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THE MATHEMATICS OF SENTENCE STRUCTURE* 
JOACHIM LAMBEK, McGill University 

T h e  definitions [of the parts of speech] are very far from having attained the 
degree of exactitude found in Euclidean geometry. 

-Otto Jespersen, 1924. 

1. Introduction. The aim of this paper is to  obtain an effective rule (or 
algorithm) for distinguishing sentences from nonsentences, which works not 
only for the formal languages of interest to the mathematical logician, but also 
for natural languages such as English, or a t  least for fragments of such lan- 
guages. An attempt to formulate such an algorithm is implicit in the work of 
Ajdukiewicz.t His method, later elaborated by Bar-Hillel [2], depends on a 
kind of arithmetization of the so-called parts of speech, here called syntactic 
types.f 

The present paper begins with a new exposition of the theory of syntactic 
types. I t  is addressed to mathematicians with a t  most an amateur interest in 
linguistics. The choice of sample languages is therefore restricted to English 
and mathematical logic. For the same reason, technical terms have been bor- 
rowed from the field of high school grammar. 

Only a fragmentary treatment of English grammar is presented here. This 
should not be taken too seriously, but is meant to provide familiar illustrations 
for our general methods. The reader should not be surprised if he discovers 
considerable leakage across the line dividing sentences from nonsentences. I t  
is only fair to warn him that some authorities think that such difficulties are in- 
herent in the present methods.$ We take consolation in the words of Sapir: "All 
grammars leak." 

The second part of this paper is concerned with a development of the tech- 
nique of Ajdukiewicz and Bar-Hillel in a mathematical direction. We introduce 
a calculus of types, which is related to the well-known calculus of residuals.** 

* This paper was written while the author held a Summer Research Associateship from the 
National Research Council of Canada. The present discussion of English grammar, in its final 
form, owes much to the careful reading and helpful criticism of earlier versions by Bar-Hillel and 
Chomsky. 

i An English translation of his paper [I] is available in mimeographed form at  the University 
of Chicago. 

$ Historically, these types can be traced back t o  the semantic types attributed by Tarslri [21, 
p. 2151 to E. Husserl and S. Lesniewski. A similar technique for logical systems was developed in- 
dependently by Church [8]. Closely related is also the work by Curry [ll]on functional characters. 
These correspond approximately t o  syntactic types for languages in which functors are always 
written on the left of their arguments. 

Q Chomsky [6; 71 believes that such methods can describe only a small proportion of the 
sentences of a natural language and that other sentences should be obtained from these by certain 
transformations. 

** See [3, xIII]. The calculus presented here is formally identical with a calculus constructed 
by G. D. Findlay and the present author for a discussion of canonical mappings in linear and 
multilinear algebra. 
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The  decision problem for this system is solved affirmatively, following a pro-
cedure first proposed by Gentzen for the intuitionistic propositional calculus.tt 

The methods described here may be applied in several fields. For the teaching 
of English they provide a rigorous version of the traditional activity known as 
diagramming and parsing. For introductory logic courses they offer an effective 
definition of well-formed formulas. For the mechanical translation of languages 
[16],they may help with the syntactic analysis of the input material and indi-
cate how to arrange the output into grammatical sentences of the target lan-
guage. For the construction of an auxiliary language, they tell how to achieve a 
completely regular syntax; this is of special importance when the auxiliary is to 
act as  an intermediate language in mechanical translation. 

2. Syntactic types. While linguists are primarily interested in speech rather 
than in written texts, we shall here confine attention to the latter, if only to 
escape the difficult task of breaking up continuous discourse into discrete words. 
By a word we shall understand a word-form: Such forms as work, works, worked 
and working are different words; but  the word work occurs twice in we work best 
when we like our work, although it functions as a verb in the first place and as a 
noun in the second. T o  describe the function of a word or expression we ascribe 
to i t  a certain syntactic type. This concept will now be defined; i t  corresponds 
approximately to the traditional part of speech. 

We begin by introducing two primitive types: s,  the type of sentences, and 
n, the type of names. For the sake of simplicity, we here restrict sentence to 
denote complete declarative sentences, ruling out requests and questions (as 
well as  most replies, which are usually incomplete). By a name we understand 
primarily a proper name, such as John or Napoleon. But we shall also assign type 
n to all expressions which can occur in any context in which all proper names 
can occur. Thus type n is ascribed to the so-called class-nouns milk, rice, . . . , 
which can occur without article, and to compound expressions such as poor 
John, fresh milk, . .$$ We do not need to assign type n to  the so-called count-
nouns king, chair, . . . , which require an  article, nor to the pronoun he, as  i t  
cannot replace John in poor John works or milk in John likes milk. 

