
Lecture Notes on
Linear Natural Deduction

15-836: Substructural Logics
Sophia Roshal

Lecture 23
December 7, 2023

1 Introduction

Throughout the course we have been focusing on the sequent calculus and its variations
SAX [DeYoung et al., 2020] and SNAX [DeYoung and Pfenning, 2022] all of which follow
a bottom up reasoning method. In this lecture we introduce natural deduction [Gentzen,
1935] which instead has 2 directions of reasoning, with introduction rules which follow
bottom up reasoning, and elimination rules which follow top down reasoning. Using all
the same tools as we have used so far, we will develop these rules, and prove some impor-
tant properties as well as relate natural deduction back to the sequent calculus.

2 The Base Rules

As stated in the introduction, we have two forms of rules. Introduction rules (which we
think of reasoning upwards) correspond directly to the sequent calculus right rules. The
elimination rules (which we think of reasoning downwards) will need a bit more work. All
the rules can be found in the appendix, but in this section we will focus on one positive (⊗)
and one negative (⊸) connective. First, for completeness sake, we state the introduction
rule for ⊗.

∆1 ⊢ M : A ∆2 ⊢ N : B

∆1,∆2 ⊢ (M,N) : (A⊗B)
⊗I

Now, we think about the elimination form. We should be starting, in our premise, with

∆1 ⊢ M : (A⊗B)
⊗E incomplete

Since we are in a linear setting, we are required to somehow use both A and B, however,
we aren’t allowed to have multiple conclusions in our rules, so, similarly to the sequent
calculus, we will break apart A ⊗ B into its parts, and use these parts to prove some new
right hand side term C producing the following rule:

∆1 ⊢ M : A⊗B ∆2, x : A, y : B ⊢ N : C

∆1,∆2 ⊢ match M with (x, y) in N : C
⊗E

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.2

For ⊸, again the introduction rule is identical to the sequent calculus right rule.

∆, x : A ⊢ M : B

∆ ⊢ λx.M : A ⊸ B
⊸ I

For the elimination rule, we start with

∆1 ⊢ M : A ⊸ B
⊸ E partial

Thinking about linearity, we know we need to consume M, and approaching this from
programming perspective, ⊸ is a the type of a function. To consume a function, we apply
it, so this rule should correspond to function application.

∆1 ⊢ M : A ⊸ B ∆2 ⊢ N : A

∆1,∆2 ⊢ M N : B
⊸ E

Other rules can be constructed in a similar fashion, with positive connectives correspond-
ing almost directly to sequent calculus rules, and negative connectives requiring a bit more
work.

3 Bidirectional Type Checking

In section 2, we presented some rules, and claimed that we read the introduction rules bot-
tom up, as in the sequent calculus, and the elimination rules top down, but this isn’t made
in any way explicit. We can make this explicit via bidirectional type checking [Dunfield
and Krishnaswami, 2022] by splitting the judgement M : A into two judgements M ⇐ C
(read as M checks against C) and M ⇒ A (read as M synthesizes A.) From an implementa-
tion perspective, we think of the checking judgement as type checking (where both M and
C are provided as inputs) and the synthesis judgement as type inference (where only the
term M is given, and we infer its type). The checking judgement is the upward reasoning
direction, while the synthesis judgement is the downwards reasoning direction. We start
with ⊗. The introduction rule is fairly straightforward. To check if the pair (M,N) has the
type A⊗B, we need to check the individual components.

∆1 ⊢ M ⇐ A ∆2 ⊢ N ⇐ B

∆1,∆2 ⊢ (M,N) ⇐ A⊗B
⊗I

The elimination rule is a bit trickier.

