
Lecture Notes on
Subtyping

15-836: Substructural Logics
Frank Pfenning

Lecture 8
September 21, 2023

1 Introduction

So far, we have always worked under the presupposition that the provider and
client of a channel agree on its type. This is fundamentally inspired by the cut
rule in logic, and it also seems necessary to ensure that all messages are properly
understood. For example, the progress property would fail spectacularly if one
process sends a label while the recipient expects a channel.

In this lecture we consider if we can loosen this restriction without violating
progress and preservation. If we can, it might allow us to simplify some programs,
or to capture more properties of the programs we write in their type.

As an introductory example, consider the following two types.

nat = {zero : 1, succ : nat}
pos = { succ : nat}

If we have a provider − ⊢ P :: (n : pos) and a client (n : nat) ⊢ Q :: − then nothing
can go wrong. P restricts itself to start with the message succ but the client does
not have to be aware of this—it will simply not receive a first message zero. On the
other hand, if we have − ⊢ P :: (n : nat) and (n : pos) ⊢ Q :: − then things can go
wrong immediately because P could send the label zero that Q is not expecting.

The notion of subtyping we consider here has been developed by Gay and Hole
[2005]. Although for a different underlying programming language, the result is
essentially the same, except that in their setting the roles of sender and receiver are
reversed from ours.

2 Message Understood

The key to subtyping in the message-passing setting is to make sure that the recipi-
ent of a message is ready for every possible message it could receive. Semantically,

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.2

we define subtyping A ≤ B this way:

If ∆ ⊢ P :: (a : A) and A ≤ B and ∆′, a : B ⊢ Q :: (c : C) then every
message along channel a is understood by the receiver.

For our purposes of study here, we’d like the relation A ≤ B to be as large as
possible. Or, to put it another way, if A ̸≤ B then there should be counterexample,
that is, a message along the channel a that the recipient does not understand. By
“does not understand” we mean that in the refactored rule from the last lecture

proc(send a m ; P), proc(recv a K) −→ proc(P), proc(m▷K)

the operation m▷K is undefined.
In order to see what kind of subtyping might hold we walk through the critical

steps in type preservation and progress in a hand-wavy fashion. These form the
core of the proof of progress and preservation in the presence of subtyping. An
important point here is to think connective by connective, so that it is open-ended
and adaptable to other languages.

Before we get to the specifics, there are a few general properties we expect. We
expect these to be admissible and rather than primitive.

• Subtyping should be reflexive: A ≤ A for all types A. This vaguely corre-
sponds to identity.

• Subtyping should be transitive: if A ≤ B and B ≤ C, then A ≤ C. This
vaguely corresponds to cut.

• Right subsumption should be admissible: If ∆ ⊢ P :: (a : A) and A ≤ B then
also ∆ ⊢ P :: (a : B).

• Left subsumption should be admissible: If A ≤ B and ∆, b : B ⊢ P :: (c : C)
then ∆, b : A ⊢ P :: (c : C)

We now build up a set of rules that allow us to conclude A ≤ B as a judgment.
One thing we can say immediately based on the semantic definition: there

should be no rules for A ≤ B if the top level type constructor of A and B is dif-
ferent. For example, 1 ̸≤ A ⊗ B and A ⊸ B ̸≤ ⊕{ℓ : Aℓ}ℓ∈L. In all these cases, a
message sent along the channel will not be understood by the recipient.

3 Internal Choice and Unit

As the example in the introduction suggests, ⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K requires
that every label in L must also be in K. That’s because the provider will send some
ℓ ∈ L along channel a so the recipient must be ready for it. But that’s not quite
sufficient: after a label ℓ ∈ L is sent, the two processes will still be connected along

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.3

a, but now the provider will have type Aℓ and the client Bℓ, so one must be a
subtype of the other. Pictorially:

provider P client Q

⊕{ℓ : Aℓ}ℓ∈L ⊕{k : Bk}k∈K

Aℓ Bℓ

≤
a

send a ℓ

≤
a

From this we extract the rule

L ⊆ K Aℓ ≤ Bℓ (∀ℓ ∈ L)

⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K

We also have 1 ≤ 1 without any condition since the channel a is closed.

provider client

1 1
≤
a

send a ()

