pass x0 to it, so it is no longer in the current context.

proc test (x : bin) =
x0 <- call zero x0 ; % x0 : bin |- x : bin
x1 <- call succ x1 x0 ; % x1 : bin |- x : bin
x2 <- call succ x2 x1 ; % x2 : bin |- x : bin
x3 <- call succ x3 x2 ; % x3 : bin |- x : bin
fwd x x3

We recognize an idiom here, where we allocate a fresh channel like x1 and spawn
a new named process providing it at the same time. When we use cut this way we
can omit the type annotation for the new channel.

Because our language is concurrent, all these successor processes may be lined
up in a pipeline, passing bits through. Because the process test provides a chan-
nel x but does not use any channels, we can execute this program with the exec
keyword.

exec test

This will print back the channels that have been created and are externally observ-
able, starting with the initial channel (0), and the message observed on each of
the channels. Here, there is only one because the other ones are closed when the
successor processes terminate.

% executing test
(0) -> b1.b1.e.()

So the sequence of messages on channel (0) is b1, followed by b1, followed by e
and ( ) which closes this channel.

9 Summary

We have introduced a message-passing interpretation of sequent calculus proofs in
linear logic and given it a syntax. We will summarize the statics (typing rules) and
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dynamics (computation rules) after the next lecture. So far, we have only consider
internal choice and unit, but due to the presence of recursion we were already able
to write some small but nontrivial programs.
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