
Lecture Notes on
Futures

15-836: Substructural Logics
Frank Pfenning

Lecture 16
November 2, 2023

1 Introduction

In many ways the border between message passing and shared memory concur-
rency is fluid. We can think of a message passing language as implemented using
shared memory, or shared memory representing messages passed between threads.
So far, we have taken the message passing view of communication, we will now
take the shared memory view.

Shared memory comes in several forms. We strive to find the right level of ab-
straction to retain the close connection to logic and also illuminate the correspon-
dence to message passing. It turns out that futures [Halstead, 1985] are the perfect
fit. They were first developed for Lisp, a dynamically typed language, but are en-
tirely compatible with static typing [Pruiksma and Pfenning, 2022, Somayyajula
and Pfenning, 2022, 2023].

What are futures? Consider the construct

let x = future e1 in e2(x)

in a functional language. The idea is the future e1 immediately returns a promise
p. Then we evaluate e1 and e2(p) in parallel. If evaluation of e2(p) requires the
value of p it blocks until the evaluation of e1 has fulfilled the promise by providing
a value and e2(p) can continue.

The analogy with message passing should be clear: a promise acts as a channel
of communication between e1and e2. We think of the future as being a designated
shared memory location where the value of the promise can eventually be found.
This point of view has several advantages. For one, it is quite close to an imple-
mentation. For another, it quite naturally lends itself to a sequential implementation
which is less apparent under message passing. Finally, it allows us to investigate,
formally, the connection to message passing [Pfenning and Pruiksma, 2023].

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.2

While futures aren’t intrinsically substructural (and certainly weren’t conceived
as such), it turns out that a substructural version has been proposed [Blelloch and
Reid-Miller, 1999] and can have advantages in asymptotic complexity over nonlin-
ear ones. Our development in this lecture starts with the linear version and then
generalizes it by adding structural types.

This form of shared memory of write-once shared memory: once written, it can
be read by multiple consumers but it can not be modified. Allowing this would
require an imperative language with mutable shared memory. Such languages (or
libraries in imperative host languages) certainly exist (including, for example, Hal-
stead’s original Multilisp) and programs in them are subject to reasoning via ex-
ternal means. For example, we may want to reason about programs in Rust using
concurrent separation logic [Brookes, 2007, O’Hearn, 2007, Jung et al., 2018], a sub-
structural logic in a different mold from the ones we have been discussing. In this
case the programming language and logic are not related by a proofs-as-programs
correspondence.

2 Reinterpreting SAX: Positive Types

The fundamental idea is that in a sequent each variable stands for a memory ad-
dress. A process P reads from the addresses among the antecedents and writes to
the address labeling the succedent.

x1 : A1, . . . , xn : An︸ ︷︷ ︸
read

⊢ P :: (x : A)︸ ︷︷ ︸
write

If everything is linear the process P should definitely read from all the xi and write
to x. However, in the presence of recursion the mere type system does not guaran-
tee that and we need some additional reasoning [Somayyajula and Pfenning, 2022].

Under message passing, the type A described the type of message exchanged.
Here, it describes the contents of the memory cell. What was a continuation chan-
nel now becomes an address of further data. Cut now allocates a new shared cell,
while the identity moves the contents of one cell to another. We first focus on posi-

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.3

tive types.

Values V ::= k(x) (⊕)
| (x1, x2) (⊗)
| () (1)

Continuations K ::= (ℓ(x)⇒ Pℓ(x))ℓ∈L (⊕)
| ((x1, x2)⇒ P (x1, x2)) (⊗)
| (()⇒ P) (1)

Processes P ::= x← P (x) ; Q(x) cut
| move x y id
| write x V
| read x K
| call p x y1 . . . yn

At runtime, we think of tagged value such as k(a) as a pair consisting of a tag k
and an address a, a value (a1, a2) as a pair of addresses a1 and a2, and () as a unit
value. Continuations branch based on a value read from memory.

We have replaced send and recv with read and write. Also, instead of for-
warding between channels we move the contents of one memory location to an-
other.

Both statics and dynamics for the positive types are straightforward.

k ∈ L

y : Ak ⊢ write x k(y) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕X

∆, y : Aℓ ⊢ Qℓ(y) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ read k (ℓ(y)⇒ Qℓ(y))ℓ∈L :: (z : C)
⊕L

x1 : A, x2 : B ⊢ write x (x1, x2) :: (x : A⊗B)
⊗X

∆, x1 : A, x2 : B ⊢ Q(x1, x2) :: δ

∆, x1 : A⊗B ⊢ recv x ((x1, x2)⇒ Q(x1, x2)) :: δ
⊗L

· ⊢ write x () :: (x : 1)
1X

∆ ⊢ Q :: δ

∆, x : 1 ⊢ read x (()⇒ Q) :: δ
1L

Cut and identity do not change from the sequent calculus.

