
Lecture Notes on
The Inverse Method

15-836: Substructural Logics
Frank Pfenning

Lecture 18
November 15, 2023

1 Introduction

In this lecture we return to an early theme, namely forward inference. We also
switch gears from the proofs-as-programs interpretation of substructural logic in
terms of message passing and shared memory to general theorem proving.

Why would we want to prove theorems in substructural logics? First, we have
already seen that forward inference (which is a particular form of theorem prov-
ing) can be used to model various algorithmic problems, like parsing, subtyping,
planning, or graph algorithms. Second, there are a logics for reasoning about pro-
grams, specifically separation logic [Reynolds, 2002] and concurrent separation
logic [O’Hearn, 2007, Brookes, 2007], both of which substructural. Proving cor-
rectness of imperative programs in such logics ultimately comes down to theorem
proving in substructural logic. Third, the problem of program synthesis that has
recently garnered much attention can be simplified if we know, for example, that
the programs we want to synthesize have substructural types because it drasti-
cally reduces the search space [Hughes and Orchard, 2020, Melo e Sousa, 2021].
Fourth, a structured form of proof search is the basis for substructural logic pro-
gramming [Hodas and Miller, 1994, López et al., 2005] that allows yet another class
of algorithms to be expressed at a high level of abstraction.

In a way there is an “obvious” method to do theorem proving: we use the
rules of the cut-free sequent calculus for bottom-up proof construction. Once theo-
rems become even somewhat complex, this is no longer feasible because there are
too many choices and therefore too much backtracking. We can use inversion to
reduce the number of choices, but there remains much nondeterminism. Chain-
ing together rules with focusing [Andreoli, 1992, 2001] makes this even better, but
proof search continues to suffer from the difficulty of learning from failure on some
branches while searching others. As far as I am aware, clause learning for SAT has

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.2

not yet been understood at a sufficiently fundamental level to effectively apply to
nonclassical and substructural logics.

An alternative approach is to use Maslov’s inverse method [Maslov, 1964]. It is
called “inverse” because it proceeds from identity sequents towards the goal in-
stead of from the goal towards identity sequents. At first this might seem a crazy
idea because the universe of theorems we generate is infinite and poorly struc-
tured, but as we will see it works! The inverse method is quite beautiful because
it applies essentially to any logic that admits a cut-free sequent calculus, with par-
ticular logic-specific considerations in each case [Voronkov, 1992, Degtyarev and
Voronkov, 2001]. Other techniques such as resolution are tied specifically to clas-
sical logic, so they don’t seem as useful for substructural logics. Applications of
the inverse method to substructural logic have also been devised [Chaudhuri and
Pfenning, 2005a,b, Chaudhuri, 2006] and generalize the material in these notes fur-
ther.

2 The Basic Idea

Let’s look at the example

A ⊸ (B N C) ⊢ (A ⊸ B) N (A ⊸ C)

which we should be able to prove. In today’s lecture, we use A, B, C, etc. to stand
for atomic proposition rather than P , Q, R. It seems clear (more later) that the
possible identities at the leaves of a proof tree for this sequent should be

A ⊢ A
idA

B ⊢ B
idB

C ⊢ C
idC

The space of possible forward inferences here seems huge! For example, we might
deduce

A ⊢ A
idA

⊢ A ⊸ A
⊸R

It is easy to see that this will not get us anywhere, keep in mind our overall goals.
Why is that? Before you read on, think about this and see if you can extend a
tentative answer to a more general idea how to make forward inference plausible.

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.3

The reason this inference is useless is because A ⊸ A is not a subformula that
occurs in our goal sequent. In the cut-free sequent calculus, though, all proposi-
tions that occur in a proof are subformulas of the final goal sequent.

The idea then is to specialize the inference rules so they can be applied in the
forward direction but to infer subformulas of the goal sequent! Before we do this,
let’s examine the subformula property more precisely. By looking at the goal se-
quent, we can not only predict which subformulas might occur in a proof, but also
on which side of a sequent they will be. Except for implication, all the rules keep
formulas on the same side of the sequent. And the antecedent of an implication is
always on the opposite side of the sequent from the implication itself.

Let’s apply this idea, naming the subformulas according to the side of the se-
quent they may appear on, using Li for left and Rj for right subformulas.