From the primitive types we form compound types, by the recursive defini-
tion: If x and y are types, then so are x/y (read x over y) and y\x (read y under x). 
The meaning of these two kinds of division will be made clear by two examples. 

The  adjective poor modifies the name John from the left, producing the noun-
phrase poor John. We assign to i t  type n/n. 

The  predicate (intransitive verb) works transforms the name John from the 
right into the sentence John works. We assign to i t  type n\s. 

In general, an  expression of type x/y when followed by an expression of type 
See [13; 10, 11; 15, XV]. Curry [ l l ,  appendix] has also observed the close analogy between 

the theory of functional characters and the propositional calculus. 
$1There is a difficulty here: Of course we cannot check all admissible name contexts (whose 

number is infinite) to  see whether poor John can be fitted in. Our assignment of types is tentative 
and subject to  future revision. 
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y produces an expression of type x ,  and so does an expression of type y\x when 
preceded by an expression of type y. We write symbolically 

3. Type list for a fragment of English. We shall illustrate the assignment of 
types to English words by considering a number of sample sentences. 

(1 )  John works 

This remains a sentence if John is replaced by any other name, hence works 
has type n\s. 

(2) (poor John) works 

Here poor John takes the place of the name in ( 1 ); in fact poor John can occur 
in any context in which all names can occur, hence it has type n. Moreover, so 
has #oor Tom,  poor Jane, . . . , thus poor has type n / n .  

(3 )  (John works) here 

The word here transforms ( I ) ,  or any other sentence, into a new sentence, 
hence it has type s\s. The question may be raised whether here can be attached 
to a sentence such as (3) itself. While John works here here is open to stylistic 
objections, we shall consider it grammatically well-formed. 

John (never works) 

(n\s>/(n\s> n\s 
Since John can be replaced by any name here, never works has type n\s, and so 
has never slee#s, . ;hence never has type (n\s)/(n\s). I t  may be argued that (3) 
could also have been grouped John (works here) suggesting the type (n\s)\(n\s) 
for here. I t  will be shown later that every adverbial expression of type s\s also 
has type (n\s)\(n\s). 

(John works) (for Jane) 
n n\s (s\s)/n n 

This indicates that for Jane should have the same type as here in (3), namely s\s, 
and since Jane can be replaced by any other name for has type (s\s)/n. 

(6 )  (John works) (and (Jane rests)) 

This illustrates how and can join two arbitrary sentences to form a new sen-
tence; its type is therefore (s\s)/s. 
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(7) John (likes Jane) 

Here likes Jane has the same type as works in (I) ,  hence likes has type (n\s)/n. 
Similarly we may write John (likes milk) and even milk (likes John). The  latter 
is a grammatical sentence, though open to semantic objections. 

Example (7) raises an important point. Let us group this sentence 

(John likes) Jane 
n n\(s/n) n 

Here John likes has type s/n, hence likes must be given the new type n\(s/n). 
We would regard the two types of likes in (7) and (7') as  in some sense equiva-
lent. Abstracting from this particular situation, we write symbolically 

In practical applications i t  is often tedious to distinguish between equivalent 
types, we then write x\y/z for either side of (11). Further examples of this con-
vention are afforded by the types of never, for and and [see Table I] .  T o  avoid 
multiplication of parentheses, we may also abbreviate (x/y)/z as  x/y/z, and, 
symmetrically, z\(y\x) as  z\y\x. However, parentheses must not be omitted 
in such compounds as  x/(y/z), (z\y)\x, (x/y)\z and z/(y\x). 

Table I compares the syntactic types of the words discussed above with the 
traditional parts of speech and the recent classification of Fries [12]. 

Word Type Part of Speech Fries Class 

(1) works n\s intransitive verb 2C 
(2) poor 4% adjective 3 
(3) here s\s adverb 4 
(4) never n\s/(n\s) adverb 
( 5 )  for s\s/n preposition F 
(6)  and S\S/S conjunction E,J 
( 7 )  likes n\s/n transitive verb 2B 

I t  is fairly clear that  in this manner we can build up a type list for a gradu-
ally increasing portion of English vocabulary. This should be subject to possible 
revision, as  more information becomes available. 

T o  distinguish between different forms such as works and work, usually 
represented by a single dictionary entry, i t  is necessary to allow for more than 
two primitive types. Thus we might assign the type n* to all noun-plurals, 
such as men, chairs, . . . In contrast to examples (I),  (2) ,  (5), (7)  we then have 

men work 
n* n*\s 
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(2*) poor men work 

(5*) John works for men 

(7*) John likes girls, men like Jane, men like girls 

This assignment successfully distinguishes between the forms work and 
works, like and likes, but i t  introduces an undesirable multiplicity of types for 
poor, for, like, and likes. While French distinguishes the forms pauvre and 
pauvres, English fails to make a corresponding distinction. 