∆1 ⊢ M ⇒ (A⊗B) ∆2, x : A, y : B ⊢ N ? C

∆1,∆2 ⊢ match M with (x, y) in N ? C
⊗E incomplete

The first premise we have labeled as a synthesis, this is to embody the downward direction
reasoning. To label the other two, there are several ways to do so that would be “correct”
in the sense that we would still have a complete system with respect to standard natural

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.3

deduction. One way to decide, is to consider the sequent calculus rule, and label every-
thing that appears on the left as a synthesis judgement, and everything that appears on the
right as a checking judgement. Internally to natural deduction, we can come to the same
conclusion for this rule, by thinking about the order that rules apply in. We first want to
apply all the introduction rules we can before we begin apply elimination rules. Once we
have reached the point of applying the ⊗ elimination rule, we are still in a checking mode,
and from this rule we don’t have information about what C (or N) is, so we might as well
remain in a checking mode. This gives us the following rule

∆1 ⊢ M ⇒ (A⊗B) ∆2, x : A, y : B ⊢ N ⇐ C

∆1,∆2 ⊢ match M with (x, y) in N ⇐ C
⊗E

Now for ⊸. Again, the introduction rule is fairly straightforward.

∆, x : A ⊢ M ⇐ B

∆ ⊢ λx.M ⇐ A ⊸ B
⊸ I

For the elimination rule, we again think back to the sequent calculus, and which propo-
sitions appear on which side in the implication left rule. If we follow that, we are left
with

∆1 ⊢ M ⇒ A ⊸ B ∆2 ⊢ N ⇐ A

∆1,∆2 ⊢ M N ⇒ B
⊸ E

Internally to natural deduction, and thinking about the proof terms, we could come to the
same conclusion. Starting from the top, we know A ⊸ B should be a synthesis as that’s
the term we are applying the elimination rule to. Once we have that type, we now have
A as well so the second premise can be a checking judgement. Finally, for the conclusion,
having it be a checking judgement would not be helpful to the proof. We’d still need to
synthesize a type for M , so this should remain as a synthesis.

Lastly we also present the hypothesis rule.

x : A ⊢ x ⇒ A
hyp(x)

From the separation into upwards and downwards reasoning point of view, it doesn’t
make sense to make this an upwards rule as there is no upward direction to go. From a
programming perspective, we want this rule to be a synthesis, as we don’t want to have to
annotate our variables with a type if it isn’t necessary to do so.

While this looks like the identity rule of the sequent calculus, it has a different function
and purpose (as we’ll see later in this lecture), so we call it the hypothesis rule.

4 An example

Here, we prove one direction of currying in our bidirectional system. Through this deriva-
tion, we will see that on top of the base rules, we actually need one more.

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.4

ab : (A⊗B) ⊢ ab =⇒ A⊗B
hyp(ab)

f : (A ⊸ (B ⊸ C)) ⊢ f ⇒ (A ⊸ (B ⊸ C))
hyp(f)

a : A ⊢ a ⇒ A
hyp(a)

a : A ⊢ a ⇐ A
?

f : (A ⊸ (B ⊸ C)), a : A ⊢ f ⇒ (A ⊸ (B ⊸ C))
⊸ E

b : B ⊢ b ⇒ B
hyp(b)

b : B ⊢ b ⇐ B
?

f : (A ⊸ (B ⊸ C)), a : A, b : B ⊢ ((f a) b) ⇒ C
⊸ E

f : (A ⊸ (B ⊸ C)), a : A, b : B ⊢ ((f a) b) ⇐ C
?

f : (A ⊸ (B ⊸ C)), ab : A⊗B ⊢ match ab with (a, b) in ((f a) b) ⇐ C
⊗E

f : (A ⊸ (B ⊸ C)) ⊢ λab.match ab with (a, b) in ((f a) b) ⇐ (A⊗B) ⊸ C
⊸ I

· ⊢ λf.λab.match ab with (a, b) in ((f a) b) ⇐ (A ⊸ (B ⊸ C)) ⊸ ((A⊗B) ⊸ C)
⊸ I

There are a few places in this proof marked with a question mark, which leads us to one
more rule:

∆ ⊢ M ⇒ A

∆ ⊢ M ⇐ A
⇒/⇐∗

From an implementation perspective however, we need to modify this rule just a bit. Syn-
thesis only takes the term as input so this rule doesn’t entirely make sense as written, given
that M synthesizes some type, and we don’t necessarily know that it will be A specifically.
This is something we need to check. We make a small modification.