y : A ⊢move x y :: (x : A)
id

∆ ⊢ P (x) :: (x : A) ∆′, x : A ⊢ Q(x) :: δ

∆,∆′ ⊢ xA ← P (x) ; Q(x) :: δ
cut

The dynamics relies on the V ▷K operation carried over from the message passing
setting. However, we differentiate memory cells at address a containing value V ,

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.4

written cell(a, V), from processes. This will give us properties such as: a configura-
tion is final if it contains only memory cells and no processes.

proc(x← P (x) ; Q(x)) −→ proc(P (a)), proc(Q(a)) (a fresh)
cell(b, V), proc(move a b) −→ cell(a, V)
proc(write a V) −→ cell(a, V)
cell(a, V), proc(read a K) −→ proc(V ▷K)
proc(call p a b1 . . . bn) −→ proc(P (a, b1, . . . , bn))

for p x y1 . . . yn = P (x, y1, . . . , yn) ∈ Σ

k(a)▷ (ℓ(x)⇒ Pℓ(x))ℓ∈L = Pk(a) (k ∈ L)
(a1, a2)▷ ((x1, x2)⇒ P (x1, x2)) = P (a1, a2)
()▷ (()⇒ P) = P

Here is a simple program we can write already, reversing a list.

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’cons : bin * list, ’nil : 1}

proc rev (R : list) (L : list) (K : list) =
read L (’cons(p) => read p ((x,L’) =>

p’ : bin * list <- write p’ (x,K) ;
K’ : list <- write K’ ’cons(p’) ;
call R L’ K’)

| ’nil(u) => read u (() =>
move R K))

proc reverse (R : list) (L : list) =
u : 1 <- write u () ;
K : list <- write K ’nil() ;
call rev R L K

Using the equivalent of message sequences, this could be more compact—something
we’ll get back to in the next lecture.

3 Reinterpreting SAX: Negative Types

So far, things worked out as one might expect: on positive types, receives become
reads and sends become writes. Negative types present a surprise because every
action on the succedent is a write! This means that cells no longer just contain small
values V , but they also have to contain continuations. We will shortly write this
out. But first the rules: right rules write, left rules (even in the form of axioms)

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.5

read.
∆ ⊢ Pℓ(y) :: (y : Aℓ) (∀ℓ ∈ L)

∆ ⊢ write x (ℓ(y)⇒ Pℓ(y)) :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

k ∈ L

x : N{ℓ : Aℓ}ℓ∈L ⊢ read x k(y) :: (y : Ak)
NX

∆, x1 : A ⊢ P (x1, x2) :: (x2 : B)

∆ ⊢ write x ((x1, x2)⇒ P (x1, x2)) :: (x : A ⊸ B)
⊸R

x1 : A, x : A ⊸ B ⊢ read x (x1, x2) :: (x2 : B)
⊸X

Let’s take a closer look at the meaning of linear functions. write a ((x1, x2) ⇒
P (x1, x2)) will write the continuation (x1, x2)⇒ P (x1, x2) to the cell at address a.

Conversely, read a (a1, a2) will read the continuation and pass it a1 and a2,
where a1 : A is the “actual argument” of the function and a2 : B is the destination
for the result.

Our syntax is now:

Values V ::= k(x) (⊕,N)
| (x1, x2) (⊗,⊸)
| () (1)

Continuations K ::= (ℓ(x)⇒ Pℓ(x))ℓ∈L (⊕,N)
| ((x1, x2)⇒ P (x1, x2)) (⊗,⊸)
| (()⇒ P) (1)

Storable S ::= V | K

Processes P ::= x← P (x) ; Q(x) cut
| move x y id
| write x S
| read x S
| call p x y1 . . . yn

The dynamics also changes subtly from purely positive types. We add the follow-
ing two, while the remaining ones remain the same.

proc(write a K) −→ cell(a,K)
cell(a,K), proc(read a V) −→ proc(V ▷K)

We use map as iteration as an example. First, the message passing version.

type bin = +{’b0 : bin, ’b1 : bin, ’e : 1}
type list = +{’cons : bin * list, ’nil : 1}

type iter = &{’next : bin -o bin * iter, ’done : 1}

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.6

proc map (R : list) (i : iterm) (L : list) =
recv L (’cons(p) => recv p ((x,L’) =>

f : bin -o bin * iter <- send i ’next(f) ;
p : bin * iter <- send f (x, p) ;
recv p ((y, i’) => R’ <- call map R’ i’ L’ ;

q : bin * list <- send q (y, R’) ;
send R ’cons(q)))

| ’nil(u) => recv u (() =>
v : 1 <- send i ’done(v)
send R ’nil(v)))

To convert this to a program using futures, positive send/receive become read-
/write, respectively, while the this correspondence is switched for negative types.

read L (’cons(p) => read p ((x,L’) =>
f : bin -o bin * iter <- read i ’next(f) ;
p : bin * iter <- read f (x, p) ;
read p ((y, i’) => R’ <- call map R’ i’ L’ ;

q : bin * list <- write q (y, R’) ;
write R ’cons(q)))

| ’nil(u) => read u (() =>
v : 1 <- read i ’done(v)
write R ’nil(v)))

4 Mixed Linear/Structural Futures

We have our recipe: We combine linear and structural types by adding appropri-
ate shifts. The upshift is intrinsically negative, while the downshift is intrinsically
positive. We have already assigned a syntax to the processes for these shifts that

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.7

we reuse.

