
Lecture Notes on
Adjoint Logic

15-836: Substructural Logics
Frank Pfenning

Lecture 11
October 3, 2023

1 Introduction

In the last lecture we introduced LNL, a mixed linear/nonlinear logic that directly
contains linear and nonlinear propositions instead of the exponential !A (which
could be defined as ↓↑A). This eliminates some drawbacks of coding all nonlinear
propositions via the exponential, but it has some of its own issues. For example,
we have seen that there are two right rules for implication (one for A ⊸ B and one
for A ⊃ B), and three left rules for implication (one for A ⊸ B and two for A ⊃ B).

One question is if we can streamline this so we would only have two rules im-
plication (one right and one left rule) rather than five as in LNL. Another is if we
can generalize the LNL approach to combine different logics, rather than just intu-
itionistic structural and linear logics. One answer to both questions is provided by
adjoint logic, a general schema for combining certain classes of logics based on sim-
ple principles. The idea was first sketched by Reed [2009] and further developed by
Pruiksma et al. [2018] and others (e.g., [Chargin, 2017, Licata and Shulman, 2016,
Licata et al., 2017, Pruiksma and Pfenning, 2021]).

The generality of adjoint logic then yields a number of familiar logics such as lax
logic Fairtlough and Mendler [1997] which is related to computational monads Moggi
[1991], or the intuitionistic modal logic S4 [Pfenning and Davies, 2001] which is
related to staged computation and metaprogramming [Davies and Pfenning, 2001].

In this and the following lecture we assume that exchange is always present as
a structural property, although this is not necessary. We leave further discussion of
ordered logic in the adjoint context either to a future lecture or a miniproject.

Mostly, it seems, we like to use weakening and contraction together. Occa-
sionally, it is suitable to postulate just weakening or contraction in isolation. For
example, if we want to allow failure and process cancelation, then weakening may
be appropriate (not every process providing a channel may actually be used). The
type system of Rust is also affine, that is, permits weakening but not contraction in

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.2

certain ways that are not entirely captured here, but analogous. Another example is
expressing strictness analysis in a language such as Haskell as a type system. When
a function definitely uses its argument then it is strict, that is, it can (explicitly or
implicitly) employ contraction but not weakening.

2 Adjoint Logic: The Basics

In adjoint logic every proposition has an intrinsic mode of truth, where each mode
may or may not admit weakening and contraction. We define the meaning of the
connectives uniformly at all modes by their right and left rules. So ultimately they
are distinguished only by the structural properties their mode satisfies.

As an example, LNL as an instance of the adjoint logic framework would have
two modes: S for structural propositions and L for linear propositions.

We also have a preorder m ≥ k on modes which expresses that the proof of a
proposition Ak may depend on an antecedent Bm. Conversely, when m ̸≥ k then
Bm may not be among the antecedents of a proof of m. We call this the principle
of independence. A necessary use of this is in LNL, where a proof of a structural
proposition AS may not depend on a linear proposition AL. So we have S > L as
our preorder (and, in particular L ̸≥ S).

In addition to the usual connectives, adjoint logic also generalizes the shifts
from LNL to go between two arbitrary modes. For ↑mk Ak we require m ≥ k and for
↓ℓmAℓ we require ℓ ≥ m.

Am ::= Pm | Am →Bm | Am ×Bm | 1 | Am N Bm | ⊤ | Am +Bm | 0 | ↑mk Ak | ↓ℓmAℓ

We chose a new syntax, partially based on the reading of propositions as types.
So A → B unifies A ⊃ B and A ⊸ B, A × B stands for A ∧ B and A ⊗ B, and
A + B stands for A ∨ B and A ⊕ B. Even the logical constants 1, ⊤ and 0 should
be thought of as having an intrinsic mode, even if we don’t write them this way in
the grammar.

We write σ(m) for the set of structural properties satisfied by mode m, where
σ(m) ⊆ {W,C}. As mentioned in the introduction, we always assume exchange.
Based on the experience with cut elimination and validity (or the exponential), we
require:

If m ≥ k then σ(m) ⊇ σ(k).

