
Lecture Notes on
Logical Frameworks

15-836: Substructural Logics
Frank Pfenning

Lecture 20
November 28, 2023

1 Introduction

A logical framework consists of a formal metalanguage for the definition of logics and
other deductive systems and a representation methodology. The seminal work on log-
ical frameworks is LF [Harper et al., 1987, 1993], with a full-scale implementation in
the Twelf system [Pfenning and Schürmann, 1999], available at www.twelf.org.
Logical frameworks distill the essence of the conceptual notions that are used to
define logics and other deductive systems, such as the statics and dynamics of pro-
gramming languages. They are distinguished from general type theories and their
implementations in systems such as Agda1 and Coq2 in that they designed for the
specific domain of deductive systems rather than general (constructive or classical)
mathematics.

LF itself is structural, and this limitation has led to substructural generaliza-
tions in the form of Linear LF (LLF) [Cervesato and Pfenning, 1996, 2002]3 and
Concurrent LF (CLF) [Watkins et al., 2002, Cervesato et al., 2002, Schack-Nielsen
and Schürmann, 2008, Schack-Nielsen, 2011]4 Each of these is designed to address
some shortcomings of its predecessors, suitably extending both the formal meta-
language and the representation methodology.

We will follow a similar path, introducing LF in today’s lecture and then con-
sider substructural extensions in the next two lectures. We emphasize the univer-
sality of the underlying principles, which mirror the principles we have employed
throughout in this course. One might even say that these principles are manifest in
the design of the logical frameworks we represent.

1https://wiki.portal.chalmers.se/agda/pmwiki.php
2https://coq.inria.fr/
3https://github.com/clf/llf
4https://github.com/clf/celf
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What is a logical framework used for? In this and the three remaining lectures
we don’t have the time to cover the full rangle of applications, but we can broadly
categorize them as follows:

Definition: Logical frameworks are used to define logics and other deductive sys-
tems under consideration, ideally at a very high level of abstraction. Logics
are generally characterized by propositions and rules of inference, program-
ming languages by programs, type systems, and rules of computation. The
main principle used in the definition of logics is summarized as judgments as
types and proofs as objects.

Algorithms: The most fundamental algorithm is that of proof checking for an ob-
ject logic represented in a logical framework, but there are many others such
as proof search, proof reduction, translations between logics, type checking,
or evaluation of programs on an object language. The logical frameworks
we consider support algorithms via computation as proof construction which
encompasses both backward [Miller et al., 1991, Miller and Nadathur, 2012]
and forward proof construction [López et al., 2005].

Metareasoning: Once a deductive system has been defined, we usually prove a
number of important properties of it. For logics, these include cut elimina-
tion, identity elimination, focusing, soundness and completeness of trans-
lations, etc. For programming languages they are progress and preserva-
tion, soundness and completeness of type-checking algorithms, compiler cor-
rectness, etc. We can exploit the nature of representations in logical frame-
work to formally prove such metatheorems Pfenning and Schürmann [1999],
Schürmann [2000]. The general methodology is to represent that computa-
tional content of proof of the metatheorem algorithmically and then verify
its totality. There are some gaps in our understanding of how to achieve
this for substructural frameworks (see some approaches by McCreight and
Schürmann [2008], Reed [2009], Georges et al. [2017])

For today’s lecture where we only consider LF we will focus on logic definition
and proof checking.

2 Judgments as Types

One of the fundamental representation techniques is judgments as types. A judgment
in this context are what is subject to deductive inference, as mapped out by Martin-
Löf [1983]. Common judgments are A true or A false or A valid . We use the very
simply example from Lecture 1 of defining a path through a directed graph.

edge(x, y)

path(x, y)
step

path(x, y) path(y, z)

path(x, z)
trans
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We previously thought of edge(x, y) and path(x, y) as propositions, but we will now
think of them as judgments since they are directly subject to inference. This means
that edge(x, y) and path(x, y) for vertices x and y should be represented by types in
our formal metalanguage (which we have yet to define). We think of both edge and
path as constructors for types, taking vertices as arguments. So we have

vertex : type.
edge : vertex -> vertex -> type.
path : vertex -> vertex -> type.