∆ ⊢ M ⇒ A′ A = A′

∆ ⊢ M ⇐ A
⇒/⇐

While we’ve written A = A′ for type equality here, we could also generalize this to be a
sub-typing call, if our type system supports sub-typing. This one rule is the only place
where we need to do type equality/sub-typing checks.

5 System Correctness

So far, we have completed an example proof in natural deduction that we knew should
work. Unfortunately (or fortunately) proof by one example is not usually an accepted
form of proof in most publication venues, and so we need to do a bit more work before
being satisfied that the system we have developed is correct. There are several criteria
we can consider when we want to decide whether a system we have is “correct”. For the
sequent calculus, we had an internal way to do so via admissibility of identity and cut
which established harmony between the left and right rules. In natural deduction, we also
have a similar internal notion via local soundness and completeness of the introduction
and elimination rules. Another way we can establish correctness is by relating to some
outside system. Throughout this course, we have established the sequent calculus as “the
source of truth” and have proven many properties about it, so it would make sense to want
to verify that natural deduction corresponds in some way to the sequent calculus.

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.5

5.1 Harmony

We have two properties to prove: local soundness (or proof normalization) which corre-
sponds to cut elimination/admissibility in the sequent calculus and local completeness
which corresponds to admissibility of identity in the sequent calculus. We start with local
completeness. Here, we want to prove that we given an arbitrary proof of ∆ ⊢ M : A, and
applying the corresponding elimination rule, we should be able to reconstruct A again (of
course, with a different proof term).

Proof: Case: ⊗

D
∆ ⊢ M : A⊗B =⇒

D
∆ ⊢ M : A⊗B

x : A ⊢ x : A
hyp

y : B ⊢ y : B
hyp

x : A, y : B ⊢ (x, y) : (A⊗B)
⊗I

∆ ⊢ match M with (x, y) in (x, y) : (A⊗B)
⊗E

Case: ⊸

D
∆ ⊢ M : A ⊸ B =⇒

D
∆ ⊢ M : A ⊸ B x : A ⊢ x : A

hyp

∆, x : A ⊢ M x : B
⊸ E

∆ ⊢ λx.(M x) : A ⊸ B
⊸ I

Other cases proceed similarly. □

Soundness requires a bit more work. We want to establish that if we apply an introduc-
tion rule then an elimination rule, we can actually simplify that proof. this corresponds to
cut elimination (and more specifically the principal case of cut elimination with a right rule
“introducing” the cut proposition and the left rule “eliminating” it). To do so, we need one
more lemma: substitution. This corresponds to the more general cut reduction, where we
may not be cutting together a right and left rule. We need to prove that given a derivation
that relies on a variable, we can substitute that variable for a term of the same type.

Lemma 1 The following rule is admissible in the system without it

∆ ⊢ M : A ∆′, x : A ⊢ N(x) : C

∆,∆′ ⊢ N(M) : C
subst

Proof: Proof proceeds by induction on the second given derivation. We provide an inter-
esting case
Case: the second derivation ends in a ⊸ E. This case actually splits into two possible
cases, we show just the first (the second case is almost identical, with the difference of how
the context is split).

∆ ⊢ M : A

D1

∆′
1, x : A ⊢ N(x) : B ⊸ C

D2

∆′
2 ⊢ N ′(x) : B

∆′
1,∆

′
2, x : A ⊢ N(x) N ′(x) : C

⊸ E

∆,∆′
1,∆

′
2 ⊢ N(M) N ′(M) : C

subst

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.6

First, we need to realize that x cannot appear in N ′ as it must appear in N due to linearity
(and x is not present in ∆′

2), so N ′(x) = N ′ which in turn gives us N ′(M) = N ′. We can
now push the substitution upwards, reducing this proof to the following:

∆ ⊢ M : A

D2

∆′
1, x : A ⊢ N(x) : B ⊸ C

∆,∆′
1 ⊢ N(M) : B ⊸ C

subst D2

∆′
2 ⊢ N ′ : B

∆,∆′
1,∆

′
2 ⊢ N(M) N ′ : C

⊸ E

Other cases proceed similarly. □

Moving on to proving local soundness.