And, indeed cut elimination fails if we omit this requirement. Furthermore, any
dependence in a sequent must be allowed by the preorder among modes.

Whenever we write ∆ ⊢ Am we require ∆ ≥ m.

This presupposition means we can never ask a question ∆ ⊢ Am unless for all Bℓ ∈ ∆
we have ℓ ≥ m. We write ∆ here for the antecedents because we treat the an-
tecedents as a multiset. This means, weakening and contraction must be explicit
rules for those modes that permit it.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.3

Like Gentzen [1935], we read the inference rules of the sequent calculus bottom-
up, as a means to construct a proof. When viewed in this direction, we need to
ensure there are sufficient preconditions in the rule to ensure the premises satisfy
our presupposition when the conclusion does.

As a start, write out the structural rules. Weakening applies to antecedents that
permit it explicitly, and similarly for contraction.

W ∈ σ(m) ∆ ⊢ Cr

∆, Am ⊢ Cr
weaken

C ∈ σ(m) ∆, Am, Am ⊢ Cr

∆, Am ⊢ Cr

contract

Also generic are the rules of cut and identity. First, identity.

Am ⊢ Am
id

Cut requires a bit of thought. As usual, we start by writing down what we know
directly, and then think about what else may be needed.

∆ ⊢ Am ∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut?

At first glance it might seem this should be it, but we remember that in LNL we
needed three rules. For example, if m = S (that is, m is structural) then ∆ may
not contain any linear antecedents (that is, BL). This issue surfaces here when we
reason about our presupposition. Let’s write in blue what we know and in red
what we need to know for the premises.

∆ ≥ m?

∆ ⊢ Am

∆′ ≥ r,m ≥ r?

∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut?

∆,∆′ ≥ r

We see that we already know ∆′ ≥ r from the presupposition for the conclusion,
but we know neither ∆ ≥ m nor m ≥ r. These two conditions thus need to be
explicitly enforced and we obtain:

∆ ≥ m ≥ r ∆ ⊢ Am ∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut

You should convince yourself that in the case where we have just two modes, L and
S, this gives rise exactly to the three forms of cut in LNL.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.4

3 Logical Rules

Next we can define the logical rules, uniformly across the modes. We start with
implication, which is almost a worst case for its complexity.

∆, Am ⊢ Bm

∆ ⊢ Am →Bm
→R

The presupposition tells us that ∆ ≥ m, which is sufficient to ensure that (∆, Am) ≥
m. It is good there is no condition: since implication is negative, we would expect
it to be right invertible and therefore not be subject to any conditions. For the left
rule, matters are not quite as simple.

∆ ≥ m?

∆ ⊢ Am

∆′ ≥ r,m ≥ r?

∆′, Bm ⊢ Cr

∆,∆′, Am →Bm ⊢ Cr

→L?

(∆,∆′) ≥ r,m ≥ r

We see that ∆′ ≥ r and m ≥ r is already known, but ∆ ≥ m is not and must be
added as a condition.

∆ ≥ m ∆ ⊢ Am ∆′, Bm ⊢ Cr

∆,∆′, Am →Bm ⊢ Cr

→L

It turns out there isn’t much of interest in the other rules. We only show the ones
for tensor and unit.

∆ ⊢ Am ∆′ ⊢ Bm

∆,∆′ ⊢ Am ×Bm

×R
∆, Am, Bm ⊢ Cr

∆, Am ×Bm ⊢ Cr
×L

· ⊢ 1
1R

∆ ⊢ Cr

∆, 1 ⊢ Cr
1L

It is easy to see that for these (and the remaining rules except shifts) the presuppo-
sition for the conclusion immediately entails the presupposition for the premises
and no additional conditions are needed. The rules are summarized in Figure 1.

4 The Shifts

The shifts generalize those from LNL, where ↑ would be replaced by ↑S
L and ↓ by

↓S
L. Based on the polarity of the shifts in LNL we would expect the annotated shifts

of adjoint logic to have the same polarities: ↑ should be negative and ↓ should be
positive.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.5

We can confirm this two ways: analyze the mode constraints in detail, and also
derive the admissibility of the identity. Neither of these is proof, of course, which
will be come back to in the next lecture.

