
Lecture Notes on
Substructural Frameworks

15-836: Substructural Logics
Frank Pfenning

Lecture 21
November 30, 2023

1 Introduction

In the last lecture we introduced LF, although we only started to talk about the rep-
resentation methodology. We continue this today, discuss some of the shortcom-
ings, and explore how they might be addressed in a substructural logical frame-
work. References to LF and its implementation in Twelf are provided in the previ-
ous lecture.

2 Representing Sequent Derivations

A more typical example for the use of a logical framework is the representation
of a logic. Actually, we should be more precise: it is not a logic we represent but a
specific inference system. So, for example, sequent calculus and the semi-axiomatic
sequent calculus will have different representations.

First, we start with the representation of the propositions of (intuitionistic) logic.
That’s straightforward:

prop : type.
and : prop -> prop -> prop.
or : prop -> prop -> prop.
imp : prop -> prop -> prop.

Atomic propositions are either variables of type prop, or declared in addition to the
logical connectives we already have.

For different constituents of an object logic like propositions or proofs, we have
an (overloaded) representation function ⌜−⌝. For example, for propositions we
have

P1:prop, . . . , Pk:prop ⊢ ⌜A⌝ : prop

LECTURE NOTES NOVEMBER 30, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/20-frameworks.pdf
http://www.cs.cmu.edu/~fp/courses/15836-f23//lectures/20-frameworks.pdf

Substructural Frameworks L21.2

defined by
⌜P ⌝ = P
⌜A ∧B⌝ = and ⌜A⌝ ⌜B⌝

⌜A ∨B⌝ = or ⌜A⌝ ⌜B⌝

⌜A ⊃ B⌝ = imp ⌜A⌝ ⌜B⌝

Here, instead of c (M1 ; . . . ; Mn) from focusing we write c M1 . . .Mn, which is the
familiar source-level syntax from logical frameworks based on natural deduction.

When it comes to judgments, recall that basic judgments are represented as
types. But what are the basic judgments here? It turns out the correct represen-
tation uses two: “A is an antecedent” and “A is a succedent”, which we write as
ante ⌜A⌝ and succ ⌜A⌝ respectively. A proof

D
A1, . . . , An ⊢ C

is then represented by the LF sequent

x1 : ante
⌜A1

⌝, . . . xn : ante ⌜An
⌝ ⊢

Σ
⌜D⌝ : succ ⌜C⌝

where ⌜D⌝ is an object of LF and the signature Σ contains the constructors for propo-
sitions and proofs. Actually, we have to modify this slightly if A1, . . . , An, C contain
propositional variables Pi, in which case it becomes

P1 : prop, . . . , Pk : prop, x1 : ante
⌜A1

⌝, . . . xn : ante ⌜An
⌝ ⊢

Σ
⌜D⌝ : succ ⌜C⌝

Since atomic propositions may also be represented as constants in the signature,
we’ll ignore this detail and focus on the representation of proofs.

Let’s start with the right rule for implication.

D =

D′

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

Writing out the representation of the two sequents in LF:

⌜Γ⌝, x : ante ⌜A⌝ ⊢ ⌜D′⌝ : succ ⌜B⌝

⌜Γ⌝ ⊢ ⌜D⌝ : succ (imp ⌜A⌝ ⌜B⌝)

We might conjecture we could achieve that if

⌜D⌝ = impR (λx. ⌜D′⌝)

so that

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.3

impR : (ante ⌜A⌝ → succ ⌜B⌝)
→ succ (imp ⌜A⌝ ⌜B⌝)

but we also need to abstract over the propositions A and B:

impR : ΠA : prop.ΠB : prop.
(ante A→ succ B)
→ succ (imp A B)

We play through what happens if we focus on this on the left, writing ?A and ?B
for an as yet unknown object of type prop and omitting contexts ⌜Γ⌝.