Proof: Case: ⊗
D1

∆a ⊢ M : A

D2

∆b ⊢ M ′ : B

∆a,∆b ⊢ (M,M ′) : A⊗B
⊗I E

∆′, x : A, y : B ⊢ N : C

∆a,∆b,∆
′ ⊢ match (M,M ′) with (x, y) in N : C

⊗E

We know N relies on both x and y, and this is where substitution comes into play. We
construct the following proof reduction via admissibility of substitution:

D1

∆a ⊢ M : A

D2

∆b ⊢ M ′ : B
E

∆′, x : A, y : B ⊢ N(x, y) : C

∆b,∆
′, x : A ⊢ N(x,M ′) : C

subst

∆a,∆b,∆
′ ⊢ N(M,M ′) : C

subst

Case: ⊸
D

∆1, x : A ⊢ M : B

∆1 ⊢ λx.M : A ⊸ B
⊸ I E

∆2 ⊢ N : A

∆1,∆2 ⊢ (λx.M)N : B
⊸ E

=⇒
E

∆2 ⊢ N : A
D

∆1, x : A ⊢ M(x) : B

∆1,∆2 ⊢ M(N) : B
subst

other cases proceed similarly. □

5.2 Soundness/Completeness wrt Sequent Calculus

We have developed two natural deduction systems. We would like to be able to relate
them to each other as well as to the sequent calculus, and to do so we can prove three

theorems. To separate notation, we will use
nd
⊢ to represent derivations in standard nat-

ural deduction,
↑↓
⊢ to represent derivations in bidirectional natural deduction, and

seq

⊢ to
represent derivations in the sequent calculus. The three theorems we need now are

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.7

Theorem 2 If ∆
nd
⊢ M : C then ∆

seq

⊢ C

Theorem 3 If ∆
seq

⊢ C then ∆′
↑↓
⊢ M ⇐ C for some M where ∆′

sub
⊢ ∆

Theorem 4 If ∆
↑↓
⊢ M ⇐ C then ∆

nd
⊢ M : C

Notice that in the second theorem, we need a modification to what we initially might
think of as the theorem. We will come back to that in the proof.

Proof: Theorem 1
We proceed by induction over the natural deduction derivation. We provide the cases for
⊗ and ⊸ as we have been throughout these notes. However, we leave out the cases for the
introduction rules as they follow directly via application of the induction hypothesis.

Case: ⊗E
D1

∆1

nd
⊢ M : A⊗B

D2

∆2, x : A, y : B
nd
⊢ N : C

∆1,∆2

nd
⊢ match M with (x, y) in N : C

⊗E

From the inductive hypothesis on D1 and D2 we can conclude

∆1

seq

⊢ A⊗B

∆2, A,B
seq

⊢ C

We need to prove ∆1,∆2

seq

⊢ C.
Looking at the statements we have from our inductive hypothesis, there doesn’t seem

to be a way to proceed directly. The only applicable rule is ⊗R but that isn’t particularly
useful. However, we have one more tool that we can use. We have the admissability of cut
in the sequent calculus. We proceed with the proof as follows.

IH(D1)

∆1

seq

⊢ A⊗B

IH(D2)

∆2, A,B
seq

⊢ C

∆2, A⊗B
seq

⊢ C

⊗L

∆1,∆2

seq

⊢ C

cut

Case: ⊸ E
D1

∆1

nd
⊢ M : A ⊸ B

D2

∆2

nd
⊢ N : A

∆1,∆2

nd
⊢ M N : B

⊸ E

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.8

From the inductive hypothesis we conclude

∆1 ⊢ A ⊸ B

∆2 ⊢ A

Again, there is no clear way forward unless we use the admissibility of cut (and in this case
we also use the admissibility of identity). Once we do so, we obtain the following proof.