We show first the rule with the known (blue) constraints and then the necessary
constraints in red. The known constraint m ≥ k comes from the nature of the shift,
since the upper mode must always be greater or equal to the lower mode.

∆ ≥ k?

∆ ⊢ Ak

∆ ⊢ ↑mk Ak

↑R

∆ ≥ m,m ≥ k

∆ ⊢ Ak

∆ ⊢ ↑mk Ak

↑R

As we might have predicted from the negative nature of the upshift, the presuppo-
sition of the premise follows from the presupposition of the conclusion.

In contrast, we expect some mode condition on the left rule for the upshift.

∆ ≥ r, k ≥ r?

∆, Ak ⊢ Cr

∆, ↑mk Ak ⊢ Cr

↑L

∆ ≥ r,m ≥ k,m ≥ r

k ≥ r ∆, Ak ⊢ Cr

∆, ↑mk Ak ⊢ Cr

↑L

We show the rules for downshift in a similar form: collecting and checking de-
pendence constraints and synthesizing the rule from them. If you try this yourself
first, you will see that there is no leeway: the rules are uniquely determined.

∆ ≥ ℓ?

∆ ⊢ Aℓ

∆ ⊢ ↓ℓmAℓ

↓R

∆ ≥ m, ℓ ≥ m

∆ ≥ ℓ ∆ ⊢ Aℓ

∆ ⊢ ↓ℓmAℓ

↓R

And finally the ↓L rule, which requires no conditions.

∆ ≥ r, ℓ ≥ r?

∆, Aℓ ⊢ Cr

∆, ↓ℓmAℓ ⊢ Cr

↓L

∆ ≥ r, ℓ ≥ m,m ≥ r

∆, Aℓ ⊢ Cr

∆, ↓ℓmAℓ ⊢ Cr

↓L

5 Specific Logics as Instances of the Adjoint Schema

We obtain specific logics in the literature by specifying the modes, their depen-
dence relation, and their structural properties.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.6

Linear Logic. We obtain intuitionistic linear logic [Girard, 1987, Chang et al.,
2003] with two modes, S and L where S > L where σ(S) = {W,C} and σ(L) = { }.
Furthermore, we restrict the propositions at mode S as

AS ::= ↑S
LAL

Then !AL ≜ ↓S
L ↑S

LAL. We also rule out the shifts ↑mm and ↓mm.

LNL. We obtain LNL [Benton, 1994] with the same modes, but the structural layer
has a full set of connectives. We only rule out ↑mm and ↓mm.

Intuitionistic S4. We obtain intuitionistic S4 [Pfenning and Davies, 2001] with
two modes, V (validity) and T (truth), with σ(V) = σ(T) = {W,C}. The mode V is
restricted analogously to S in linear logic:

AV ::= ↑V
TAT

We also rule out ↑mm and ↓mm. We define □AT ≜ ↓V
T ↑V

TAT. As a composition of the
two adjoint shift operators, □ is a comonad.

Perhaps somewhat surprisingly, we do not obtain the monad ♢AT from a com-
position of shifts, although we can obtain ⃝AT, a strong monad and the basis for
lax logic.

Lax Logic. We obtain lax logic [Fairtlough and Mendler, 1997] with two modes, T
(truth) and X (lax truth), with T > X and σ(T) = σ(X) = {W,C}. The mode X is
restricted to

AX ::= ↓T
XAT

and then ⃝AT ≜ ↑T
X ↓T

XAT. The ⃝ modality is a (strong) monad.
It is now easy to extend and combine these. For examples, we can have a lan-

guage for staged computation [Davies and Pfenning, 2001] where quoted expres-
sions are drawn directly from the layer for validity. Or we can have a language that
has both a monad and a comonad, with different structural properties.

6 Summary

The rules for adjoint logic are summarized in Figure 1.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.7

Syntax with ℓ ≥ m ≥ k and σ(m) ⊆ {W,C}.

Am ::= Pm | Am →Bm | Am ×Bm | 1 | Am N Bm | ⊤ | Am +Bm | 0 | ↑mk Ak | ↓ℓmAℓ

Rules.