AR ⊸ (BL N CL)︸ ︷︷ ︸
= L1︸ ︷︷ ︸

= L0

⊢ (AL ⊸ BR)︸ ︷︷ ︸
= R1

N (AL ⊸ CR)︸ ︷︷ ︸
= R2︸ ︷︷ ︸

= R0

First, the possible identities that might be used. We see that all three atoms, A,
B, and C may appear on the left as well as on the right in a sequent, so all three
identities are possible.

AL ⊢ AR
idA

BL ⊢ BR
idB

CL ⊢ CR
idC

Next, consider R0 = R1NR2. Since this is a right formula, there is only one possible
specialized rule to infer R0.

∆ ⊢ R1 ∆ ⊢ R2

∆ ⊢ R0

NR0

For R1 = AL ⊸ BR and R2 = AL ⊢ CR we also get just a single rule each, that is,
two instances of ⊸R.

∆, AL ⊢ BR

∆ ⊢ R1

⊸R1

∆, AL ⊢ CR

∆ ⊢ R2

⊸R2

For L0 there is a single instance of the ⊸L rule.

∆1 ⊢ AR ∆2, L1 ⊢ δ

∆1,∆2, L0 ⊢ δ
⊸L0

The last remaining subformula is L1 = BL N CL has two specialized left rules.

∆, BL ⊢ δ

∆, L1 ⊢ δ
NL1

1

∆, CL ⊢ δ

∆, L1 ⊢ δ
NL2

1

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.4

A ⊢ A
idA

B ⊢ B
idB

C ⊢ C
idC

∆ ⊢ R1 ∆ ⊢ R2

∆ ⊢ R0

NR0

∆, A ⊢ B

∆ ⊢ R1

⊸R1

∆, A ⊢ C

∆ ⊢ R2

⊸R2

∆1 ⊢ A ∆2, L1 ⊢ δ

∆1,∆2, L0 ⊢ δ
⊸L0

∆, B ⊢ δ

∆, L1 ⊢ δ
NL1

1

∆, C ⊢ δ

∆, L1 ⊢ δ
NL2

1

Figure 1: Specialized rules for A ⊸ (B N C) ⊢ (A ⊸ B) N (A ⊸ C), goal sequent
L0 ⊢ R0

The rules are summarized in Figure 1. We have dropped the superscripts on the
atoms since they are determined by their position. An interesting observation is
that there are no longer any logical connectives! So during inference we do not
consider any of the usual sequent calculus rules, just these specialized ones. Be-
cause of the (side-aware) subformula property, there is a proof of our goal sequent
if and only if we can infer L0 ⊢ R0 with these rules.

We proceed in a breadth first fashion, always applying all possible rules con-
sidering the “facts” already in our database, where the facts are sequents that can
be derived. Note that even though our logic is linear, this inference is a structural
inference so we may hope that it saturates. We start with the first round, in which
only two rules can be applied.

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

(4) L1 ⊢ B (NL1
1 1)

(5) L1 ⊢ C (NL2
1 2)

Since L1 = B N C, we see that sequents (4) and (5) make sense after we expand
the definitions. Besides inferences that only give us sequents we already know, the
only new ones are two applications of ⊸L0.

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

(4) L1 ⊢ B (NL1
1 1)

(5) L1 ⊢ C (NL2
1 2)

(6) A,L0 ⊢ B (⊸L0 1 4)
(7) A,L0 ⊢ C (⊸L0 1 5)

Now we can apply ⊸R1 and ⊸R2, followed by NR0.

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.5

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

(4) L1 ⊢ B (NL1
1 1)

(5) L1 ⊢ C (NL2
1 2)

(6) A,L0 ⊢ B (⊸L0 1 4)
(7) A,L0 ⊢ C (⊸L0 1 5)

(8) L0 ⊢ R1 (⊸R1 6)
(9) L0 ⊢ R2 (⊸R2 7)

(10) L0 ⊢ R0 (NR0 8 9)

We have to be careful about the final inference because both premises must have
the same antecedent ∆. Fortunately, that is the case with ∆ = L0.

The sequent (10) is also our goal sequent, but we also have reached a point of
saturation: any further inferences would only yield sequents we already have.

Next we do an example that is not provable:

A ⊸ (B ⊗ C) ⊢ (A ⊸ B)⊗ (A ⊸ C)

As before, we label subformulas.

