
Lecture Notes on
Adjoint SAX

15-836: Substructural Logics
Frank Pfenning

Lecture 15
October 31, 2023

1 Introduction

The version of SAX we introduced in the last lecture is still purely linear, although
with recursion available when considered as a programming language. Not every
function we want to write is linear, however, so we pursue the adjoint approach to
mix linear with nonlinear types. This can be generalized further to a preorder of
modes as in Lecture 11. With nonlinear types we can then express multicast (one
message is sent to multiple recipients) and shared servers (a provider has multiple
clients). Making communication asynchronous is a critical to this generalization. For
example, it is difficult to conceptualize what synchronous delivery of a message to
multiple clients might mean without at least a notion of (logical) time.

In MPASS we had a natural notion of channel that remained stable throughout
communication, with a changing type. In SAX all messages (except unit) contain
a continuation channel. Is there still a stable underlying notion of channel? We
explore this using messages sequences that avoid many instances of allocating fresh
continuation channels. While not formalized in this lecture, message sequences al-
low us implement channels as queues and, in some cases, calculate a precise bound
on maximal size of queue [Willsey et al., 2016]. Message sequences in the syntax
also allow some programs to be written more compactly.

2 Adding Adjoint Modalities to SAX

We recall the syntax of of SAX; the typing rules and dynamics can be found at
the end of Lecture 14. Even if not formally distinguished, we use x′ to denote a

LECTURE NOTES OCTOBER 31, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/11-adjoint.pdf
http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/14-sax.pdf

Adjoint SAX L15.2

continuation channel.

Messages M ::= k(x′) (⊕,N)
| (y, x′) (⊗,⊸)
| () (1)

Continuations K ::= (ℓ(x′)⇒ Pℓ(x
′))ℓ∈L (⊕,N)

| ((y, x′)⇒ P (y, x′)) (⊗,⊸)
| (()⇒ P) (1)

Processes P ::= x← P (x) ; Q(x) cut
| fwd x y id
| send x M
| recv x K
| call p x y1 . . . yn

We see that messages and continuations do double-duty for a pair of dual types.
But here is no dual to 1—why? Actually, there is one we just haven’t used it. See
Section 4 for what it would mean.

To generalize to mixed linear/nonlinear logic we introduce a second layer of
types and shifts that go between them.

Structural Types AS ::= . . . | ↑AL

Linear Types AL ::= . . . | ↓AS

Based on the symmetries we have seen so far, we might conjecture that they are
dual in a way so that we just need a single new form of message and continuation,
respectively, for both of these constructs. And that’s indeed the case. We write the
logical rules in the form of SAX based on their polarity and then assign program
terms. How does this work? Recall that in the move from the sequent calculus to
its semi-axiomatic form, the invertible rules remain the same and the noninvert-
ible ones are turned into axioms. The up shift is negative, so its right rule stays
intact. By our presupposition, ∆ consists only of structural propositions. The left
rule is turned into an axiom. We use here the implicit form without explicit rules
for weaakening and contraction, so we allow structural antecedents in the axioms,
denoted by ∆S.

∆ ⊢ AL

∆ ⊢ ↑AL

↑R
∆S, ↑AL ⊢ AL

↑L

The rules suggest a transition from a channel to its continuation channel at a dif-
ferent mode. We write ⟨x′⟩ for this form message.

∆ ⊢ P (x′L) :: (x
′
L : AL)

∆ ⊢ recv xS (⟨x′L⟩ ⇒ P (x′L)) :: (xS : ↑AL)
↑R

∆S, xS : ↑AL ⊢ send xS ⟨x′L⟩ :: (x′L : AL)
↑L

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.3

The downshift works out symmetrically. First, the logical rules.

∆S, AS ⊢ ↓AS

↓R
∆, AS ⊢ Cr

∆, ↓AS ⊢ Cr

↓L

In the left rule, the succedent Cr could be linear or structural. Annotating it with
processes:

∆S, x
′
S : AS ⊢ send xL ⟨x′S⟩ :: (xL :: ↓AS)

↓R

∆, x′S : AS ⊢ Q(x′S) :: (zr : Cr)

∆, xL : ↓AS ⊢ recv xL (⟨x′S⟩ ⇒ Q(x′S)) :: (zr : Cr)
↓L

The cut rule may introduce either a linear or a structural channel and structural
channels may be shared between the two branches. Since we have just two modes,
L and S with S > L, there are three versions of cut and only two versions of the
identity.