The corresponding rule

1 ≤ 1

has no premise because the unit message closes the channel.
At this point we can already show some examples. Since type definitions are

equirecursive we just unfold them.

nat ≤ nat

⊕{succ : nat} ≤ ⊕{zero : 1, succ : nat}
pos ≤ nat

Here we stopped at reflexivity. But if we think of reflexivity as just admissible, we

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.4

would continue:

1 ≤ 1 nat ≤ nat

⊕{zero : 1, succ : nat} ≤ ⊕{zero : 1, succ : nat}
nat ≤ nat

⊕{succ : nat} ≤ ⊕{zero : 1, succ : nat}
pos ≤ nat

At this point we realize we can continue indefinitely building a deeper and deeper
derivation by expanding the recursive definition. But somehow that should be
okay: if there is no subproof where we actually get stuck then there should be no
“message not understood” problem when the processes communicate. So the proof
system is infinitary. Even infinite derivations are sufficient to guarantee that there
is no finite counterexample.

Another way to express this is to say that the proof rules here are interpreted
coinductively. A proof is valid if we can always proceed further along all the open
branches. This is in contrast to the proof systems we have seen so far, where proofs
are defined inductively: we are only satisfied if we have a finite proof constructed
from the rules.

In general, coinductive proofs system are more difficult to work with because
we cannot actually write down infinite proofs. But they can still serve a useful
purpose when they capture an intuitive notion. Here, and in some other cases I am
aware of, they capture the absence of a counterexample. Constructively, this is not
the same as a direct proof, but a refutation of its negation and therefore in some
sense “weaker” than a (constructive inductive) proof.

In this particular example, we actually have a finitary representation of an in-
finitary proof since we have reached a cycle: the judgment at the top is the same as
one lower in the same proof branch. In that case we can mark it as a loop and not
explore this branch further. This way to proceed is sound since we could always
unfold the looping proof into an infinite one. Or we can say that if there were a
counterexample, there would be a shortest one. But the shortest one wouldn’t go
through the same judgment more than once.

In lecture we noted this with arcs, but in LATEX we just label the lower judgment
in the proof and then use this to justify the leaf.

1 ≤ 1

(x)

nat ≤ nat

⊕{zero : 1, succ : nat} ≤ ⊕{zero : 1, succ : nat}

nat ≤ nat (x)

⊕{succ : nat} ≤ ⊕{zero : 1, succ : nat}
pos ≤ nat

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.5

In this particular example it seems like we should have been able to avoid the
loop altogether by promoting reflexivity to be a rule. In other example, this is not
possible. For example:

nat = ⊕{zero : 1, succ : nat}
even = ⊕{zero : 1, succ : odd}
odd = ⊕{succ : even}

We start to construct circular proof of even ≤ nat:

1 ≤ 1

...
odd ≤ nat

⊕{zero : 1, succ : odd} ≤ ⊕{zero : 1, succ : nat}
even ≤ nat

We see that we have “reduced” the question of even ≤ nat to the question if odd ≤
nat. We go on until we can complete all branches in the proof.

1 ≤ 1

(x)

even ≤ nat

⊕{succ : even} ≤ ⊕{zero : 1, succ : nat}

odd ≤ nat

⊕{zero : 1, succ : odd} ≤ ⊕{zero : 1, succ : nat}

even ≤ nat (x)

In order to explore a failure of subtyping, consider the judgment nat ≤ even.
Clearly, this should not be provable.

1 ≤ 1

fails, since {zero, succ} ̸⊆ {succ}
⊕{zero : 1, succ : nat} ≤ ⊕{succ : even}

nat ≤ odd

⊕{zero : 1, succ : nat} ≤ ⊕{zero : 1, succ : odd}
nat ≤ even

Here we observe that this particular failed derivation contains enough information
to extract a sequence of messages where the last one is not expected by the recipi-
ent: succ followed by zero. And, indeed, this sequence of message is (the start of)
the number 1 which is not even.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.6

4 Example: Binary Numbers in Standard Form

As another example we consider binary numbers. Their representation is not uniquely
determined because of the possibility of leading zeros. For example, (0100)2 =
(100)2 = 4. We say a number is in standard form if it has no leading zeros. We can
define this using positive numbers as an additional type.

bin = ⊕{b0 : bin, b1 : bin, e : 1}
std = ⊕{b0 : pos, b1 : std, e : 1}
pos = ⊕{b0 : pos, b1 : std}