AR ⊸ (BL ⊗ CL)︸ ︷︷ ︸
= L1︸ ︷︷ ︸

= L0

⊢ (AL ⊸ BR)︸ ︷︷ ︸
= R1

⊗ (AL ⊸ CR)︸ ︷︷ ︸
= R2︸ ︷︷ ︸

= R0

Instances of the identity as the same as before.

AL ⊢ AR
idA

BL ⊢ BR
idB

CL ⊢ CR
idC

For the left propositions we generate:

∆1 ⊢ A ∆2, L1 ⊢ δ

∆1,∆2, L0 ⊢ δ
⊸L0

∆, A,B ⊢ δ

∆, L1 ⊢ δ
⊗L1

And for the right propositions:

∆1 ⊢ R1 ∆2 ⊢ R2

∆1,∆2 ⊢ R0

⊗R0

∆, A ⊢ B

∆ ⊢ R1

⊸R1

∆, A ⊢ C

∆ ⊢ R2

⊸R2

Now we throw away the general rules and start with

(1) A ⊢ A (idA)
(2) B ⊢ B (idB)
(3) C ⊢ C (idC)

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.6

At this point we realize that no rule is applicable! Therefore we know the goal se-
quent is not provable.

The same style of rule generations applies to most of the connectives of linear
logic (A ⊸ B, A N B, A ⊗ B, 1, A ⊕ B) but has to be modified when we consider
the exponential !A = ↓↑A or the additive units 0 and ⊤. We’ll return to them in
Section 5.

3 The Inverse Method with Focusing

We can exploit focusing to create fewer rules and take bigger steps. The only se-
quents that will explicitly appear in a focused inverse method proof are stable se-
quents, which are those where no invertible rule can be applied and proof must
proceed by focusing either on the right or left.

Stable antecedents are either negative propositions A− or suspended positive
atoms ⟨P+⟩. Stable succedents are either positive propositions A+ or suspended
negative atoms ⟨P−⟩. We purposely omit 0 and ⊤ for now.

Negative Propositions A− ::= A ⊸ B | A N B
Stable Antecedents ∆ ::= · | ∆, ⟨P+⟩ | ∆, A−

Positive Propositions A+ ::= A⊗B | 1 | A⊕B
Stable Succedents δ ::= ⟨P−⟩ | A+

We just use letters ∆ and δ for the stable antecedents and succedents, since only
those are of interest in this section.

This time, we do not introduce intermediate names ahead of time, but will do
so during the rule generation process. Our goal is

A ⊸ (B N C) ⊢ (A ⊸ B) N (A ⊸ C)

This is not stable, so we have to apply inversion until we have reached one more
more stable sequent. For this purpose we have to decide which atoms should be
positive and which negative. For simplicity, we make them all positive. You may
want to review the rules for focusing from Lecture 12. We reach two stable se-
quents:

A+ ⊸ (B+ N C+), ⟨A+⟩ ⊢ C+

A+ ⊸ (B+ N C+), ⟨B+⟩ ⊢ C+

We have to prove both of these to verify our goal sequent. Let’s take the first one
(the second one will be symmetric). We can only focus on A+ ⊸ (B+ N C+) on
the left or on C+ on the right, since we cannot focus on suspended atom. Let’s
try the first one, defining L0 = A+ ⊸ (B+ N C+). We don’t know under which
circumstances we might focus on this proposition, but if we do the proof will start

LECTURE NOTES NOVEMBER 15, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/12-focusing.pdf

The Inverse Method L18.7

as follows (omitting other antecedents and succedents for now):

...
⊢ [A+]

...
[B+ N C+] ⊢

[A+ ⊸ (B+ N C+)] ⊢

L0 ⊢

There is only one way to proceed with the first open subgoal: right focus on A+

only succeeds if ⟨A+⟩ is among the antecedents. That is, for focusing to succeed,
such an antecedent must have been in the conclusion.

⟨A+⟩ ⊢ [A+]
id+

...
[B+ N C+] ⊢

⟨A+⟩, [A+ ⊸ (B+ N C+)] ⊢

⟨A+⟩, L0 ⊢

In the remaining open subproof we could proceed with focus on B+ or focus on
C+. As a next step in either of these we lose focus and then have to apply inversion.
This inversion will immediately suspect B+ and C+, respectively. We show the first
version:

⟨A+⟩ ⊢ [A+]
id+

...
⟨B+⟩ ⊢

⟨B+⟩ ; · ⊢

· ; B+ ⊢

[B+] ⊢

[B+ N C+] ⊢
NL1

⟨A+⟩, [A+ ⊸ (B+ N C+)] ⊢

⟨A+⟩, L0 ⊢

The sequent at the top of this rather bureaucratic chain of reasoning is stable. We

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.8

can fill in some additional (stable) antecedents and succedents.