In the terminology of logical frameworks we call edge and path type families, each
indexed by two vertices.

It is easy to see what the type vertex represents. Here is the example from Lec-
ture 1: Our initial state of knowledge is edge(a, b), edge(b, c), edge(b, d) for some
vertices a, b, c, and d. Therefore:

a : vertex.
b : vertex.
c : vertex.
d : vertex.

We also have to have objects of type edge a b, edge b c and edge b d. These are
constants represent (trivial) proofs of these judgments.

eab : edge a b.
ebc : edge b c.
ebd : edge b d.

What happens to the inference rules? They become proof constructors. As a first
approximation, we might write

step : edge x y -> path x y.
trans : path x y -> path y z -> path x z.

It remains to clarify the status of x, y and z. Somehow we have to express that any
instantiation of the constructor with vertices x, y and z is a valid instance of the
rule.

When we developed predicate calculus, we used universal quantification to
express this, where we purposely let the quantifier range over arbitrary “individu-
als”. In LF we would like to be more precise and specify that they must be vertices.
Syntactically, we just replace ∀x.B(x) with Πx:A.B(x) where A is a type. Our con-
crete syntax for this is {x : A}B.

step : {x:vertex} {y:vertex} edge x y -> path x y.
trans : {x:vertex} {y:vertex} {z:vertex}

path x y -> path y z -> path x z.
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Now we can show a little example of a proof representation. We represent

edge(a, b)
eab

path(a, b)
step

as

step a b eab : path a b

Here is a slightly larger proof:

edge(a, b)
eab

path(a, b)
step

edge(b, c)
ebc

path(b, c)
step

path(a, c)
trans

which becomes

trans a b c (step a b eab) (step b c ebc) : path a c

3 The Formal Metalanguage

So far, we have learned about “judgments as types” and “proofs as objects” through
a very simple example. A proof of a judgment is represented by an object of the
corresponding type. Clearly, this should be a bijection: every valid proof should be
an object that has the expected type, and every object that has a given type should
represent a type. If typing in the framework is decidable (which it will be) this
means we can model proof checking by type checking.

Before we go further, we should be more precise about the metalanguage that
we have written some code in without actually defining it. Even though LF was
not originally conceived this way, we think of it as arising from [drum roll] focusing.
This point of view is helpful because it will extend to the substructural frameworks
we start discussing in the next lecture.

What have we used to far? We have used atomic types vertex, edge x y and
path x y. We have also used function types A → B and quantification Πx:A.B(x)
that generalizes ∀x.B(x). We observe that all of these are negative! This also al-
leviates any stress regarding atoms: let’s just be consistent and also make them
negative. Here is what we have so far.

Negative types A,B ::= P | A→B | Πx:A.B(x)
Atoms P ::= . . .
Objects M ::= . . .
Kinds K ::= type | A→K | . . .
Signatures Σ ::= · | Σ, a : K | Σ, c : A
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A signature has declarations for term constructors c and also for type families a that
may depend on objects like edge and path.

The language of objects (and, by analogy, the language of types) is now de-
termined by what it means to focus on a type among the antecedents and what it
means to invert a type as a succedent. The declarations c : A in signature Σ (which
is generally fixed for a particular encoding) act as antecedents.

We start with left focus, first the rules that starts left focus from a stable sequent.
At the end of this section we will see what the succedent δ of a stable sequent must
look like.

c : A ∈ Σ Γ, [A] ⊢Σ δ

Γ ⊢Σ δ
FL/C

c : A ∈ Σ Γ, [A] ⊢Σ S : δ

Γ ⊢Σ c S : δ
FL/C

The kind of proof term to we assign to the left focus judgment is called a spine
[Cervesato and Pfenning, 2003], which we write as S. This harkens back to earlier
term assignments, although with a different purpose.