...
⊢ ?A : prop

...
⊢ ?B : prop

ante ?A ⊢ ⟨succ ?B⟩

ante ?A ⊢ succ ?B

⊢ ante ?A→ succ ?B
→R

δ = ⟨succ (imp ?A ?B)⟩

[succ (imp ?A ?B)] ⊢ δ
id−

[(ante ?A→ succ ?B)→ succ (imp ?A ?B)] ⊢ δ
→L

[ΠB:prop. (ante ?A→ succ B)→ succ (imp ?A B)] ⊢ δ
ΠL

[ΠA:prop.ΠB:prop. (ante A→ succ B)→ succ (imp A B)] ⊢ δ
ΠL

Due to the restriction on focusing with negative atoms, we see that focusing on
impR can only succeed if the (metalevel) succedent has the form ⟨succ (imp ⌜A⌝ ⌜B⌝)⟩
for some propositions A and B. Applying this throughout, we get the derived rule

⌜Γ⌝, ante ⌜A⌝ ⊢ ⟨succ ⌜B⌝⟩
⌜Γ⌝ ⊢ ⟨succ (imp ⌜A⌝ ⌜B⌝)⟩

which is exactly what we were aiming for. If we add proof terms we get

⌜Γ⌝, ante ⌜A⌝ ⊢ M : ⟨succ ⌜B⌝⟩
⌜Γ⌝ ⊢ (impR ⌜A⌝ ⌜B⌝ (λx.M(x))) : ⟨succ (imp ⌜A⌝ ⌜B⌝)⟩

Using focusing in this manner allows us to establish a bijection: If M is the repre-
sentation of a proof D, then impR ⌜A⌝ ⌜B⌝ (λx.M(x)) will also be one. Conversely,
if ⌜Γ⌝ ⊢ M : ⟨succ C⟩ then M must be the proof term for one of the inference rules
encoded in the signature Σ. In each case, the same must be true for the unknown
object in the premise(s), and we can systematically translate well-typed terms to
sequent calculus proofs.

Let’s look at the left rule for implication as one more example.

Γ ⊢ A Γ, B ⊢ C

Γ, A ⊃ B ⊢ C
⊃L

We conjecture

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.4

impL : ΠA : prop.ΠB : prop.ΠC : prop.
succ A→ (ante B → succ C)
→ (ante (imp A B)→ succ C)

We won’t go through the details of focusing, but what we arrive at is

⌜Γ⌝ ⊢ M : ⟨succ ⌜A⌝⟩ ⌜Γ⌝, y : ante ⌜B⌝ ⊢ N(y) : ⟨succ ⌜C⌝⟩
⌜Γ⌝, x : ante ⌜A ⊃ B⌝ ⊢ impL ⌜A⌝ ⌜B⌝ ⌜C⌝ M (λy.N(y)) x : ⟨succ ⌜C⌝⟩

We see here that the encoding for a structural sequent calculus critically relies on
the fact that the LF metalanguage is also structural. So there may be occurrences of
x in M and N , just like the hypothesis A ⊃ B can be used again in both premises
of the sequent calculus rule.

You might also notice that modulo the explicit propositions and the argument
order, this is exactly the proof term representation we used in Assignment 2 for
ordered proofs. This is, of course, no coincidence. In practical implementations
of logical frameworks such as LF, the arguments of type prop to the constructors
can be omitted and will be determined by the implementation from context. In
general, this problem is undecidable for LF and may require more information from
the programmer, but in the vast majority of the cases the constraints on them are
sufficient.

We can see how proof checking in an object logic (structural, for the moment)
can be reduced to type-checking the proof representation in LF (also structural).
Moreover, the representation is a bijection between proofs and the well-typed terms
over a signature (the encoding of a proof system) and a particular context (the
encoding of the antecedents).

Before moving on, let’s look back at the type of impR.

impR : ΠA : prop.ΠB : prop.
(ante ⌜A⌝ → succ ⌜B⌝)
→ succ (imp ⌜A⌝ ⌜B⌝)

The adequacy of this encoding as mentioned in the preceding paragraph relies crit-
ically on the fact that the function spaces here are weak. For example, a function
cannot examine the structure of its argument and base its result on it. Instead, an
object of type A → B must be λx.M(x) which is parametric in x so that M(N) is
just the result of hereditary substitution of N for x in M(x) without further com-
putation.

3 A Linear Logical Framework

When encoding a substructural type system, the methodology we have exempli-
fied in the preceding section no longer works for LF. That’s because LF antecedents

LECTURE NOTES NOVEMBER 30, 2023

http://www.cs.cmu.edu/~fp/courses/15836-f23//assignments/hw2.pdf

Substructural Frameworks L21.5

of the form x : ante ⌜A⌝ are structural, so we cannot use them for the linear an-
tecedents of linear logic. The most direct solution is to generalize the framework
so it also admits linear antecedents. We cannot throw out the nonlinear functions,
so the framework will be a mixed linear/nonlinear type theory call Linear LF (or
LLF, for short) [Cervesato and Pfenning, 1996, 2002].

