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1 Introduction

As we have seen in the last lecture, introducing the judgment of validity and then
internalizing it as the exponential modality !A permits a compositional translation
of structural (intuitionistic) logic into linear logic. At this point we could declare
victory and see if similar techniques apply to other logics, e.g., if there is some
embedding of linear logic into ordered logic.

However, there are some nagging issues, despite the elegance of the cut elimi-
nation proof.

1. The exponential !A is neither positive nor negative in that it is invertible nei-
ther on the right nor on the left. On the right, in a judgment Γ ; ∆ ⊢ !A we
may have to wait until ∆ becomes empty before applying !R. On the left, we
can move the linear antecedent !A true to A valid , but we cannot necessarily
move it back immediately to A true because that renders the linear context
nonempty (thereby possibly preventing !R).

2. If we have a particular interpretation of intuitionistic (structural) logic in
mind, then translation to linear logic may mangle this interpretation. Among
other concerns, a notion of observability may not be preserved, in which case
the translation couldn’t properly serve as a compiler.

So it is worth looking for a direct combination of logics, rather than translating
one into the other. If structural logic represents functional programming, and lin-
ear logic message-passing, then we’d look for a way to combine functional and
message-passing programming.

Today, we take a first step in this direction by developing a mixed linear/non-
linear logic (mostly) following Benton [1994]. Since ours is a minor variant, we
also call it LNL. We will see that it repairs some of the noted issues. Moreover, it
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presents a clear path towards further generalization in the form of adjoint logic [Reed,
2009, Pruiksma et al., 2018].

2 Shifting Between Logics

Given the desire to keep the native meaning of both structural and linear logic, we
place them in two different strata and speculate that we may just go back and forth
between them using two shift operators.

Structural AS ::= PS | AS ⊃ BS | AS ∧BS | ⊤ | AS ∨BS | ⊥ | ↑AL

Linear AL ::= PL | AL ⊸ BL | AL ⊗BL | 1 | AL N BL | ⊤ | AL ⊕BL | 0 | ↓AS

We call S and L modes.
The key questions are: Which properties do we expect from the combination,

and which laws should the two shifts satisfy so that these properties hold? At least,
we the combination should satisfy cut and identity elimination. Beyond that, the
combination should be conservative over each fragment in a strong sense: not only
do we want purely structural or purely linear propositions to be true precisely if
they are true in purely structural or purely linear logic, but we also want them to
have essentially the same proofs.

A lesson from the study of validity is that we cannot allow validity (here: truth
of a structural proposition) to depend on truth (here: truth of a linear proposition).
This gives us two judgment forms for the mixed linear/nonlinear logic.

(1) ΓS ; ∆L ⊢ AL

(2) ΓS ⊢ AS

The significant differences to the judgments from dual intuitionistic linear logic is
that (a) there no longer is an exponential !A, and (b) we can apply inference rules
directly to structural propositions AS, both in the antecedent and in the succedent.

3 Rules for Implication

Because we have two judgments and also two forms of implication, there are more
rules concerning implication than one might at first suspect. This kind of redun-
dancy is unfortunate, but, as we will see in the next lecture, it can be eliminated to
obtain a quite streamlined system in which there are just a single right rule and a
single left rule for implication.

Because we can tell, by notation and by position, when antecedents are struc-
tural or linear propositions, we omit the subscription ΓS and ∆L.
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First, the right rules. Since the mode of the succedent is uniquely determined
by the judgment (or vice versa, depending on how you look at it), there are just
two rules.

Γ, AS ⊢ BS

Γ ⊢ AS ⊃ BS

⊃R
Γ ; ∆, AL ⊢ BL

Γ ; ∆ ⊢ AL ⊸ BL

⊸R

There is only one left rule for AL ⊸ BL because it can appear in only one of the two
judgments.

Γ ; ∆1 ⊢ AL Γ ; ∆2, BL ⊢ CL

Γ ; ∆1,∆2, AL ⊸ BL ⊢ CL

⊸L

On the other hand, structural implication can appear in both judgment forms, so
there are two left rules for AS ⊃ BS.

Γ, AS ⊃ BS ⊢ AS Γ, AS ⊃ BS, BS ; ∆ ⊢ CL

Γ, AS ⊃ BS ; ∆ ⊢ CL

⊃LSL

Γ, AS ⊃ BS ⊢ AS Γ, AS ⊃ BS, BS ⊢ CS

Γ, AS ⊃ BS ⊢ CS

⊃LSS

Note that the first premises of the two rules are the same. That’s because AS is
structural, and thereby determines the judgment form needed to prove it. It is also
forced that we sort BS into Γ, just from its mode.