⟨A+⟩ ⊢ [A+]
id+

...
∆, ⟨B+⟩ ⊢ δ

∆, ⟨B+⟩ ; · ⊢ δ

∆ ; B+ ⊢ δ

∆[B+] ⊢ δ

∆, [B+ N C+] ⊢ δ
NL1

∆, ⟨A+⟩, [A+ ⊸ (B+ N C+)] ⊢ δ

∆, ⟨A+⟩, L0 ⊢ δ

From this, and its symmetric variant with C+ instad of B+ we extract two big-step
rules between stable sequents.

∆, ⟨B+⟩ ⊢ δ

∆, ⟨A+⟩, L0 ⊢ δ
L1
0

∆, ⟨C+⟩ ⊢ δ

∆, ⟨A+⟩, L0 ⊢ δ
L2
0

Interestingly, this does not expose any new subformulas we have to focus on since
suspended atoms cannot be the subject of focusing. We still have the succedent C+

in our original goal sequent.
...

⊢ [C+]

⊢ C+

This can only succeed if C+ is a suspended antecedent, so we obtain the rule

⟨C+⟩ ⊢ C+
idC

Due to focusing we only obtain 3 rules compared to 8 before. We can only perform
one step:

(1) ⟨C+⟩ ⊢ C+ (idC)

(2) ⟨A+⟩, L0 ⊢ C+ (L2
0 1)

The sequent (2) is already our goal sequent, so we are done in 2 steps (and two
more for symmetric conjunct that arose from the initial inversion). Compare this to
the 10 sequents we derived before hitting our goal without the benefit of focusing!

As an example of something that cannot be proven we consider the type of the
S combinator. This is true only if the logic admits contraction.

⊢ (A ⊸ (B ⊸ C)) ⊸ ((A ⊸ B) ⊸ (A ⊸ C)

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.9

This is not a stable sequent, so deciding once again that all atoms should be positive
we get

A+ ⊸ (B+ ⊸ C+), A+ ⊸ B+, ⟨A+⟩ ⊢ C+

There are three propositions we could focus on, two on the left and one on the
right.

...
⊢ [A+]

...
⊢ [B+]

...
⟨C+⟩ ⊢

C+ ⊢
[C+] ⊢

[B+ ⊸ C+] ⊢

[A+ ⊸ (B+ ⊸ C+)] ⊢

L0 ⊢
L0

The first two open subgoal can only be closed with identities, as in the last example.
After filling in missing antecedents and succedents, we obtain:

∆, ⟨C+⟩ ⊢ δ

∆, ⟨A+⟩, ⟨B+⟩, L0 ⊢ δ
L0

Focusing on the left on A+ ⊸ B+ and on the right on C+ similarly give us the
following two rules:

∆, ⟨B+⟩ ⊢ δ

∆, ⟨A+⟩, L1 ⊢ δ
L1

⟨C+⟩ ⊢ C+
id+C

Our goal sequent is
L0, L1, ⟨A+⟩ ⊢ C+

Initially, we have only one sequent, and only L0 applies.

(1) ⟨C+⟩ ⊢ C+ (idC)

(2) ⟨A+⟩, ⟨B+⟩, L0 ⊢ C+ (L0 1)

Now we can apply L1, where ∆ = ⟨A+⟩, L0 and δ = C+. We get:

(1) ⟨C+⟩ ⊢ C+ (idC)

(2) ⟨A+⟩, ⟨B+⟩, L0 ⊢ C+ (L0 1)

(3) ⟨A+⟩, L0, ⟨A+⟩, L1 ⊢ C+ (L1 2)

At this point we have reached saturation and almost proved our goal sequent.
The only problem is that we have two copies of ⟨A+⟩. If we go back and look at the

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.10

original goal we see that this makes sense: if we had two copies of ⟨A+⟩ it would
indeed be provable linearly.

