
Lecture Notes on
Preservation and Progress

15-836: Substructural Logics
Frank Pfenning

Lecture 7
September 19, 2023

1 Introduction

Our investigation has shown the close correspondences between linear proposi-
tions and session types, between sequent proofs and synchronous message-passing
programs, and between cut reduction and communication. Despite these close con-
nections, there are also differences. For example, permuting cut reductions and
identity expansion are related to process equalities, but not directly to computa-
tion. Here are some other key differences:

Recursion. Recursion is a central concept in programming languages but much
less prevalent in the study of logic. Nevertheless, there is a whole branch of
logic dedicated to arithmetic, including induction and primitive recursion.
See, for example, once again Gentzen’s pioneering work [Gentzen, 1936].
Also, infinitary proofs have been studied—we’ll see an example in Lecture 8
on Subtyping.

Observability. The primary purpose of proofs is to convince you that a proposi-
tion is true and explain why. As such, the whole proof must be subject to
inspection so we can check it and also understand it. The primary purpose
of programs is computation. As such, we are mostly interested in observing
its outcome (assuming that maybe we have separately verified or trust in its
correctness). But we do not observe functions directly, only their results on
particular inputs. This gives the provider of a library the freedom to change
function definitions (e.g., improve their efficiency) without changing the ob-
servable input/output behavior.

After motivating our MPASS language through logic and proof theory, we will see
the differences that arise when we put our programmers’ hats on. In particular,
the theorems we prove about the logic and the theorems we prove about our linear

LECTURE NOTES SEPTEMBER 19, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf

Preservation and Progress L7.2

message-passing programming language will by necessity be different. Neverthe-
less, we can see how the effort we invested in proof of cut elimination does not go
to waste; it is just that the key insights appear in different contexts.

From the foregoing discussion it might appear that logic and programming and
in fact two different subjects, albeit with close connections. In my view they are in
fact synthesized and generalized in constructive type theory. On one side, type the-
ory generalizes logic by providing the intrinsic ability to talk about its own proofs.
On the other side, type theory generalizes programming languages by providing
the intrinsic ability to reason about their correctness. I don’t know how much op-
portunity we will have to explore substructural type theory (in this sense) in this
course. Many questions here are not yet well understood.

2 Integrating Recursion

In the last two lectures and the MPASS examples we have seen that recursion is
introduced in two ways, both coming down to definitions:

(1) Types may be defined recursively. For example,

nat = ⊕{zero : 1, succ : nat}

Such types are equirecursive in the sense that recursion at the type level is not as-
sociated with any messages. During type-checking we are permitted to silently
replace a type name such as nat with its definition. In Lecture 8 we explore the
algorithmic consequences of this decision.

(2) Processes may be defined recursively. For example, the successor process on
binary numbers required recursion in order to represent the carry bit.

These two go hand-in-hand: often the recursive structure of processes is dictated
by the recursive structure of the types they operate on.

Based on these observation we integrate recursion into our programming lan-
guage via a signature Σ containing definitions at the type and process level. We
write t and s for type names, p for process names, and (y : B) for a sequence of
parameters yi : Bi.

Signature Σ ::= · | Σ, t = A | Σ, p (x : A) (y : B) = P

Because we want to make mutual recursion as natural as possible, the individual
declarations in a signature Σ are checked for correctness against the whole signa-
ture rather than the usual left-to-right manner. We write ⊢ Σ sig to mean that Σ is
a valid signature, and ⊢Σ Σ′ sig to mean that all declarations in Σ′ are valid in the
signature Σ. We have the following rules:

⊢Σ (·) sig

⊢Σ Σ′ sig ⊢Σ A type

⊢Σ (Σ′, t = A) sig

⊢Σ Σ′ sig (y : B) ⊢Σ P (x, y) :: (x : A)

⊢Σ (Σ′, p (x : A) (y : B) = P (x, y) sig

LECTURE NOTES SEPTEMBER 19, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping.pdf

Preservation and Progress L7.3

In these rules the index Σ in ⊢Σ never changes: the signature is in a sense global.
Therefore we omit it from all the judgments and imagine that in any given situation
it will be fixed and valid. Furthermore, all type names and process names in a
signature must be distinct.