4 Rules for Shifts

Besides identifying the right judgment forms, the rules for the shifts are a key to
understanding the mixed linear/nonlinear system. As guidance in this process,
let’s recall the rules in the dyadic system from last lecture. We show the original
form of !R with an explicit, albeit forced, validR rule.

Γ ; · ⊢ A true

Γ ⊢ A valid
validR

Γ, A valid ; ∆, A true ⊢ C true

Γ, A valid ; ∆ ⊢ C true
validL

Γ ⊢ A valid

Γ ; · ⊢ !A true
!R

Γ, A valid ; ∆ ⊢ C true

Γ ; ∆, !A ⊢ C true
!L

Here is a thought experiment: what if the structural layer was only occupied by
↑AL? Then for any proposition ↓AS the proposition AS must have the form ↑AL.
Then we can try to gain insight from the decomposition !AL ≜ ↓↑AL. Here, both AL

and ↓↑AL are at mode L. Therefore, AS valid corresponds to ↑AL true because this is
the only possibility for AS. From this we get the following rules (showing the prior
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rule on the left, the LNL rule on the right):

Γ ; · ⊢ A true

Γ ⊢ A valid
validR

Γ ; · ⊢ AL

Γ ⊢ ↑AL

↑R

Γ, A valid ; ∆, A true ⊢ C true

Γ, A valid ; ∆ ⊢ C true
validL

Γ, ↑AL ; ∆, AL ⊢ CL

Γ, ↑AL ; ∆ ⊢ CL

↑L

Γ ⊢ A valid

Γ ; · ⊢ !A true
!R

Γ ⊢ AS

Γ ; · ⊢ ↓AS

↓R

Γ, A valid ; ∆ ⊢ C true

Γ ; ∆, !A ⊢ C true
!L

Γ, AS ; ∆ ⊢ CL

Γ ; ∆, ↓AS ⊢ CL

↓L

Some of the anomalies have disappeared. For example, every rule now concerns a
particular logical connective rather than a judgment.

Furthermore, we have an explanation why !A was neither positive nor negative.
From writing out the proofs of identities we can see that ↑ is negative (invertible
on the right) and ↓ is positive (invertible on the left). So !AL = ↓↑AL is neither
positive nor negative because there is a shift in polarity between the two shifts. It
is sometimes said that ! is “positive on the outside and negative on the inside”, which
reflects this decomposition precisely.

5 Identity and Cut

In LNL we have two forms of identity, and several forms of cut. This is because we
can apply rules directly to structural propositions.

Γ, AS ⊢ AS

idS
Γ ; AL ⊢ AL

idL

For the same reason we have multiple left rules, we also get multiple versions of
cut (three, to be precise).

Γ ⊢ AS Γ, AS ⊢ CS

Γ ⊢ CS

cutSS
Γ ⊢ AS Γ, AS ; ∆

′ ⊢ CL

Γ ; ∆′ ⊢ CL

cutSL

Γ ; ∆ ⊢ AL Γ ; ∆′, AL ⊢ CL

Γ ; ∆,∆′ ⊢ CL

cutLL

The admissibility of cut and identity is not essentially different from before, and
perhaps proof are even a bit simpler since we do not need to order different forms
of cut among each other. But we need to prove it simultaneously for the two forms
of identity and three three forms of cut since shifts will move us between these
judgments.

LECTURE NOTES SEPTEMBER 28, 2023



A Mixed Linear/Nonlinear Logic L10.5

Theorem 1 (Admissibility of Identity) The rules of identity idS and idL are admissible
in the system where they are restricted to atomic propositions.

Proof: By simultaneous structural induction on AS and AL. □

Theorem 2 (Admissibility of Cut) The three rules of cut are admissible in the system
without cut.

Proof: By simultaneous nested induction on all three forms of cut, first on the cut
proposition AL and AS, and second on the first and second given derivation.

To account for the requirement that the structural context Γ be the same among
the premises of the cut we may have to apply the admissibility of weakening for
structural antecedents, that is, we can add a new antecedent BS to every sequent in
a proof. □

Once we have cut elimination, the conservative extension properties are almost
immediate.

Theorem 3 (Conservative Extension)

(i) If Γ and AS do not contain any upshift ↑ then Γ ⊢ AS if and only if Γ ⊢ AS in
structural (intuitionistic) logic.

(ii) If ∆ and AL do not contain any downshift ↓ then · ; ∆ ⊢ AL if and only if ∆ ⊢ AL in
purely linear logic.

Proof: All the rules except cut have the subformula property, and the rules can be
read as rules from the purely structural (part (i)) or purely linear (part (ii)) sequent
calculus. Therefore conservative extension follows directly from cut elimination. □

6 Examples

We can now experiment with some properties. For example, we see that ↑ dis-
tributes over implication, we just have to be careful to pick the correct kind of im-
plication. We elide some structural antecedents when they are no longer needed.