This points out another important observation: if we think about the linear
sequent (without the exponential or shifts), as we go up we never duplicate any
propositions. The goal sequent has only one left occurrence of A+, so a sequent
with two left occurrences of A+ as the one labeled (3) could not occur. So we should
reject it and (in this example), we reach saturation essentially one step earlier.

The insight here is to obtain an inverse method for a given logic we follow these
steps (first without focusing):

1. Obtain the usual backwards sequent calculus without cut, and identity lim-
ited to atoms (and prove the admissibility of cut and general identity).

2. Label the left- and right-subformulas of the goal sequent.

3. Derive specialized inference rules for each label, and then discard the general
rules.

4. Consider any logic-specific additions or modifications of the specialized rules.

5. Saturate the space of sequents derivable with the specialized rules. Even if
the logic is undecidable, we can explore the search space by forward reason-
ing although it may not saturate.

6. If we find a proof of the goal sequent, we succeed.

7. If we saturate without generating the goal sequent, we fail

This is modified slightly for focusing, because we need to generate (and prove!) a
focused version of our logic first. Then we generate “big-step” rules that go from
stable sequent to stable sequent. The (non-atomic) propositions in the new stable
sequent are then named and according to their sidedness focused on to derive more
rules.

4 Strict, Affine, and Structural Logic

Assume we have a logic with contraction, such as strict logic. Then we just add the
rule of contraction

∆, A,A ⊢ C

∆, A ⊢ C
contract

In this system, because we apply the rules from the premises to the conclusion this
actually is contraction—usually we use it to achieve duplication of a proposition.
In the absence of quantifiers (as in this lecture), we could also just treat antecedents
as set and write ∆1∪∆2 instead of ∆1,∆2 whenever they are combined. We would

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.11

then never have more than one copy of a contractible proposition in a stable se-
quent.

If we have weakening, matters are a bit more complicated. For example, we
should not have rules such as

∆, ⟨A+⟩ ⊢ A+
id+A

That’s because even if we have a finite set of labels, there are still many possibilities
for ∆. We don’t want to enumerate them. We can think of it this way: in backward
reasoning, we postpone weakening all the way to the leaves of the proof tree (id or
1R). In forward reasoning, we also postpone weakening, but downwards, towards
the root of the proof tree.

So where exactly do we finally need to apply weakening? One situation is
where we have derived something that can be weakened to our goal sequent. We
capture this with a subsumption relation: (∆ ⊢ A) ≤ (∆′ ⊢ A′) if ∆ ⊆ ∆′ and
A = A′. Whenever we apply an inference, we can check three properties:

Forward Subsumption: If inference yields ∆′ ⊢ A′ and there is a sequent ∆ ⊢ A in
our database such that ∆ ⊢ A ≤ ∆′ ⊢ A′ then we do not add the new sequent.
We already know something stronger.

Backward Subsumption: If the inference yields ∆ ⊢ A and there is a sequent ∆′ ⊢
A′ in our database such that ∆ ⊢ A ≤ ∆′ ⊢ A′ then we replace the old sequent
by the newer (stronger) one.

If inference yields ∆ ⊢ A and (∆ ⊢ A) ≤ G where G is the goal sequent, we
succeed.

This is an example of the general principle of subsumption in forward inference.
Towards saturation, we don’t check facts in the database for equality, but a more
general subsumption criterion for redundancy. What that might be may change from
inference system to inference system.

Let’s try this with the quintessential property that is true in affine logic but not
in linear logic (writing A−B for affine implication):

⊢ A− (B −A)

In the small-step system, we introduce two names

R0 = AL −R1

R1 = BL −AR

We generate the rules below. There is no identity for B because it occurs only as
BL and not BR.

A ⊢ A
idA

∆, A ⊢ R1

∆ ⊢ R0

−R0

∆, B ⊢ A

∆ ⊢ R1

−R1

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.12

From A ⊢ A we cannot apply a single rule! That’s problematics because our propo-
sition actually holds in affine logic. In this example it happens that A ⊢ A can be
weakened to ∆, B ⊢ A with ∆ = A.

We can rectify this by allowing weakening when matching against the premises
of rules: B doesn’t have to be in the sequent. Allowing this we would derive
A ⊢ R1 and then · ⊢ R0, which is our goal sequent. We could also generate another
rule that accounts for B being absent.

∆ ⊢ A

∆ ⊢ R1

−R′
1

This would get awkward however when we move to focusing since there might be
too many variants of the rules.