Values V ::= k(x) (⊕,N)
| (x1, x2) (⊗,⊸)
| () (1)
| ⟨x⟩ (↓, ↑)

Continuations K ::= (ℓ(x)⇒ Pℓ(x))ℓ∈L (⊕,N)
| ((x1, x2)⇒ P (x1, x2)) (⊗,⊸)
| (()⇒ P) (1)
| (⟨x⟩ ⇒ P (x)) (↓, ↑)

Storable S ::= V | K

Processes P ::= x← P (x) ; Q(x) cut
| move x y id
| write x S
| read x S
| call p x y1 . . . yn

In the typing rules we just have to replace send and receive by write and read, as
appropriate.

∆S, yS : AS ⊢ write xL ⟨yS⟩ :: (xL :: ↓AS)
↓R

∆, yS : AS ⊢ Q(yS) :: δ

∆, xL : ↓AS ⊢ read xL (⟨yS⟩ ⇒ Q(yS)) :: δ
↓L

∆ ⊢ P (yL) :: (yL : AL)

∆ ⊢ write xS (⟨yL⟩ ⇒ P (yL)) :: (xS : ↑AL)
↑R

∆S, xS : ↑AL ⊢ read xS ⟨yL⟩ :: (yL : AL)
↑L

In the dynamics, the changes are a little less straightforward. For addresses of
structural type we need to create persistent cells in the dynamics. We write !cell(aS, S)
for a persistent cell. This means when it is read it remains in configuration rather
than being consumed. The rules before remain what they are, assuming all the
addresses are linear. In addition we have:

proc(write aS S) −→ !cell(aS, S)
!cell(aS, S), proc(read aS S

′) −→ proc(S ▷◁ S′)

!cell(bS, S), proc(move aS bS) −→ !cell(aS, S)

Here S ▷◁ S′ is defined by K ▷◁ V = V ▷◁ K = V ▷K, accounting for both positive
and negative types.

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.8

As an example, consider a map over a linear list with shared binary numbers.
We write A[m] for a type of mode m and (S)AS for ↓AS, signifying that the scope is
shared. The code uses some compound values, analogous to message sequences.
We will return to them in the next lecture.

type bin[m] = +{’b0 : bin[m], ’b1 : bin[m], ’e : 1}
type bin_s = bin[S]
type list = +{’cons : (S)bin_s * list, ’nil : 1} % linear

proc map (R : list) (F : bin_s -> bin_s) (L : list) =
read L (’cons(<x>,L’) => y : bin_s <- read F (x, y) ;

R’ <- call map R’ F L’ ;
write R ’cons(<y>,R’)

| ’nil() => write R ’nil())

It is of course possible to give other modes to map.

References

G. E. Blelloch and M. Reid-Miller. Pipeling with futures. Theory of Computing Sys-
tems, 32:213–239, 1999.

Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 365(1–3):227–270, 2007.

Robert H. Halstead. Multilisp: A language for parallel symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–539, October
1985.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales̆ Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation of higher-
order concurrent separation logic. Journal of Functional Programming, 29:e20,
November 2018.

Peter O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, 2007.

Frank Pfenning and Klaas Pruiksma. Relating message passing and shared mem-
ory, proof-theoretically. In S. Jongmans and A. Lopes, editors, 25th International
Conference on Coordination Models and Languages (COORDINATION 2023), pages
3–27, Lisbon, Portugal, June 2023. Springer LNCS 13908. Notes to an invited talk.

Klaas Pruiksma and Frank Pfenning. Back to futures. Journal of Functional Program-
ming, 32:e6, 2022.

Siva Somayyajula and Frank Pfenning. Type-based termination for futures. In 7th
International Conference on Formal Structures for Computation and Deduction (FSCD
2022), pages 12:1–12:21, Haifa, Israel, August 2022. LIPIcs 228.

LECTURE NOTES NOVEMBER 2, 2023

Futures L16.9

Siva Somayyajula and Frank Pfenning. Dependent type refinements for futures.
In M. Kerjean and P. Levy, editors, 39th International Conference on Mathematical
Foundations of Programming Semantics (MFPS 2023), Bloomington, Indiana, USA,
June 2023. Preliminary version.

LECTURE NOTES NOVEMBER 2, 2023

	Introduction
	Reinterpreting SAX: Positive Types
	Reinterpreting SAX: Negative Types
	Mixed Linear/Structural Futures