IH(D1)

∆1

seq

⊢ A ⊸ B

IH(D2)

∆2

seq

⊢ A B
seq

⊢ B

id

∆2, A ⊸ B
seq

⊢ B

⊸ L

∆1,∆2

seq

⊢ B

cut

Cases for other connectives proceed in a similar fashion. □

Proof: Theorem 2
We now work through why we need the modification in theorem 2. Assume first that we
had not made the modification and instead had just

If ∆
seq

⊢ C then ∆
↑↓
⊢ M ⇐ C

We try to proceed with a proof of ⊗L

D′

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

If we were to apply the inductive hypothesis based on the incorrect theorem statement, we
get

∆, x : A, y : B
↑↓
⊢ M ⇐ C

and get stuck. There are no clear rules we can apply here, and we also arbitrarily labeled
propositions in the context with some variables without any clear reasoning. So instead,
we want some way of translating a sequent calculus context into a natural deduction one,
that allows us to apply rules to what was in the sequent calculus context. To do so we
define the following rules:

·
sub
⊢ ·

∆′
1

sub
⊢ ∆ ∆′

2

↑↓
⊢ M ⇒ A

∆′
1,∆

′
2

sub
⊢ ∆, A

∆′
1 and ∆′

2 are natural deduction contexts, while ∆ is a sequent calculus context. We are
able to go back to our corrected proof statement. Repeated here for convenience.

If ∆
seq

⊢ C then ∆′
↑↓
⊢ M ⇐ C for some M where ∆′ sub⊢ ∆

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.9

Case: ⊗L
D′

∆, A,B ⊢ C

∆, A⊗B ⊢ C
⊗L

While we can no longer apply the induction hypothesis directly, we have some new as-
sumptions to work with.

∆ab

↑↓
⊢ M ⇒ A⊗B (1)

∆′ sub⊢ ∆ (2)

And we want to show

∆ab,∆
′
↑↓
⊢ M ′ ⇐ C

We are now able to apply ⊗E to (1) producing

(1)

∆ab

↑↓
⊢ M ⇒ A⊗B

?

∆′, x : A, y : B
↑↓
⊢ N ⇐ C

∆ab

↑↓
⊢ match M with (x, y) in N ⇐ C

⊗E

We still need a proof of the second premise. Luckily, we can finally apply the inductive

hypothesis! We can do so because from assumption we know ∆′
sub
⊢ ∆, and from identity

rules we have

x : A
↑↓
⊢ x ⇒ A (3)

y : B
↑↓
⊢ y ⇒ B (4)

We complete the proof

(1)

∆ab

↑↓
⊢ M ⇒ A⊗B

IH(D′, (2, 3, 4))

∆′, x : A, y : B
↑↓
⊢ N ⇐ C

∆ab

↑↓
⊢ match M with (x, y) in N ⇐ C

⊗E

Case: ⊸ L
D1

∆1

seq

⊢ A

D2

∆2, B
seq

⊢ C

∆1,∆2, A ⊸ B
seq

⊢ C

⊸ L

Assumptions:

∆′
1

sub
⊢ ∆1 (5)

∆′
2

sub
⊢ ∆2 (6)

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.10

∆ab

↑↓
⊢ M ⇒ A ⊸ B (7)

We begin by applying ⊸ E on our last assumption.

(7)

∆ab

↑↓
⊢ M ⇒ A ⊸ B

IH(D1, (5))

∆′
1

↑↓
⊢ N ⇐ A

∆ab,∆
′
1

↑↓
⊢ M N ⇒ B

⊸ E

(8)

Now we can complete the proof by an application of the inductive hypothesis on D2 and
the derivation (8) as well as assumption 6.

IH(D2, (6, 8))

∆′
1,∆

′
2,∆ab

↑↓
⊢ M ′ ⇐ C

While we don’t know specifically what term we have, we know it is possible to construct
such a term. Other cases proceed similarly. □

Proof: Theorem 3 To prove the final theorem, we need to simultaneously prove one more
theorem, since ⇒ and ⇐ are defined with references to each other. So this proof proceeds
by simultaneous induction on the following two statements, over the derivation.