Returning to our example, if we apply inversion we obtain the stable goal se-
quent

⟨A+⟩, ⟨B+⟩ ⊢ A+

We can only focus on A+ on the right, which gives us

⟨A+⟩ ⊢ A+
id+A

and (⟨A+⟩ ⊢ A+) ≤ (⟨A+⟩, ⟨B+⟩ ⊢ A+).
Also, if we generate a right rule for external choice A N B we can no longer

require the two branches to have the same antecedents. We define ∆1 max ∆2

for multisets to take the maximum of the multiplicity of each element in the two
multisets. Then we have the forward rule

∆1 ⊢ A ∆2 ⊢ B

∆1 max ∆2 ⊢ A N B
NR

When mixing logics, for example, in the adjoint framework, we have to combine
the various considerations.

5 ⊤ and 0 Revisited

We didn’t cover this in lecture, but how would we handle

∆,0 ⊢ δ
0L

in the forward direction? We do not want to enumerate possible antecedents or
succedents, we want to leave them open. Then we would have something like

0 ⊢W ·
0L

· ⊢W ⊤
⊤R

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.13

where the W on the sequent indicates that the sequent can be weakenend (in an-
tecedent or succedent). Then we precise sequents and weakenable sequents and
we have to carefully define rule application in the mixed case and investigate how
this attribute of sequents propagates.

Alternatively, we might be able to introduce metavariables D and d to stand for
an arbitrary ∆ and δ respectively and write these as

D,0 ⊢ d
0L

D ⊢ ⊤
⊤R

and instantiate them as part of the rule application process.

References

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):197–347, 1992.

Jean-Marc Andreoli. Focussing and proof construction. Annals of Pure and Applied
Logic, 107(1–3):131–163, 2001.

Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer
Science, 365(1–3):227–270, 2007.

Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD thesis,
Carnegie Mellon University, December 2006. Available as technical report CMU-
CS-06-162.

Kaustuv Chaudhuri and Frank Pfenning. A focusing inverse method prover for
first-order linear logic. In R.Nieuwenhuis, editor, Proceedings of the 20th Interna-
tional Conference on Automated Deduction (CADE-20), pages 69–83, Tallinn, Esto-
nia, July 2005a. Springer Verlag LNCS 3632.

Kaustuv Chaudhuri and Frank Pfenning. Focusing the inverse method for linear
logic. In L.Ong, editor, Proceedings of the 14th Annual Conference on Computer
Science Logic (CSL’05), pages 200–215, Oxford, England, August 2005b. Springer
Verlag LNCS 3634.

Anatoli Degtyarev and Andrei Voronkov. The inverse method. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 4, pages 181–272. Elsevier Science and MIT Press, 2001.

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionis-
tic linear logic. Information and Computation, 110(2):327–365, 1994. A prelimi-
nary version appeared in the Proceedings of the Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 32–42, Amsterdam, The Netherlands, July
1991.

LECTURE NOTES NOVEMBER 15, 2023

The Inverse Method L18.14

Jack Hughes and Dominic Orchard. Resourceful program synthesis from graded
linear types. In Maribel Fernández, editor, 30th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR 2020), pages 151–170,
Bologna, Italy, September 2020. LNCS 12561.

Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concur-
rent linear logic programming. In A.Felty, editor, Proceedings of the 7th Interna-
tional Symposium on Principles and Practice of Declarative Programming (PPDP’05),
pages 35–46, Lisbon, Portugal, July 2005. ACM Press.

Sergei Maslov. The inverse method of establishing deducibility in the classical
predicate calculus. Soviet Mathematical Doklady, 5:1420–1424, 1964.

Maria Inês Melo e Sousa. Synthesis of Programs from Linear Types. M.Sc. thesis,
University of Porto, 2021.

Peter O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, 2007.

John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of the 17th Symposium on Logic in Computer Science, pages 55–74,
Copenhagen, Denmark, July 2002. IEEE Computer Society.

Andrei Voronkov. Theorem proving in non-standard logics based on the inverse
method. In Deepak Kapur, editor, 11th International Conference on Automated De-
duction (CADE 1992), pages 648–662, Saratoga Springs, New York, 1992. Springer
LNAI 607.

LECTURE NOTES NOVEMBER 15, 2023

	Introduction
	The Basic Idea
	The Inverse Method with Focusing
	Strict, Affine, and Structural Logic
	 and 0 Revisited