The judgment ⊢Σ A type means that A is (or can be implicitly expanded to) one
of the types in our language, and that all the type names in A are defined in Σ.

Computationally, a call simply expands to its definition.

proc(call p a b) −→ proc(P (a, b)) where p (x : A) (y : B) = P (x, y) ∈ Σ

3 Typing Configurations of Processes

When running a program, we imagine starting with a single process P . During the
computation, many new processes may be spawned and interact with each other.
We think of these processes of defining a multiset in the sense of linear inference.
We can define it more syntactically with the following.

Configuration C ::= proc(P) | C1, C2 | ·

Here, the comma operator is associative and commutative with the empty config-
uration (·) as its unit.

There are many meaningless configurations, such as one where one process
sends a label that the recipient does not expect, or one where a process send unit
while the recipient expects a channel. Undoubtedly, while programming in MPASS

you have encountered such incorrect processes, which would have become incor-
rect configurations when running.

How do we ensure configurations are meaningful, which is to say, they are
well-typed? For a single process, our judgment is ∆ ⊢ P :: (x : A) which means
that P provides x at type A and uses the channels in ∆ at their given types. A
configuration may consist of multiple processes, so this generalizes to

∆ ⊢ C :: ∆′

which means the configuration C uses (is a client to) all the channel in ∆ and pro-
vides all the channels in ∆′. We might at first hypothesize the following rule:

∆ ⊢ P :: (a : A)

∆ ⊢ proc(P) :: (a : A)
proc?

Here, we take advantage of the fact that channels a, b, c behave exactly the same
under typing as variables x, y, z so that the typing judgment in the premise is well-
defined. But this is not quite sufficient: There may be other channels among the

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.4

antecedents to proc(P) that are not used by P . These will still be available to clients
of this configuration. So we get

∆ ⊢ P :: (a : A)

∆′,∆ ⊢ proc(P) :: (∆′, a : A)
proc

For process terms, cut requires that the provider and the client agree on the type of
the private channel that enables communication between them. For configurations,
this has to hold for all channels since they are all derived from cut. The empty
context just passes through all channels provided to it, since it neither uses nor
provides any channels of its own.

∆0 ⊢ C1 :: ∆1 ∆1 ⊢ C2 :: ∆2

∆0 ⊢ C1, C2 :: ∆2

join
∆ ⊢ (·) :: ∆

empty

At this point we notice an emerging conflict. On one hand we think of configura-
tions as multisets in the sense that the order of the individual processes is relevant.
On the other, for a typing derivation we require some ordering. As we can see from
the join rule, the typing derivation requires that each provider precedes its client.
Furthermore, we need to make sure that this relation is uniquely determined so we
stipulate that each channel in a configuration with

∆ ⊢ C :: ∆′

occurs either in ∆, or in ∆′ (or both), or has exactly one provider and exactly one
client in C. When we start from an initial configuration with a single main process,
this will be true, and all the rules can be seen to preserve this property. The only
doubt one might have is about cut, but the new channel is chosen such that it
does not already occur in the whole configuration. Moreover, this new channel has
exactly one provider and exactly one client.

Coming back to the ordering, the join operator as combining two derivations is
associative with unit empty, but it is not commutative. For a configuration to be
well-typed we require that there is an ordering of the processes that can be typed
with the given rules. This ordering is not unique: satisfying the provider-before-
client requirement still may leave many options. Which of these possibilities we
pick is irrelevant. A key property only briefly mentioned in lecture is the following
exchange lemma.

Lemma 1 (Exchange) If process P provides a channel a which is not used by the follow-
ing process Q in the configuration typing, then the two processes can be exchanged.