Given what we know now regarding adjoint logic, we might have designed the
framework differently. We start by just adding a linear function type, but leaving
the remainder of the language the same; later on we’ll need something one more
type. We also just reuse λ-abstraction for linear functions and spines (M ; S) for
linear application since this ambiguity is not relevant here.

Negative types A,B ::= P | A→B | Πx : A.B(x) | A ⊸ B
Stable antecedents ∆ ::= · | ∆, xS : A | ∆, xL : A

Stable antecedents may be structural xS : A or linear xL : A. All declarations in
the signature remain structural: even in a linear logic, inference rules can be used
multiple times.

Focusing works similar to the way it worked before—we highlight only two
rules for the key differences between the linear and nonlinear left rules, namely
that the first premise of →L can only depend on structural antecedents.

ΓS ⊢ M : [A] ΓS,∆
′, [B] ⊢ S : δ

ΓS,∆
′, [A→B] ⊢ (M ; S) : δ

→L

ΓS,∆ ⊢ M : [A] ΓS,∆
′, [B] ⊢ (M ; S) : δ

ΓS,∆,∆′, [A ⊸ B] ⊢ (M ; S) : δ
⊸L

The focus on A in the first premise of both of these rules will be lost immediately
since the framework consists entirely of negative types. The succedent δ will al-
ways be a suspended negative atom ⟨P ⟩, as for LF.

As our example we use the (purely linear) semi-axiomatic sequent calculus
(SAX). We represent a proof

D
A1, . . . , An ⊢ C

by
x1L : ante ⌜A1

⌝, . . . , xnL : ante ⌜An
⌝ ⊢ ⌜D⌝ : ⟨succ ⌜C⌝⟩

The right rule for linear implication parallels what we have seen in the structural
case, but the left rule is replace by the axiom

A,A ⊸ B ⊢ B
⊸X

which simplifies the representation slightly.

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.6

lolli : prop→ prop→ prop

lolliR : ΠA : prop.ΠB : prop.
(ante A ⊸ succ B)
⊸ succ (lolli A B)

lolliX : ΠA : prop.ΠB : prop.
ante A ⊸ ante (lolli A B) ⊸ succ B

The identity is similar to the axiom.

id : ΠA : prop. ante A ⊸ succ A

he fram The additive conjunction represents a new challenge.

∆ ⊢ A ∆ ⊢ B

∆ ⊢ A N B
NR

A N B ⊢ A
NX1

A N B ⊢ B
NX2

The challenge here is how to “duplicate” the antecedents ∆ to both premises of the
NR rule. In the framework we have so far, there is not easy way to accomplish
this. Fortunately, external choice is negative so we can just add it to the framework
without disturbing much of its structure.

Negative types A,B ::= P | A→B | Πx : A.B(x) | A ⊸ B | A N B
Objects M ::= c S | x S | λx.M(x) | (M1,M2)
Spines S ::= M ; S | () | π1 ; S | π2 ; S
Stable antecedents ∆ ::= · | ∆, xS : A | ∆, xL : A

With this addition we can define

with : prop→ prop→ prop

withR : ΠA : prop.ΠB : prop.
(succ A N succ B)
⊸ succ (with A B)

withX1 : ΠA : prop.ΠB : prop.
ante (with A B) ⊸ succ A

withX1 : ΠA : prop.ΠB : prop.
ante (with A B) ⊸ succ B

Because right inversion on succ A N succ B will propagate all linear antecedents to
both premises, the translation of

D
∆ ⊢ A

E
∆ ⊢ B

∆ ⊢ A N B
NR

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.7

as
withR ⌜A⌝ ⌜B⌝ (⌜D⌝, ⌜E⌝) : ⟨succ (with ⌜A⌝ ⌜B⌝)⟩

is adequately typed.
If we also encode cut

∆ ⊢ A ∆′, A ⊢ C

∆,∆′ ⊢ C
cut

as

cut : ΠA : prop.ΠB : prop.
succ A ⊸ (ante A ⊸ succ C)
⊸ succ C

then we can, for example, show that the usual sequent calculus left rules are deriv-
able in SAX. The derivation