We now omit the signature Σ from the turnstile for brevity since it never changes
in the typing of objects and spines.

Γ ⊢ [A] Γ, [B] ⊢ δ

Γ, [A→B] ⊢ δ
→L

Γ ⊢ M : A

Γ ⊢ M : [A]
IR/FR

Γ, [B] ⊢ S : δ

Γ, [A→B] ⊢ (M ; S) : δ
→L

Since A is negative, we will lose focus on [A] in the first premise and start inversion
which is the judgment to type objects (not spines).

Universal quantification is interesting. Recall that a proof of ∀x.B(x) was a
function which for every individual t returned a proof of B(t). So both quantifi-
cation and implication correspond to functions. Here, there is no separate class of
terms t—we just use objects M .

Γ ⊢ M : A

Γ ⊢ M : [A]
IR/FR

Γ, [B(M)] ⊢ S : δ

Γ, [Πx:A.B(x)] ⊢ (M ; S) : δ
ΠL

The tricky part of this rule is the substitution B(M). So the only difference between
A → B and Πx:A.B(x) that in the latter, B may depend on x, while not so in the
former. We discuss this operation further in Section 4.

For the final left rule, we consider atoms, which in LF are all considered neg-
ative. The left focus only succeeds if the succedent is the same suspended atom.
Because of this, there is no real information content in the rule and the spine is just
empty.

Γ, [P ] ⊢ ⟨P ⟩
id−

Γ, [P ] ⊢ ( ) : ⟨P ⟩
id−
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We revisit our grammar. Atoms are just like constants applied to spines, except that
the constant itself is a type family. Also, variables can be used just like constants.

Negative types A,B ::= P | A→B | Πx:A.B(x)
Atoms P ::= a S
Objects M ::= c S | x S | . . .
Spines S ::= (M ; S) | ( )
Kinds K ::= type | A→K | . . .
Signatures Σ ::= · | Σ, a : K | Σ, c : A

With this, we can give a formal representation of our earlier example, abbreviating
c ( ) and x ( ) as just c and x. We also omit trailing empty spines and write (M1 ;
. . . ; Mn ; ( )) as (M1 ; . . . ; Mn).

vertex : type
edge : vertex→ vertex→ type
path : vertex→ vertex→ type
step : Πx:vertex.Πy:vertex. edge (x ; y)→ path (x ; y)
trans : Πx:vertex.Πy:vertex.Πz:vertex.

path (x ; y)→ path (y ; z)→ path (x ; z)

a : vertex
b : vertex
c : vertex
d : vertex

eab : edge (a ; b)
ebc : edge (b ; c)
ebd : edge (b ; d)

⊢ trans (a ; b ; c ; (step (a ; b ; eab)) ; (step (b ; c ; ebc))) : path (a ; b)

There is still a lot of redundancy in this representation with multiple occurrences
of a, b, and c, but implementations can further mitigate this by allowing the user to
elide some of these, and in some cases even eliminate them from the representation
altogether.

Even if it is only needed to suspend atoms in this example, we should return
to the inversion phase of focusing. Since all constructors are negative, these will
be the right rules. For the same reason, we can dispense with the usual ordered
antecedents Ω. For example, the right rule for A → B would add A to the or-
dered context, but since A is negative and therefore stable, it will be immediately
transferred to the structural context Γ that consists entirely of negative types (since
suspended positive atoms are not part of the language).

Γ, A ⊢ B

Γ ⊢ A→B
→R

Γ, x : A ⊢ M(x) : B

Γ ⊢ λx.M(x) : A→B
→R
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As we might expect by now, quantifiers are just dependent function types can be-
have the same.

Γ, x : A ⊢ M(x) : B(x)

Γ ⊢ λx.M(x) : Πx:A.B(x)
ΠR

Finally, atoms on the right are suspended because their are negative.

Γ ⊢ ⟨P ⟩

Γ ⊢ P
C/IR

Γ ⊢ M : ⟨P ⟩

Γ ⊢ M : P
C/IR

We see that in stable sequents the succedent δ always has the form ⟨P ⟩ for some
atom P .