If ∆
↑↓
⊢ M ⇐ A then ∆

nd
⊢ M : A

If ∆
↑↓
⊢ M ⇒ A then ∆

nd
⊢ M : A

□

This proof should be self evident as a bidirectional proof with the two directions col-
lapsed back into the single judgement : should still be a valid natural deduction proof
(with some possible collapsing of the change of direction rule). We omit this proof and
leave it as an exercise.

6 Curry-Howard Correspondence

Howard [1969] discovered the correspondence between one of the most fundamental mod-
els of computation, the lambda calculus and the implication fragment of natural deduction.
This goes beyond just type checking. The proof reductions we did to demonstrate local
soundness correspond to computational rules in the lambda calculus.

A→B (λx.M)N =⇒ [N/x]M

This correspondence of course extends beyond just the lambda calculus, and encompasses
the full natural deduction system and functional programming.

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.11

7 Full Bidirectional Rules
∆ ⊢ M =⇒ A′ A = A′

∆ ⊢ M ⇐= A
⇒/⇐

∆ ⊢ M ⇐= A

∆ ⊢ (M : A) =⇒ A
⇐/⇒

x : A ⊢ x =⇒ A
hyp

∆, x : A ⊢ e ⇐= B

∆ ⊢ λx.M ⇐= A ⊸ B
⊸I

∆ ⊢ M =⇒ A ⊸ B ∆′ ⊢ N ⇐= A

∆,∆′ ⊢ M N =⇒ B
⊸E

∆ ⊢ Mℓ ⇐= Aℓ (∀ℓ ∈ L)

∆ ⊢ {ℓ ⇒ Mℓ}ℓ∈L ⇐= N{ℓ : Aℓ}ℓ∈L
NI

∆ ⊢ M =⇒ N{ℓ : Aℓ}ℓ∈L (ℓ ∈ L)

∆ ⊢ M.ℓ =⇒ Aℓ

NE

∆ ⊢ e1 ⇐= M ∆′ ⊢ N ⇐= B

∆,∆′ ⊢ (M,N) ⇐= A⊗B
⊗I

∆ ⊢ M =⇒ A⊗B ∆′, x1 : A, x2 : B ⊢ N ⇐= C

∆,∆′ ⊢ match M ((x1, x2) ⇒ N) ⇐= C
⊗E

· ⊢ () ⇐= 1
1I

∆ ⊢ M =⇒ 1 ∆′ ⊢ N ⇐= C

∆,∆′ ⊢ match M (() ⇒ N) ⇐= C
1E

∆ ⊢ M ⇐= Aℓ

∆ ⊢ ℓ(M) ⇐= ⊕{ℓ : Aℓ}ℓ∈L
⊕I

∆ ⊢ M =⇒ ⊕{ℓ : Aℓ}ℓ∈L ∆′, x : Aℓ ⊢ Nℓ ⇐= C (∀ℓ ∈ L)

∆,∆′ ⊢ match M (ℓ(x) ⇒ Nℓ)ℓ∈L ⇐= C
⊕E

LECTURE NOTES DECEMBER 7, 2023

Linear Natural Deduction L23.12

References

Henry DeYoung and Frank Pfenning. Data layout from a type-theoretic perspective.
In 38th Conference on the Mathematical Foundations of Programming Semantics (MFPS
2022). Electronic Notes in Theoretical Informatics and Computer Science 1, 2022. URL
https://arxiv.org/abs/2212.06321v6. Invited paper. Extended version avail-
able at https://arxiv.org/abs/2212.06321v3.pdf.

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-axiomatic sequent calculus.
In Z. Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction (FSCD 2020), pages 29:1–29:22, Paris, France, June 2020. LIPIcs 167.

Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Computing Surveys, 98
(5):1–38, 2022.

Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An an-
notated version appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, 479–490, Academic Press (1980), 1969.

LECTURE NOTES DECEMBER 7, 2023

https://arxiv.org/abs/2212.06321v6
https://arxiv.org/abs/2212.06321v3.pdf

	Introduction
	The Base Rules
	Bidirectional Type Checking
	An example
	System Correctness
	Harmony
	Soundness/Completeness wrt Sequent Calculus

	Curry-Howard Correspondence
	Full Bidirectional Rules