− ; AL ⊢ AL

id
− ; BL ⊢ BL

id

− ; AL ⊸ BL, AL ⊢ BL

⊸L

↑(AL ⊸ BL), ↑AL ; · ⊢ BL

↑L× 2

↑(AL ⊸ BL), ↑AL ⊢ ↑BL

↑R

· ⊢ ↑(AL ⊸ BL) ⊃ (↑AL ⊃ ↑BL)
⊃R× 2
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The downshift also distributes over implication.

−, AS ⊢ AS

idS −, BS ⊢ BS

idS

AS ⊃ BS, AS ⊢ BS

⊃L

AS ⊃ BS, AS ; · ⊢ ↓BS

↓R

· ; ↓(AS ⊃ BS), ↓AS ⊢ ↓BS

↓L× 2

· ; · ⊢ ↓(AS ⊃ BS) ⊸ (↓AS ⊸ ↓BS)
⊃R× 2

The properties we proved last time using !A carry over under the definition
as ↓↑A. The proofs remain essentially the same, with just a couple of additional
administrative steps and different naming of the rules.

7 A Programming Example

One advantage of LNL is more direct expression of mixed programs. As an exam-
ple that also illustrates parallelism, we show mapreduce over trees that have data
only at the leaves. mapreduce is a fold operation over such trees, so the type treeA
is replaced by a fresh type variable B.

treeA = ⊕{leaf : A, node : treeA ⊗ treeA}
mapreduceAB (r : B) (h : A ⊸ B) (f : B ⊸ (B ⊸ B)) (t : treeA) = . . . ?

In the type of mapreduce, r stands for the result, that is, the channel to deliver the
result at. We have curried the type of the function f for ease of programming.

A problem is that we will not be able to write a recursive mapreduce with this
type since h and f are channels of linear type. h will be used for every leaf, and f
will be used for every node, so both will be used multiple times. We could try to
rewrite mapreduce as an iterator—here we want to write it directly. This means that
both h and f should be structural: we need upshifts.

mapreduceAB (r : B) (h : ↑(A ⊸ B)) (f : ↑(B ⊸ (B ⊸ B))) (t : treeA) = . . .

At this point it would be relatively straightforward to write the code, if we only had
the dynamics of the shifts. Let’s develop this and then come back to the example.

8 Dynamics of the Shifts

We start with ↑A. Since it is negative it will receive, but what? Let’s look at the rule
and annotate with channels.

Γ ; · ⊢ AL

Γ ⊢ ↑AL

↑R
Γ ; · ⊢ (yL : AL)

Γ ⊢ (xS : ↑AL)
↑R
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We need to transition from a structural channel xS to a linear channel yL, so that’s
what we need to receive! We write ⟨y⟩ for receiving a channel of a different mode
(linear or structural). Then we have:

Γ ; · ⊢ P (yL) :: (yL : AL)

Γ ⊢ recv xS (⟨yL⟩ ⇒ P (yL)) :: (xS : ↑AL)
↑R

Next, the left rule ↑L. To match ↑R, we clearly need to send a channel but which
one? We annotate the rule and then think of a process notation.

Γ, ↑AL ; ∆, AL ⊢ CL

Γ, ↑AL ; ∆ ⊢ CL

↑L
Γ, xS : ↑AL ; ∆, yL : AL ⊢ (z : CL)

Γ, xS : ↑AL ; ∆ ⊢ (z : CL)
↑L

We see that what we have to send is a fresh linear channel yL. This is a new phe-
nomenon since there is no cut involved, and so far only cut would create a fresh
channel. So we have to make up some new form of syntax.

Γ, xS : ↑AL ; ∆, yL : AL ⊢ Q(yL) :: (z : CL)

Γ, xS : ↑AL ; ∆ ⊢ send xS (⟨yL⟩ ⇒ Q(yL)) :: (z : CL)
↑L

What happens operationally? The client sends a fresh channel and the provider
continues with the fresh channel. So the first approximation would be

proc(recv aS (⟨yL⟩ ⇒ P (yL))), proc(send aS (⟨yL⟩ ⇒ Q(yL)))
−→ proc(P (bL)), proc(Q(bL)) bL fresh

This does not quite work, however, since structural channels may have multiple
clients. In the rule above the provider of aS disappears after interacting with one
client, so the other clients will be left dangling without a provider.

A similar practically occurring scenario is a web server. When a client sends
an HTTP request, the server spawns a fresh one-to-one connection and meanwhile
continues to serve other requests. What this means here is that the provider of a
structural channel spawns a fresh linear process but remains in the configuration to
receive further requests.