W ∈ σ(m) ∆ ⊢ Cr

∆, Am ⊢ Cr
weaken

C ∈ σ(m) ∆, Am, Am ⊢ Cr

∆, Am ⊢ Cr

contract

Am ⊢ Am
id

∆ ≥ m ≥ r ∆ ⊢ Am ∆′, Am ⊢ Cr

∆,∆′ ⊢ Cr

cut

∆ ⊢ Ak

∆ ⊢ ↑mk Ak

↑R
k ≥ r ∆, Ak ⊢ Cr

∆, ↑mk Ak ⊢ Cr

↑L

∆ ≥ ℓ ∆ ⊢ Aℓ

∆ ⊢ ↓ℓmAℓ

↓R
∆, Aℓ ⊢ Cr

∆, ↓ℓmAℓ ⊢ Cr

↓L

∆, Am ⊢ Bm

∆ ⊢ Am →Bm
→R

∆ ≥ m ∆ ⊢ Am ∆′, Bm ⊢ Cr

∆,∆′, Am →Bm ⊢ Cr

→L

∆ ⊢ Am ∆′ ⊢ Bm

∆,∆′ ⊢ Am ×Bm

×R
∆, Am, Bm ⊢ Cr

∆, Am ×Bm ⊢ Cr
×L

· ⊢ 1
1R

∆ ⊢ Cr

∆, 1 ⊢ Cr
1L

∆ ⊢ Am ∆ ⊢ Bm

∆ ⊢ Am N Bm
NR

∆, Am ⊢ Cr

∆, Am N Bm ⊢ Cr

NL1

∆, Bm ⊢ Cr

∆, Am N Bm ⊢ Cr

NL2

∆ ⊢ ⊤
⊤R

no ⊤L rule

∆ ⊢ Am

∆ ⊢ Am +Bm

+R1

∆ ⊢ Bm

∆ ⊢ Am +Bm

+R2

∆, Am ⊢ Cr ∆, Bm ⊢ Cr

∆, Am +Bm ⊢ Cr
+L

no 0R rule ∆,0 ⊢ Cr
0L

Figure 1: Adjoint Logic

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.8

References

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In
Leszek Pacholski and Jerzy Tiuryn, editors, Selected Papers from the 8th Interna-
tional Workshop on Computer Science Logic (CSL’94), pages 121–135, Kazimierz,
Poland, September 1994. Springer LNCS 933. An extended version appears as
Technical Report UCAM-CL-TR-352, University of Cambridge.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental
analysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon
University, Department of Computer Science, December 2003.

William Chargin. A general system of adjoint logic. Honors thesis, Carnegie Mellon
University, December 2017.

Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Jour-
nal of the ACM, 48(3):555–604, May 2001.

M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Computa-
tion, 137(1):1–33, August 1997.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Daniel R. Licata and Michael Shulman. Adjoint logic with a 2-category of modes. In
International Symposium on Logical Foundations of Computer Science (LFCS), pages
219–235. Springer LNCS 9537, January 2016.

Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for
substructural and modal logics. In Dale Miller, editor, Proceedings of the 2nd Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD’17),
pages 25:1–25:22, Oxford, UK, September 2017. LIPIcs.

Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001. Notes to an in-
vited talk at the Workshop on Intuitionistic Modal Logics and Applications (IMLA’99),
Trento, Italy, July 1999.

Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint
logic. Journal of Logical and Algebraic Methods in Programming, 120(100637), 2021.

LECTURE NOTES OCTOBER 3, 2023

Adjoint Logic L11.9

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic.
Unpublished manuscript, April 2018. URL http://www.cs.cmu.edu/˜fp/
papers/adjoint18b.pdf.

Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript,
May 2009. URL http://www.cs.cmu.edu/˜jcreed/papers/jdml2.pdf.

LECTURE NOTES OCTOBER 3, 2023

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf

	Introduction
	Adjoint Logic: The Basics
	Logical Rules
	The Shifts
	Specific Logics as Instances of the Adjoint Schema
	Summary