A N B ⊢ A
NX1

∆, A ⊢ C

∆, A N B ⊢ C
cut

becomes

⊢ (λf. λy. cut ⌜A⌝ ⌜C⌝ (withX1
⌜A⌝ ⌜B⌝ y) (λx.fx)) : (ante ⌜A⌝ ⊸ succ ⌜C⌝)

⊸ (ante (with ⌜A⌝ ⌜B⌝) ⊸ succ ⌜C⌝)

4 Metatheoretic Reasoning

One payoff for using high-level encodings is that they can enable elegant and con-
cise metatheoretic reasoning [Schürmann, 2000]. For substructural logics, this is
much less well understood and I believe Jason Reed’s PhD Thesis 2009 using re-
source semantics is probably currently the high water mark, although more recent
work with entirely different techniques is also promising [Sano et al., 2023, Crary,
2010].

Let’s first consider the structural case, and let’s assume we have formalized the
sequent calculus without the cut rule. Then, at some informal level, the (construc-
tive!) admissibility proof for cut would correspond to a function from a proof of A
and a proof of C from A to a proof of C. In LF, this might be written as

cutadmit : ΠA : prop.ΠC : prop.
succ A→ (ante A→ succ C)→ succ C

Unfortunately, such a function is not representable in LF because it would have to
distinguish all the different cases for the proofs of succ A and the hypothetical proof
of ante A → succ C. Allowing such case distinction would destroy the adequacy
of the encoding, although there are systems such as M+

2 [Schürmann, 2000] and

LECTURE NOTES NOVEMBER 30, 2023

Substructural Frameworks L21.8

Beluga [Pientka and Cave, 2015] that support multiple different kinds of function
spaces. In Twelf [Pfenning and Schürmann, 1999], the solution is to represent the
metatheoretic proof instead as a relation.

cutadmit : ΠA : prop.ΠC : prop.
succ A→ (ante A→ succ C)→ succ C
→ type

We can then check properties of this relation to verify our theorem. Specifically, it
should be total in A, C and the two given derivations. You can read more about
this in the following two papers [Pfenning, 1995, 2000].

It turns out this relational method is quite general, and there are many examples
and case studies in the Twelf distribution and on the website.1

References

Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke,
editor, Proceedings of the Eleventh Annual Symposium on Logic in Computer Science,
pages 264–275, New Brunswick, New Jersey, July 1996. IEEE Computer Society
Press.

Iliano Cervesato and Frank Pfenning. A linear logical framework. Information &
Computation, 179(1):19–75, November 2002. Revised and expanded version of an
extended abstract, LICS 1996, pp. 264-275.

Karl Crary. Higher-order representation of substructural logics. In P.Hudak and
S.Weirich, editors, Proceedings of the 15th International Conference on Functional
Programming (ICFP 2010), pages 131–142, Baltimore, Maryland, September 2010.
ACM.

Frank Pfenning. Structural cut elimination. In D. Kozen, editor, Proceedings of the
Tenth Annual Symposium on Logic in Computer Science, pages 156–166, San Diego,
California, June 1995. IEEE Computer Society Press.

Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic. In-
formation and Computation, 157(1/2):84–141, March 2000.

Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of
the 16th International Conference on Automated Deduction (CADE-16), pages 202–
206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

1http://twelf.org/

LECTURE NOTES NOVEMBER 30, 2023

http://twelf.org/

Substructural Frameworks L21.9

Brigitte Pientka and Andrew Cave. Inductive Beluga: Programming proofs. In
A. Felty and A. Middeldorp, editors, 25th International Conference on Automated
Deduction (CADE 2015), pages 272–281, Berlin, Germany, August 2015. Springer
LNCS 9195.

Jason C. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon University,
September 2009. Available as Technical Report CMU-CS-09-155.

Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. Mechanizing session-types us-
ing a structural view: Enforcing linearity without linearity. In Proceedings of the
ACM on Programming Languages, volume 7 (OOPSLA2), pages 374–399. ACM,
2023. Extended version available at https://arxiv.org/abs/2309.12466.

Carsten Schürmann. Automating the Meta Theory of Deductive Systems. PhD the-
sis, Department of Computer Science, Carnegie Mellon University, August 2000.
Available as Technical Report CMU-CS-00-146.

LECTURE NOTES NOVEMBER 30, 2023

https://arxiv.org/abs/2309.12466

	Introduction
	Representing Sequent Derivations
	A Linear Logical Framework
	Metatheoretic Reasoning