Then pos ≤ std:

(x)

pos ≤ pos

...
std ≤ std

⊕{b0 : pos, b1 : std} ≤ ⊕{b0 : pos, b1 : std}

pos ≤ pos (x)

...
std ≤ std

⊕{b0 : pos, b1 : std} ≤ ⊕{b0 : pos, b1 : std, e : 1}

pos ≤ std

This example is a (mild) illustration of a concern about circular proofs: we do not
transfer what we learn on one branch to another. One technique to deal with this is
to turn an infinitary (circular) proof system into a saturation procedure that works
with forward inference. In such a system there is more reuse. DeYoung et al. [2023]
then justify the saturating rules with respect to the infinitary rules.

In our system for subtyping (incomplete, at this point), attempts are construct-
ing circular proofs will always either fail finitely or end up with a (finite) circular
proof. The reason is that in a signature in which n syntactically different types oc-
cur, there can be at most n2 pairs A ≤ B that might appear on a branch in the proof.
This will continue to be the case when our set of rules is complete.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.7

5 Tensor

Let’s consider the interaction when a : A1 ⊗ A2. The provider will send a channel
b : A1 and the channel a will afterwards have type A2.

provider P client Q

A1 ⊗A2 B1 ⊗B2

A2 B2

≤
a

send a b

≤
a

From this we see that A2 ≤ B2 is required for the connection to continue to be well-
typed. But what is the situation with the channel b, provided by, say R? We have
the following chain of reasoning:

1. P was the original client of b at type A1.

2. Q will be its new client of b at type B1.

3. R provided the channel to P at some type C1, so C1 ≤ A1.

So for R and Q to be properly connected over the channel b we must have A1 ≤ B1

because then C1 ≤ B1 follows by transitivity.
Actually, we can be more lenient that what we just described. Provider P can

send a channel b : A′
1 as long as A′

1 ≤ A1. Then we get:

1. P was the original client of b at type A′
1.

2. Q is the new client of b at type B1.

3. A′
1 ≤ A1 (the condition for P to send b along a : A1 ⊗A2)

4. R is the provider at some type C1, so C1 ≤ A′
1.

Still, A1 ≤ B1 is sufficient to guarantee the chain of subtyping from the provider
R to the new client Q: C1 ≤ A′

1 ≤ A1 ≤ B1. Without the condition, if C1 = A′
1 =

A1 ̸≤ B1 an incorrect situation would arise, leading to the potential of a “message
not understood” error along channel b later. So our rule is just:

A1 ≤ B1 A2 ≤ B2

A1 ⊗A2 ≤ B1 ⊗B2

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.8

We can exploit subtyping as sketched above to generalize the ⊗R∗ rule.

A′
1 ≤ A1 ∆ ⊢ P :: (x : A2)

∆, y : A′
1 ⊢ send x y ; P :: (x : A1 ⊗A2)

⊗R∗

6 Negative Types

For negative types, the role of sender and receive are reversed, so we need to reex-
amine the situation carefully. We start with external choice, that should be analo-
gous to internal choice.

provider P client Q

N{ℓ : Aℓ}ℓ∈L N{k : Bk}k∈K

Ak Bk

≤
a

send a k

≤
a

We see that for the label k to be understood, we need that k ∈ L, so we must require
that L ⊇ K, the opposite inclusion from the internal choice. However, provider and
client remain the same, so the continuation types must be related in the same order.

L ⊇ K Ak ≤ Bk (∀k ∈ K)

N{ℓ : Aℓ}ℓ∈L ≤ N{k : Ak}k∈K

In the dynamics of linear implication a channel b is received by the provider
along a.

provider client

A1 ⊸ A2 B1 ⊸ B2

A2 B2

≤
a

send a b

≤
a

The handoff of the channel b leads to the following reasoning.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.9

1. A process R provides b at type C1 ≤ B′
1.

2. The client Q sees b at type B′
1 ≤ B1.

3. The new client P sees b at type A1.

So for the new connection to be well-typed, we need C1 ≤ A1. We can get this by
C1 ≤ B′

1 ≤ B1 ≤ A1, so we should require B1 ≤ A1. This is the manifestation of
contravariance of subtyping for arguments at function type in this context.