Proof: By inspection of the two typing derivations, since the first represents the
most general case of two consecutive processes satisfying the given condition. Given

∆P ⊢ P :: (a : A)

∆′,∆P ⊢ proc(P) :: (∆′, a : A)
proc

∆Q ⊢ Q :: (c : C)

∆′, a : A,∆Q ⊢ proc(Q) :: (∆′, a : A, c : C)
proc

∆′,∆P ,∆Q ⊢ proc(P), proc(Q) :: (∆′, a : A, c : C)
join

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.5

we construct

∆Q ⊢ Q :: (c : C)

∆′,∆P ,∆Q ⊢ proc(Q) :: (∆′,∆P , c : C)
proc

∆P ⊢ P :: (a : A)

∆′,∆P , c : A ⊢ proc(P) :: (∆′, a : A, c : C)
proc

∆′,∆P ,∆Q ⊢ proc(Q), proc(P) :: (∆′, a : A, c : C)
join

□

We can iterate the exchange so that a process P that provides a channel a can
always be moved to the right until it is next to its client. If it does not have a client,
then it can be moved to be the rightmost process in a configuration.

4 Preservation

Unlike pure logic where cut elimination always terminates in a cut-free proof, com-
putation may run forever due to the presence of recursion. So rather than cut elim-
ination (or admissibility of cut as the key lemma) we prove that as computation
proceeds the configuration remains well-typed. Since the computation rules are
(mostly) derived from principal cut reductions, patterns from the proof of the ad-
missibility of cut recur.

We have already remarked on a fundamental property, namely that the type of
channels evolves as communication takes place. So it what sense are types actually
preserved? What happens is that the types of internal channels in a configuration
changes consistently between client and provider, but the types of externally visible
channels remain invariant.

Theorem 2 (Preservation) If ∆ ⊢ C :: ∆′ and C −→ D then ∆ ⊢ D :: ∆′.

Theorem 3 The proof proceeds by cases over the forms of the reduction. There are four
kinds of cases: spawn (= cut), fwd (= identity), call, and interactions. We show two repre-
sentative cases. We analyze the configuration in the order of its typing derivation.

Cut: C = (CL, proc(xA ← P (x) ; Q(x)), CR) where

∆ ⊢ CL :: ∆L

∆L ⊢ proc(xA ← P (x) ; Q(x)) :: ∆R

∆R ⊢ CR :: ∆′

and
D = (CL, proc(P (a)), proc(Q(a)), CR)

for a globally fresh channel a.

In order to construct a typing derivation for D as required, we apply inversion to
the typing

∆L ⊢ proc(xA ← P (x) ; Q(x)) :: ∆R

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.6

This means we analyze the typing rules for processes and consider what we might
say about this typing derivation. We find that for some ∆′

L, ∆P , ∆Q, and c : C, we
must have

∆L = (∆′
L,∆P ,∆Q)

∆P ⊢ P (x) :: (x : A)
∆Q, x : A ⊢ Q(x) :: (c : C)
∆R = (∆′

L, c : C)

Because a is globally fresh, we can substitute it for x in the two typing derivation in
the middle, and conclude that

∆L = (∆′
L,∆P ,∆Q)

∆P ⊢ P (a) :: (a : A)
∆Q, a : A ⊢ Q(a) :: (c : C)
∆R = (∆′

L, c : C)

Now we can construct a typing derivation forD = (CL, proc(P (a)), proc(Q(a)), CR)
from

∆ ⊢ CL :: ∆L

∆L = (∆′
L,∆P ,∆Q)

∆′
L,∆P ,∆Q ⊢ proc(P (a)) :: (∆′

L,∆Q, a : A)
∆′

L,∆Q, a : A ⊢ proc(Q(a)) :: (∆′
L, c : C)

(∆′
L, c : C) = ∆R

∆R ⊢ CR :: ∆′

This concludes this case of type preservation.

⊗R/⊗L: C = (CL, proc(send a b ; P), proc(recv a (y ⇒ Q(y))), CR) where

∆ ⊢ CL :: ∆L

∆L ⊢ proc(send a b ; P), proc(recv a (y ⇒ Q(y))) :: ∆R

∆R ⊢ CR :: ∆

and
D = (CL, proc(P), proc(Q(b)), CR)

Here we have taken advantage the exchange lemma to restrict ourselves to the case
where the provider and client are immediately adjacent in the typing derivation.
Again we apply inversion to analyze the possible typing derivations for the mid-
dle line and find that for some ∆′

L, ∆P , a : A, b : B, and c : C we must have

∆L = (∆′
L,∆P , b : B,∆Q)

∆P ⊢ P :: (a : A)
∆Q, a : A, b : B ⊢ Q(b) :: (c : C)
∆R = (∆′

L, c : C)