(∆ ≥ m ≥ r) ∆S,∆ ⊢ Am ∆S,∆
′, Am ⊢ Cr

∆S,∆,∆′ ⊢ Cr

cut
∆S, Am ⊢ Am

id

We retain a nice symmetry and language for messages, continuations, and chan-
nels. However, the dynamics becomes more complicated because some messages
along shared channels should be persistent, and shared services may also need to
be persistent. You can find the rules in a recent paper [Pfenning and Pruiksma,
2023]1. We will come back to the mixed linear/nonlinear programs in the next
lecture when we talk about futures.

3 An Example: mapreduce

As an example of a mixed linear/nonlinear program we write mapreduce on linear
trees with data at the leaves.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (r : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) = . . .

Here, fS and hS are variables of structural type because f is used at every node and
h is used at every leaf. We omit the annotation of the linear variables. The type
parameters A and B themselves are linear so we did not write fS : B × B→ B but
There is a corresponding version where A and B are structural types (which would
require changing the type for trees). We start by receiving from t.

1Available at https://www.cs.cmu.edu/˜fp/papers/coordination23.pdf

LECTURE NOTES OCTOBER 31, 2023

https://www.cs.cmu.edu/~fp/papers/coordination23.pdf

Adjoint SAX L15.4

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ . . .

| leaf(x)⇒ . . .)

In the case of a node we need to make two (hopefully parallel!) recursive calls. In
order to type them it is important that fS and hS can be shared. And, yes, these two
calls proceed independently, each given a fresh destination yi.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
. . .

| leaf(x)⇒ . . .)

Next, we’d like to call f on y1 and y2 but before we do we need to “unwrap” fS to
obtain the underlying linear function fL. For this purpose we need a send action
because ↑(B ⊗B ⊸ B) is a negative type. The process providing fS is waiting first
for a linear continuation channel fL and then a pair of following that.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
p : B ⊗B ← send p (y1, y2) ;
fL ← send fS ⟨fL⟩ ;
. . .

| leaf(x)⇒ . . .)

Now we can send the pair p to fL, but we also need to pass it a destination. But
that’s just the overall output channel y.

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
p : B ⊗B ← send p (y1, y2) ;
fL ← send fS ⟨fL⟩ ;
send fL (p, y)

| leaf(x)⇒ . . .)

The case of a leaf is simpler: we just unwrap the function hS and apply it to the data
of type A.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.5

treeA = ⊕{node : treeA ⊗ treeA, leaf : A}

mapreduceAB (y : B) (fS : ↑(B ⊗B ⊸ B)) (hS : ↑(A ⊸ B)) (t : treeA) =
recv t (node(l, r)⇒ y1 ← call mapreduceAB y1 fS hS l ;

y2 ← call mapreduceAB y2 fS hS r ;
p : B ⊗B ← send p (y1, y2) ;
fL ← send fS ⟨fL⟩ ;
send fL (p, y)

| leaf(x)⇒ hL ← send hS ⟨hL⟩ ;
send hL (x, y))

This process has significant parallelism beyond just the two recursive calls. The
process f receives the results from the recursive calls and a destination and it can
run in parallel with the recursive calls! This is a difference between fork/join par-
allelism and futures (to be explored in the next lecture). In fork/join we’d have to
synchronize when the pair p is formed; here synchronization occurs when f needs
to receive from its argument channels.

4 Bottom

What is dual to 1? Presumably, since 1 is positive, it would be negative. Let’s recall
the rules for the unit.

· ⊢ 1
1R

∆ ⊢ C

∆,1 ⊢ C
1L

If we flip sides, we see that the succedent needs to be empty for the right rule.

∆ ⊢ ·
∆ ⊢ ⊥

⊥R
⊥ ⊢ ·

⊥L

We know how to check that these are correct: cut reduction and identity expansion
(locally), and cut and identity elimination globally. Locally, everything is fine.

D′

∆ ⊢ ·
∆ ⊢ ⊥

⊥R
⊥ ⊢ ·

⊥L

∆ ⊢ ·
cut⊥

−→R

D′

∆ ⊢ ·

⊥ ⊢ ⊥
id⊥ −→E

⊥ ⊢ ·
⊥L

⊥ ⊢ ⊥
⊥R

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.6

As expected, the process assignment doesn’t require anything new. We observe
that the left rule is just renamed into an axiom, but doesn’t change.