This allows us to complete the grammar, where we additional allow kinds to be
dependent.

Negative types A,B ::= P | A→B | Πx:A.B(x)
Atoms P ::= a S
Objects M ::= c S | x S | λx.M(x)
Spines S ::= (M ; S) | ( )
Kinds K ::= type | A→K | Πx:A.B(x)
Stable antecedents Γ ::= · | Γ, x : A
Stable succedents δ ::= ⟨P ⟩
Signatures Σ ::= · | Σ, a : K | Σ, c : A

We have already seen the most critical typing rules; they are summarized in Fig-
ure 1. Others are similar and elided and can be found in the literature. Still missing
is the definition of B(M), which looks like ordinary substitution but is more com-
plicated.

In the next lecture we will extend the representation methodology and show
some representations of the sequent calculus and the semi-axiomatic sequent cal-
culus.

4 Hereditary Substitution

Consider a type Πx:A.B(x). When typing an application we need to substitute a
term M : A for x, written so far as B(M). But does this substitution actually make
sense? Consider the term x ( ) that is typed from x : P with left focus. Just plugging
in the object M : P would be M ( ), but that’s not actually a valid object. Similarly,
if A = P →Q then the term will be λy.N(y) and after just plugging into x (M ; ( ))
we would have (λy.N(y)) (M ; ( )), again not even syntactically valid.

We use a more traditional notation [M/x]AB(x) instead of B(M), indexing the
operation also with the type A of x. This quickly reduces to [M/x]AN and [M/x]AS.
The idea is that if x is at the head of a spine we then reduce further, initiating more
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c : A ∈ Σ Γ, [A] ⊢ S : δ

Γ ⊢ c S : δ
FL/C

x : A ∈ Γ Γ, [A] ⊢ S : δ

Γ ⊢ c S : δ
FL/C/

Γ ⊢ M : A Γ, [B] ⊢ S : δ

Γ, [A→B] ⊢ (M ; S) : δ
→L

Γ ⊢ M : A Γ, [B(M)] ⊢ S : δ

Γ, [Πx:A.B(x)] ⊢ (M ; S) : δ
ΠL

Γ, [P ] ⊢ ( ) : ⟨P ⟩
id−

Γ, x : A ⊢ M(x) : B

Γ ⊢ λx.M(x) : A→B
→R

Γ, x : A ⊢ M(x) : B(x)

Γ ⊢ λx.M(x) : Πx:A.B(x)
ΠR

Γ ⊢ M : ⟨P ⟩

Γ ⊢ M : P
C/IR

Figure 1: LF Type Theory (excerpt), given a fixed signature Σ

substitutions and so on. Why does this terminate? Similar to cut elimination, it is
by a nested induction first on the type A and second on the object M and spine S
we substitute into. In fact, it is the operational reading of cut elimination for the
focusing calculus on negative types.

We write h for a head, that is, a constant c or a variable y.

[M/x]A(λy.N) = λy. [M/x]AN y not free in M
[M/x]A(h S) = h [M/x]AS where x ̸= h
[M/x]A(x S) = M |A [M/x]AS (application)

[M/x]A(N ; S) = [M/x]AN ; [M/x]AS
[M/x]A( ) = ( )

(h S) |P ( ) = h S
(λx.M) |A→B (N ; S) = [N/x]AM |B S
(λx.M) |Πx:A.B(x) (N ; S) = [N/x]AM |B(x) S

The condition in the first case can be satisfied by renaming the bound variable
y, which is always (silently) possible. For the purpose of hereditary substitution,
ordinary and dependent function types are treated identically; the free variable x
in B(x) is not relevant to the termination argument.

Another interesting point is that hereditary substitution may be undefined, but
is always computable by the nested induction argument. The notion of heredi-
tary substitution was originally developed for a substructural logical framework
[Watkins et al., 2002] which contains LF as a fragment.
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