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.7

A critical step here is examine the typing rules for send a b ; P and recv a (y ⇒
Q(y)) for which there is only one each once we know the first process is the provider
(which comes from their relative position in the typing derivation for C)

From these pieces we can assemble a typing derivation for

D = (CL, proc(P), proc(Q(b)), CR)

as follows:

∆ ⊢ CL :: ∆L

∆L = (∆′
L,∆P , b : B,∆Q)

∆′
L,∆P , b : B,∆Q ⊢ proc(P) :: (∆′

L, a : A, b : B,∆Q)
∆′

L, a : A, b : B,∆Q ⊢ Q(b) :: (∆′
L, c : C)

(∆′
L, c : C) = ∆R

∆R ⊢ CR :: ∆′

There is a lot of bureaucracy in the proof of preservation, but ultimately the
core reasoning step in the communication steps is that cut reduction preserves the
conclusion of the cut (in particular, the antecedents and the succedent).

5 Progress

Preservation means that in any computation C1 −→ C2 −→ · · · the interface to the
configuration never changes. Cut elimination would also predict that reduction
always terminates, but that’s not true in the presence of recursion unless we make
some restrictions. Instead, we would like to prove that “we never get stuck”: ei-
ther we can take a step, or the configuration is final in a well-defined way. We are
looking for analogue to the statement that in functional languages every expres-
sion e either can take a step or it is a value already. But what’s the analogue of
value? In our language of synchronous communication (that is, both sender and re-
ceiver proceed in lock-step when a message is exchanged) a configuration is final
if all processes attempt to communicate along an external channel. Such a chan-
nel does not have a second endpoint, so such a process can legitimately not make
further progress.

To keep the argument simple we assume that the configuration is closed on the
left, that is,

· ⊢ C :: ∆

In other words, C provides some external channels but does not use any. That’s
analogous to the usual assumption that in a functional language we only evaluate
closed expressions, that is, expressions without free variables.

Theorem 4 (Progress) If · ⊢ C :: ∆ then either C is final or C −→ D for some D.

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.8

Proof: This time we do a right-to-left induction over the structure the given typing
derivation (which we associate to the left). So C = (CL, proc(P)) for some process
P with · ⊢ CL :: ∆′ and ∆′ ⊢ proc(P) :: ∆.

By induction hypothesis, either CL −→ DL for some DL or CL is final.
In the first case C −→ (DL, proc(P)) by definition of reduction.
In the second case, all processes in CL will try to communicate along the channel

that they provide. Now we distinguish cases based on the process P .

Cut/Spawn: P = (xA ← P1(x) ; P2(x)) for some P1 and P2. Then proc(P) −→
proc(P1(a)), proc(P2(a)) for a fresh a, and therefore also C −→ (CL, proc(P1), proc(P2)).

Receive Channel: P = (recv a (y ⇒ P ′(y))) for some P ′. If P provides a (that is,
a : A ∈ ∆ for some A) then all of C is final.

Otherwise P uses a and must (by inversion) end in the ⊗L rule. That is the
typing derivation of ∆′ ⊢ proc(P) :: ∆ looks like

∆P , a : A, y : B ⊢ P ′(y) :: (c : C)

∆P , a : B ⊗A ⊢ (recv a (y ⇒ P ′(y))) :: (c : C)
⊗L

∆′ ⊢ proc(P) :: ∆
proc

where ∆′ = (∆L,∆P , a : B ⊗A) and ∆ = (∆L, c : C)

Because CL :: (∆L,∆P , a : B ⊗ A) there must be a process in CL providing
a : B ⊗ A. In particular, it cannot be part of the antecedents of CL because
these must be empty.

By inversion on the typing of a we find that there must be an object proc(Q)
in CL that provides a : B ⊗ A. Moreover, since CL is final, this process must
be trying communicate along a, so it must have form Q = (send a b ; Q′).
By the rule for sending and receiving a channel Q and P can interact, and
therefore C −→ D for some D.

□

Again, there is a lot of bureaucracy, but in the end the progress theorem comes
down to the fact that during the proof of admissibility of cut all the principal cases
could be reduced (= make progress).