∆ ⊢ P :: ·
∆ ⊢ recv x (()⇒ P) :: (x : ⊥)

⊥R
x : ⊥ ⊢ send x () :: ·

⊥X

The way we have biased the intuitionistic judgments, a process ∆ ⊢ P :: · computes
for its own sake, without a client. And it could not be closed · ⊢ P :: · is not
provable (except perhaps by abusing recursion in some way) so it doesn’t fit well
into our applications.

5 Message Sequences

As mentioned in the introduction, when we moved from synchronous to asyn-
chronous communication, we needed to introduce continuation channels. Creating
fresh channels for every message is a good model for the theory, but not plausible
for an implementation. Could we introduce message sequences that appear on the
same channel as a way not only to make the communication model more realistic,
but also write more compact programs?

Intuitively, a message sequence just replaces the continuation channel with an-
other message. Conversely, when receiving along a channel we no longer match
against a single message at a time, but a whole message sequence.

Message Sequence M ::= k(M) (⊕,N)

| (y,M) (⊗,⊸)
| () (1)
| x′ cont. channel

Continuations K ::= (M ⇒ P | K) | ·

Processes P ::= x← P (x) ; Q(x) cut
| fwd x y id
| send x M

| recv x K
| call p x y1 . . . yn

Before we formalize that statics and dynamics of this extended language, we
consider two examples to see where the formal development should lead us. We
begin with append, which has a relatively simple use of pattern matching.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.7

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’cons : bin * list, ’nil : 1}

proc append (R : list) (L : list) (K : list) =
recv L (’cons(x,L’) => R’ <- call append R’ L’ K ;

send R ’cons(x,R’)
| ’nil() => fwd R K)

This might expand to

proc append (R : list) (L : list) (K : list) =
recv L (’cons(p) => recv p ((x,L’) =>

R’ <- call append R’ L’ K ;
p’ : bin * list <- send p’ (x,R’) ;
send R ’cons(p’))

| ’nil(u) => recv u (() => fwd R K))

The second is process to compute ⌊x2 ⌋ for x in unary form.

type nat = +{’zero : 1, ’succ : nat}

proc half (r : nat) (x : nat) =
recv x (’zero() => send r ’zero()

| ’succ(’zero()) => send r ’zero()
| ’succ(’succ(y)) => h <- call half h y ;

send r ’succ(h))

This might expand to

proc half (r : nat) (x : nat) =
recv x (’zero(x’) =>

recv x’ (() => u : 1 <- send u () ;
send r ’zero(u))

| ’succ(x’) =>
recv x’ (’zero(x’’) =>

recv x’’ (() => u : 1 <- send u () ;
send r ’zero(u))

| ’succ(y) => h <- call half’ h y ;
send r ’succ(h)))

We now have to update the statics and dynamics for this enriched language in a
way that is consistent with SAX. As we often do, we start with the statics. Message
sequences seem more manageable than the more general form of pattern matching,
so we start with them. There are two classes of rules, one for positive types that
send to a client and one for negative types that sends to a provider. In the premise,
we have to check that the message sequence fits the type of the channel, but the
original channel is no longer needed.

∆ ⊢M : ⌊A⌋

∆ ⊢ send x M :: (x : A)
send+

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.8

Now we have rules for each of the positive types with the corresponding messages.

∆ ⊢M : ⌊Ak⌋

∆ ⊢ k(M) : ⌊⊕{ℓ : Aℓ}ℓ∈L⌋
⊕R

∆ ⊢M : ⌊B⌋

∆, y : A ⊢ (y,M) : ⌊A⊗B⌋
⊗R

· ⊢ () : ⌊1⌋
1R

When we encounter an actual continuation channel rather than a message, we use
an instance of the identity.

x′ : A ⊢ x′ : ⌊A⌋
idR

Do these rules look familiar? They should! Think about it before you read on.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.9

These are almost the rules for right focus except that we can apply the identity
to finish the focusing phase for any proposition A, not just for atoms and negative
propositions. Similar, the premise antecedent y : A in ⊗R arises from the identity
on A, rather than focusing on ⌊A⌋ on the right.