We model this with a new feature of multiset rewriting: we combine linear and
structural inference. The state consists of a set (the persistent propositions) and a
multiset (the ephemeral propositions). We just underline the persistent proposition,
because the alternative notation !A may be misleading. Then the rule reads:

proc(recv aS (⟨yL⟩ ⇒ P (yL))), proc(send aS (⟨yL⟩ ⇒ Q(yL)))

−→ proc(P (bL)), proc(Q(bL)) bL fresh

The persistent semantic objects originate in the cutSL rule (we omit the cutSS rule).
With process terms:

Γ ⊢ P (xS) :: (xS : AS) Γ, xS : AS ; ∆
′ ⊢ Q(xS) :: (zL : CL)

Γ ; ∆′ ⊢ xS ← P (xS) ; Q(xS) :: (zL : CL)
cutSL
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And the dynamics:

proc(xS ← P (xS) ; Q(xS)) −→ proc(P (aS)), proc(QS(aS)) (aS fresh)

Because it is not needed for the example, for the downshifts we jump directly to the
annotated versions and dynamics. As with other symmetric pairs of connectives
(⊸ / ⊗ and N / ⊕) we’d like to reuse the syntax for a streamlined language, just
swapping provider and client roles.

Γ ⊢ P (yS) :: (yS : AS)

Γ ; · ⊢ send xL (⟨yS⟩ ⇒ P (yS)) :: (xL : ↓AS)
↓R

Γ, yS : AS ; ∆ ⊢ Q(yS) :: (zL :: CL)

Γ ; ∆, xL : ↓AS ⊢ recv xL (⟨yS⟩ ⇒ P (yS)) :: (zL : CL)
↓L

The dynamics is similar to the one for ↑AL, except that different processes are per-
sistent and channels go from linear to structural instead of vice versa.

proc(send aL (⟨yS⟩ ⇒ P (yS))), proc(recv aL (⟨yS⟩ ⇒ Q(yS)))
−→ proc(P (bS)), proc(Q(bS)) bS fresh

9 Example Continued

Returning to the example, we can now write the process for mapreduce. Both h and
f are structural channels; we omit the subscript on the linear channels.

treeA = ⊕{leaf : A, node : treeA ⊗ treeA}
mapreduceAB (r : B) (hS : ↑(A ⊸ B)) (fS : ↑(B ⊸ (B ⊸ B))) (t : treeA) =

recv t ( leaf ⇒ send hS (⟨h′⟩ ⇒ send h′ t ; fwd r h′)
| node⇒ recv t (s⇒

x← call mapreduceAB x hS fS s ;
y ← call mapreduceAB y hS fS t ;
send fS (⟨f ′⟩ ⇒
send f ′ x ;
send f ′ y ;
fwd r f ′ ) ) )

The structural nature of hS and fS is crucial here because they are indeed used
multiple or zero times in the two branches.

This may also be a good time to think about parallelism. We see that the two
recursive calls to mapreduce proceed entirely independently. But the parallelism
even goes further: the computation of f ′ on x and y can proceed while mapreduce
is still computing. So x and y are shared between the providers (the recursive calls
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to mapreduce) and the client (f ′, a linear instance of fS), synchronization between
these two processes only takes place during input or output on those channels. This
phenomenon of pipelining can improve the asymptotic complexity of some parallel
algorithms, as observed by Blelloch and Reid-Miller [1999].

Since it came up during lecture: if we change the type of fS to take a pair of
channels, we have to create this pair in the code which is minimally more compli-
cated. The result is below.

treeA = ⊕{leaf : A, node : treeA ⊗ treeA}
mapreduceAB (r : B) (hS : ↑(A ⊸ B)) (fS : ↑((B ⊗B) ⊸ B))) (t : treeA) =

recv t ( leaf ⇒ send hS (⟨h′⟩ ⇒ send h′ t ; fwd r h′)
| node⇒ recv t (s⇒

x← call mapreduceAB x hS fS s ;
y ← call mapreduceAB y hS fS t ;
send fS (⟨f ′⟩ ⇒
pB⊗B ← (send p x ; fwd p y) ;
send f ′ p ;
fwd r f ′ ) ) )

10 Summary

We have presented LNL [Benton, 1994], a mixed linear/nonlinear logic that arises
from the logic of validity from the last lecture by decomposing !A into two shifts:
one (↑) from linear to structural and one (↓) from structural to linear. Benton makes
the point that there is an adjunction between the two shifts, which results in their
composition ↓↑ being a comonad and the opposite composition ↑↓ being a monad.

This approach solves some small issues with the dyadic formulation from last
lecture. For example, ↑ is negative and ↓ is positive, which means their composition
! is neither.

Since we view LNL mainly as a stepping stone to full adjoint logic1 we do not
summarize the rules here.
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