B1 ≤ A1 A2 ≤ B2

A1 ⊸ A2 ≤ B1 ⊸ B2

We have already anticipated the generalization of the typing rule for sending a
channel.

A′
1 ≤ A1 ∆, x : A2 ⊢ P :: (z : C)

∆, y : A′
1, x : A1 ⊸ A2 ⊢ send x y ; P :: (z : C)

⊸L∗

We can look among the rules for opportunities for generalization. The only
other place where types are compared for equality in the rules so far is the identity
rule and, depending on how one looks at it, the cut rule. We generalize identity.

A′ ≤ A

y : A′ ⊢ fwd x y :: (x : A)
id

You should convince yourself that this rule is correct by simple transitivity reason-
ing.

We do not generalize cut, because due to the admissibility of left and right sub-
sumption, this would complicate the syntax without changing the set of well-typed
processes. However, we do generalize the call rule (see Figure 2).

7 Example: Subtyping of Stores

As an example of subtyping with negative types we consider the store interface
from before.

store = N{ ins : bin ⊸ store,
del : ⊕{ none : 1, some : bin⊗ store } }

There are uses of a stack where it is important that we only insertions followed
only by deletions until the stack is empty. For example, the amortized analysis of
queues, implemented by two stacks, relies on a property along these lines [Okasaki,
1998].

This is an example of an interaction protocol with a data structure prescribed
by a type. In object-oriented programming related techniques have been referred
to as typestate analysis Strom and Yemini [1986].

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.10

We have two phases of communication, store1 where we only insert (until the
first deletion) and store2 where we only delete. This is expressed in the following
two types.

store1 = N{ ins : bin ⊸ store1,
del : ⊕{ none : 1, some : bin⊗ store2 } }

store2 = N{ del : ⊕{ none : 1, some : bin⊗ store2 } }

What are the expected subtyping relationships between store, store1 and store2? We
suggest you work this out for yourself before you read on.

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.11

Maybe, like me, you got it wrong and conjectured, for examples, that store2 ≤
store1. Let’s see if we can prove this or find a counterexample.

fails, since {del} ̸⊇ {del, ins}
N{del : . . .} ≤ N{del : . . . , ins : . . .}

store2 ≤ store1

Oops! And, indeed, if the client sees the type with both insert and delete options,
it could send del. This message will not be understood by a provider in the phase
2, expecting only deletions.

So the relationship is the other way around. We skip some intermediate unfold-
ing of type definitions. The missing part is a simple instance of reflexivity, which
we have marked as an instance of an admissible rule.

{ins, del} ⊇ {del} ⊕{ none : 1, some : bin⊗ store2 } ≤ ⊕{ none : 1, some : bin⊗ store2 }

store1 ≤ store2

We also have store ≤ store1 by a derivation that should not be surprising at this
point.

bin ≤ bin

(x)

store ≤ store1

bin ⊸ store ≤ bin ⊸ store1

1 ≤ 1

bin ≤ bin
D

store ≤ store2

bin⊗ store ≤ bin⊗ store2

⊕{ none : 1, some : bin⊗ store } ≤ ⊕{ none : 1, some : bin⊗ store2 }

store ≤ store1 (x)

D =

1 ≤ 1

bin ≤ bin

(y)

store ≤ store2

bin⊗ store ≤ bin⊗ store2

⊕{ none : 1, some : bin⊗ store } ≤ ⊕{ none : 1, some : bin⊗ store2 }

store ≤ store2 (y)

8 Subtyping in MPASS

Subtyping is implemented in MPASS and will be used when it is called with --subtyping,
or -s for short.

There is no separate declaration to test subtyping, but we can use forwarding
because x : A ⊢ fwd y x :: (y : B) is well-typed if and only if A ≤ B. Examples can
be found in the file lecture8.mps; excerpts are in Listing 1 and Listing 2.

LECTURE NOTES SEPTEMBER 21, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/08-subtyping/lecture8.mps

Subtyping L8.12

1 type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
2

3 type std = +{’b0 : pos, ’b1 : std, ’e : 1}
4 type pos = +{’b0 : pos, ’b1 : std }
5

6 proc pos_std (y : std) (x : pos) = fwd y x % pos <: std
7 proc std_bin (y : bin) (x : std) = fwd y x % std <: bin
8

9 fail
10 proc bin_std (y : std) (x : bin) = fwd y x % bin </: std

Listing 1: Subtyping for some subsets of binary numbers

The last declaration in Listing 2 illustrates how we can test that A is not a sub-
type of B. We do this by using the construct fail <dec> which succeeds if the
declaration <dec> fails. If you run this through MPASS with the -d flag it will still
show the error message it would have printed if the declaration were not preceded
by fail.