These differences reflects differences between proof construction, where we would
like to chain together inferences as much as possible to minimize nondeterminism,
and proof reduction where we would like the freedom to write sequences as long or
as short as we would like to. We therefore call this partial focusing which is also
reflected in the notation ⌊A⌋. An interesting property of partial focusing is that the
right rules that had become axioms have turned back into right rules!

To complete this thought, message sequences of negative type correspond to
partial left focus! We use a new notation here, writing δ for a singleton succedent
z : C.

∆, ⌊A⌋ ⊢M :: δ

∆, x : A ⊢ send x M :: δ
sendL

∆, ⌊Ak⌋ ⊢M :: δ

∆, ⌊N{ℓ : Aℓ}ℓ∈L⌋ ⊢ k(M) :: δ
NL

∆, ⌊B⌋ ⊢M :: δ

∆, y : A, ⌊A ⊸ B⌋ ⊢ (y,M) :: δ
⊸L

⌊A⌋ ⊢ x′ :: (x′ : A)
idL

6 Pattern Matching

Along with sequences of messages, we also changed continuations so they can
receive and discriminate whole message sequences. This looks more complicated
than message sequences themselves since patterns can be nested and appear in
different orders and to different depths. To allow this we define the operation of
projection that filters out cases from a complex pattern match.

We might conjecture that since message sequences correspond to (partial) fo-
cusing that pattern matching will correspond to (partial) inversion. That’s not far-
fetched since the corresponding logical connectives are indeed invertible!

We start on the right.

∆ ; A ⊢ K :: δ

∆, x : A ⊢ recv x K :: δ
recvL

The judgment form ∆ ; A ⊢ K :: δ is inspired by the notation for inversion on the
left, ∆ ; Ω ⊢ C. In the case of message sequences, the ordered inversion context Ω
will always be a singleton.

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.10

We construct the rules such that K in the judgment ∆ ; A ⊢ K :: δ and later
∆ ⊢ K : A cannot be empty. This rules out the case where the there is no branch
for a (well-typed) message received.

We start with conjunction this time. When the antecedent is A⊗B then we need
to receive a channel of type A and then B has to be matched against the remaining
continuations.

∆, y : A ; B ⊢ K @ (y,_) :: δ

∆ ; A⊗B ⊢ K :: δ
⊗L

The projection is only defined if all patterns are pairs, and rule can only be applied
if the projection K @ (y,_) is nonempty. Projection also instantiates the variable
bound in the patterns with y so that all branches in K @ (y,_) use the same vari-
able. The fact that y : A is added to the antecedents and not to the ordered context
is a departure from the usual inversion, but important to enforce matching against
message sequences (not trees).

(z,M)⇒ P (z) | K @ (y,_) = M ⇒ P (y) | K @ (y,_)
(z,M)⇒ P (z) @ (y,_) = M ⇒ P (y)

K @ (y,_) undefined otherwise

Here we have abbreviated M ⇒ P | · as M ⇒ P . Since we would like the language
to remain deterministic, at the unit type there must only be a single branch and we
revert back to the ordinary typing judgment for processes.

∆ ⊢ K @ () :: δ

∆ ; 1 ⊢ K :: δ
1L

(()⇒ P) @ () = P

K @ () undefined otherwise
Finally we come to external choice. The patterns must all start with a label, so we
project onto each label of the external choice.

∆ ; Aℓ ⊢ K @ ℓ(_) :: δ (∀ℓ ∈ L)

∆ ; ⊕{ℓ : Aℓ}ℓ∈L ⊢ K :: δ
⊕L

If K @ ℓ(_) is empty then this means the label ℓ is not accounted for among the
patterns even though it should be. In this case we won’t be able to complete the
typing derivation because the other rules ⊕L, 1L, and cont/var+ (see below) all
require the continuation to have at least one branch. Furthermore, we enforce that
all branches start with a label in L. This latter condition is not strictly necessary for
progress and preservation but retains the connection to the logical inference rules.

(ℓ(M)⇒ P | K) @ ℓ(_) = M ⇒ P | (K @ ℓ(_))
(k(M)⇒ P | K) @ ℓ(_) = K @ ℓ(_) for k ̸= ℓ and k ∈ L
(·) @ ℓ(_) = ·
K @ ℓ(_) undefined otherwise

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.11

The last case arises when the pattern consists of a single branch with a single vari-
able. We just revert to the usual typing judgment.

∆, x′ : A ⊢ P (x′) :: δ

∆ ; A ⊢ (x′ ⇒ P (x′)) :: δ
cont/var+

This rule also marks a difference to full inversion: A does not need to be a negative
type.