6 Observation

We think of a closed configuration · ⊢ C :: ∆ as a collection of processes that provide
all the channels in ∆. As we have seen, the external interface ∆ will never change
during the computation. Moreover, when C is final, every process in C is trying to

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.9

communicate along a channel in ∆. Because our language is synchronous (both
send and receive block), this means none of the processes in C can take a step.

The question is how do we observe the outcome of the computation? Unlike
functional languages, the value is not presented to us a whole. For example, if we
have a final configuration

· ⊢ proc(P) :: (a : nat)

where nat = ⊕{zero : 1, succ : nat}, then we do not yet have any information except
that the process P terminated.

So we need to receive a label from the channel a in order to observe the outcome.
As soon as we interact with P , it will resume computation with its continuation
until is once again blocks with a send.

An observation may actually change the type of the channel a at the interface.
For example, if we received zero along a then afterwards we have P ′ :: (a : 1). If
instead we received succ, then afterwards the continuation process P ′ will again
provide a : nat.

A similar interaction protocol holds for all positive types (A ⊗ B, 1, ⊕{ℓ :
Aℓ}ℓ∈L). For a negative type like N{ℓ : Aℓ}ℓ∈L the situation is different. As pointed
out in the introduction, we cannot actually observe the process that is trying to re-
ceive along the channel it provides. The best thing we could do at this point is send
it (separately) each of the labels ℓ in the set L and observe the continuation Aℓ in
each case. This strategy breaks down when we encounter a : B ⊸ A because we
cannot possibly send it a channel B that explores all possible behaviors along a.
For example, if B = nat, there would be infinitely many.

This means when we encounter a channel of negative type we stop our obser-
vation process. An analogous decision is made in functional languages such as ML
or Haskell: values of function types are simply not directly observable, although
we can probe their behavior by applying them to different arguments.

The implementation of the exec P in MPASS observes the outcome of a compu-
tation just as described above and prints the observed messages. When a negative
type is encountered it prints just a dash.

7 Refactoring the Dynamics

It is often convenient to treat all the send and receive actions in a uniform way. In
order to support this, we can refactor the syntax and also the dynamics with the

LECTURE NOTES SEPTEMBER 19, 2023

Preservation and Progress L7.10

following definitions.

Processes P,Q ::= xA ← P (x) ; Q(x) (cut)
| fwd x y (id)
| send x m ; P (positive right or negative left rules)
| recv x K (positive left or negative right rules)
| call p x y (possibly recursive process p)

Messages m ::= () (1)
| k (⊕,N)
| y (⊗,⊸)

Continuations K ::= ()⇒ P (1)
| (ℓ⇒ Pℓ)ℓ∈L (⊕,N)
| (y ⇒ P (y)) (⊗,⊸)

In the dynamics, we pass a message to a continuation m▷K to obtain a process.

() ▷ (()⇒ P) = P
k ▷ (ℓ⇒ Pℓ)ℓ∈L = Pk (k ∈ L)
b ▷ (y ⇒ P (y)) = P (b)

The computation rules then simplify.

proc(xA ← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)
proc(P (b)), proc(fwd a b) −→ proc(P (a))
proc(send a m ; P), proc(recv a K) −→ proc(P), proc(m▷K)

proc(call p a b) −→ proc(P (a, b))

where p (x : A) (y : B) = P (x, y) ∈ Σ

There are some possible variations on the identity rules that are sometimes useful.
For an implementation, for example, we might enforce that P (b) actually tries to
communicate along b so it is expecting to interact. There is also a symmetric rule
to the given one where proc(fwd a b) interacts with its client proc(P (a)) to yield
proc(P (b)). Such variations are consistent with logical cut reduction but we are not
forced to specialize or generalize the rule above.

References

Gerhard Gentzen. Die Widerspuchsfreiheit der reinen Zahlentheorie. Mathematis-
che Annalen, 112:493–565, 1936. English translation in M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 132–213, North-Holland, 1969.

LECTURE NOTES SEPTEMBER 19, 2023

	Introduction
	Integrating Recursion
	Typing Configurations of Processes
	Preservation
	Progress
	Observation
	Refactoring the Dynamics