The only example of testing subtyping on programs are the list2store and
store2list processes. The first, only inserts numbers into a store, while the second
only deletes them, so they use the store1 and store2 types from this lecture. You can
find the code in Listing 2.

9 Summary

We summarize the rules for subtyping, interpreted coinductively, in Figure 1 and
the updated rules for process typing in Figure 2. The other rules remain unchanged.

References

Henry DeYoung, Andreia Mordido, Frank Pfenning, and Ankush Das. Parametric
subtyping for structural parametric polymorphism. CoRR, abs/2307.13661, July
2023. URL https://arxiv.org/abs/2307.13661. Submitted.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the π-calculus.
Acta Informatica, 42(2–3):191–225, 2005.

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

Robert E. Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Transactions on Software Engineering, 12
(1):157–171, 1986.

LECTURE NOTES SEPTEMBER 21, 2023

https://arxiv.org/abs/2307.13661

Subtyping L8.13

1 type list = +{’nil : 1, ’cons : bin * list}
2

3 type store = &{’ins : bin -o store,
4 ’del : +{’none : 1, ’some : bin * store}}
5 type store1 = &{’ins : bin -o store1,
6 ’del : +{’none : 1, ’some : bin * store2}}
7 type store2 = &{’del : +{’none : 1, ’some : bin * store2}}
8

9 (* note use of ’store1’ below! *)
10 proc list2store (s : store1) (l : list) (t : store1) =
11 recv l (’nil => recv l (() => fwd s t)
12 | ’cons => recv l (x =>
13 send t ’ins ;
14 send t x ;
15 call list2store s l t))
16

17 (* note use of ’store2’ below! *)
18 proc store2list (l : list) (s : store2) =
19 send s ’del ;
20 recv s (’none => recv s (() => send l ’nil ; send l ())
21 | ’some => recv s (x => send l ’cons ; send l x ;
22 call store2list l s))
23

24 proc roundtrip (l : list) (k : list) =
25 e <- call empty e ; % start with empty store
26 s <- call list2store s k e ; % add all elements from k
27 call store2list l s % retrieve all element from s

Listing 2: Phase 1 and 2 store typing

L ⊆ K Aℓ ≤ Bℓ (∀ℓ ∈ L)

⊕{ℓ : Aℓ}ℓ∈L ≤ ⊕{k : Bk}k∈K

1 ≤ 1

A1 ≤ B1 A2 ≤ B2

A1 ⊗A2 ≤ B1 ⊗B2

L ⊇ K Ak ≤ Bk (∀k ∈ K)

N{ℓ : Aℓ}ℓ∈L ≤ N{k : Ak}k∈K

B1 ≤ A1 A2 ≤ B2

A1 ⊸ A2 ≤ B1 ⊸ B2

Figure 1: Subtyping, rules interpreted coinductively

LECTURE NOTES SEPTEMBER 21, 2023

Subtyping L8.14

A′ ≤ A

y : A′ ⊢ fwd x y :: (x : A)
id

f (x : A′) (yi : B′
i) = P ∈ Σ Bi ≤ B′

i (∀i) A′ ≤ A

yi : Bi ⊢ call f x yi :: (x : A)
call

A′
1 ≤ A1 ∆ ⊢ P :: (x : A2)

∆, y : A′
1 ⊢ send x y ; P :: (x : A1 ⊗A2)

⊗R∗

A′
1 ≤ A1 ∆, x : A2 ⊢ P :: (z : C)

∆, y : A′
1, x : A1 ⊸ A2 ⊢ send x y ; P :: (z : C)

⊸L∗

Figure 2: Process typing, extended for subtyping

LECTURE NOTES SEPTEMBER 21, 2023

	Introduction
	Message Understood
	Internal Choice and Unit
	Example: Binary Numbers in Standard Form
	Tensor
	Negative Types
	Example: Subtyping of Stores
	Subtyping in MPass
	Summary