We show the remaining rules for right inversion on negative types without fur-
ther discussion since we have seen all the necessary ideas already.

∆ ⊢ K : A

∆ ⊢ recv x K :: (x : A)
recvR

∆, y : A ⊢ K @ (y,_) : B

∆ ⊢ K : A ⊸ B
⊸R

∆ ⊢ K @ ℓ(_) : Aℓ (∀ℓ ∈ L)

∆ ⊢ K : N{ℓ : Aℓ}ℓ∈L
NR

∆ ⊢ P (x′) :: (x′ : A)

∆ ⊢ (x′ ⇒ P (x′)) : A
cont/var−

7 Dynamics for Message Sequences

We could give a dynamics for message sequences and general pattern matching
directly on the extended syntax. We pursue here a different approach where the
dynamics is defined by translation into the SAX core language. This translation
has to create fresh channels for the middle of message sequences, and has to break
up complex patterns into a nested matches of simple patterns.

The translations are type-directed, so we translate send x M with metalevel
function send∗ (x : A) M = P where P uses only simple messages. Similarly, a
recv x K is translated by recv∗ (x : A) K = P . We keep in mind the following
properties (becoming theorems) where the conclusion is typed in the original SAX
system.

1. If ∆ ⊢ send x M :: (x : A) then ∆ ⊢ (send∗ (x : A) M) :: (x : A)

2. If ∆, x : A ⊢ send x M :: δ then ∆ ⊢ (send∗ (x : A) M) :: δ

3. If ∆, x : A ⊢ recv x K :: δ then ∆, x : A ⊢ (recv∗ x K) :: δ

4. If ∆ ⊢ recv x K :: (x : A) then ∆ ⊢ (recv∗ x K) :: (x : A)

LECTURE NOTES OCTOBER 31, 2023

Adjoint SAX L15.12

We have to generalize these properties to talk about partial focusing, which we
leave as an exercise

send∗ (x : ⊕{ℓ : Aℓ}) k(M) = x′ ← send∗ (x′ : Ak) M ; send x k(x′)

send∗ (x : A⊗B) (y,M) = x′ ← send∗ x′B M ; send x (y, x′)
send∗ (x : 1) () = send x ()
send∗ (x : A) x′ = fwd x x′

send∗ (x : N{ℓ : Aℓ}) k(M) = x′ ← send x k(x′) ; send∗ (x′ : Ak) M

send∗ (x : A ⊸ B) (y,M) = x′ ← send x (y, x′) ; send∗ (x′ : B) M
send∗ (x : A) x′ = fwd x′ x

recv∗ (x : ⊕{ℓ : Aℓ}ℓ∈L) K = recv x (ℓ(x′)⇒ recv∗ (x : Aℓ) (K @ ℓ(_)))ℓ∈L
recv∗ (x : A⊗B) K = recv x ((y, x′)⇒ recv∗ (x : B) (K @ (y,_)))
recv∗ (x : 1) K = recv x (()⇒ K @ ())
recv∗ (x : A) (x′ ⇒ P (x′)) = P (x)

recv∗ (x : N{ℓ : Aℓ}ℓ∈L) K = recv x (ℓ(x′)⇒ recv∗ (x : Aℓ) (K @ ℓ(_)))ℓ∈L
recv∗ (x : A ⊸ B) K = recv x ((y, x′)⇒ recv∗ (x : B) (K @ (y,_)))
recv∗ (x : A) (x′ ⇒ P (x′)) = P (x)

References

Frank Pfenning and Klaas Pruiksma. Relating message passing and shared mem-
ory, proof-theoretically. In S. Jongmans and A. Lopes, editors, 25th International
Conference on Coordination Models and Languages (COORDINATION 2023), pages
3–27, Lisbon, Portugal, June 2023. Springer LNCS 13908. Notes to an invited talk.

Max Willsey, Rokhini Prabhu, and Frank Pfenning. Design and implementation of
Concurrent C0. In Fourth International Workshop on Linearity, pages 73–82. EPTCS
238, June 2016.

LECTURE NOTES OCTOBER 31, 2023

	Introduction
	Adding Adjoint Modalities to SAX
	An Example: mapreduce
	Bottom
	Message Sequences
	Pattern Matching
	Dynamics for Message Sequences