A more thorough analysis of the English verb phrase would compel us to 
introduce further primitive types for the infinitive and the two kinds of par- 
ticiples of intransitive verbs. This would lead to some revision of the type 
list embodied in Table I. While giving a more adequate treatment of English 
grammar, such a program would not directly serve the purpose of the present 
paper. 

4. Formal systems. Suppose we have before us a string of words whose types 
are given. Then we can compute the type of the entire expression, provided its 
so-called phrase structure has been made visible by some device such as brackets. 
Consider for example 

John (likes (fresh milk)) 

The indicated computation can also be written in one line: 

In the formal languages studied by logicians, this process offers an effective 
test whether a given grouped string of symbols is a well-formed formula. For in 
these languages'each word (usually consisting of a single sign) has just one pre- 
assigned type, and the use of brackets is obligatory. Let us call expressions with 
built-in brackets formulas; then formulas may be defined recursively: Each 
word is a formula, and if A and B are formulas, so is ( A B ) .  

Brackets are usually omitted when this can be done without introducing 
ambiguity. Brackets are regularly omitted in accordance with Rule (11). Thus 
logicians write 
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rather than 

Allowance being made for this convention, the  sentence structure of a formal- 
ized language is completely determined by its type list. A number of examples 
will illustrate this. 

1. The  propositional calculus, according to  one of its formulations, possesses 
an infinite sequence of propositional variables of type s,  and two signs for nega- 
tion and implication of types s/s and s\s/s respectively. 

The  Polish school of logicians prefer to  write all functors on the left of their 
arguments; i t  is well-known [18, IV] that  all brackets can then be omitted with- 
out introducing ambiguity. The  implication sign in the Polish notation is there- 
fore of type s/s/s. 

2. Boolean algebra, rather redundantly formulated, contains an infinite 
sequerice of individual variables, as well as the signs 0 and 1, all of type n, an 
accent (for complementation) of type n\n, cap and cup of type n\n/n, equality 
and inclusion signs of type n\s/n. 

3. Quine's mathematical logic [I?] ,  into which we here introduce a special 
sign for universal quantification, contains an infinite sequence of individual 
variables of type n,  and signs for joint denial, universal quantification and 
membership of types s\s/s, s/s/n and n\s/n respectively. 

4. The  calculus of lambda conversion due to  Church, with a special sign of 
type n/n/n for application [18, p. 11 I ] ,  contains also an infinite sequerice of 
individual variables xi (i=1, 2 ,  . ) of type n,  together with a parailel se-
quence Axi of type n/n/n. 

5. The  syntactic calculus to be introduced in this paper contains a namber 
of symbols for primitive types of type n, three connectives . , \, / of type n\n/n, 
and the sign -+ of type n\s/n. 

In  the interpretation of formal languages 121, XVIII ,  Section 41 oile usually 
assumes tha t  expressions of type s denote truth values, expressions of type n 
denote members of a given domain of individuals, and expressions of type x/y 
or y\x denote functions from the class of entities denoted by expressions of type 
y into the class of entities denoted by expressions of type x. 

The  above discussion of formal systems is somewhat oversimplified. Thus 
in Quine's formulation of mathematical logic, no special symbol is used for uni- 
versal quantification, and in Church's formulation of the calculus of lambda con- 
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version the sign for application is not written. The syntactic description of these 
languages in terms of types would be more complicated without the special 
symbols introduced here. In some languages it is important to distinguish be- 
tween constants and variables of apparently the same type [see, e.g., I ] .  A 
description in terms of two primitive types is then no longer adequate. 

5. Type computations in English. Suppose we wish to compute the type of 
a string of English words, which are taken from a given type list. We cannot 
proceed quite as  directly as in the formal systems discussed above, for two 
reasons, which we shall pause to discuss. 

First, brackets do not usually occur in English texts, unless we regard 
punctuation as a half-hearted attempt to indicate grouping. Two ways of insert- 
ing brackets into an expression such as the daughter of the woman whom he loved 
may lead to essentially different syntactic resolutions, which may be accom- 
panied by different meanings. 

Secondly, English words usually possess more than one type. We have seen 
some examples of this in Section 3 ;  others are easily found: The  adverbial ex- 
pression today has type s/s or s\s, depending on whether it precedes or follows 
the sentence modified. The word sound may be a noun, an adjective, or a verb, 
either transitive or intransitive, depending on the context. Some "chameleon" 
words possess a type which is systematically ambiguous, allowing them to blend 
into many different contexts. Thus only, of type x/x, can probably modify 
expressions of any type x, and and, of type x\x/x, will join together expressions 
of almost any  type x to form a compound of the same type. 

A mechanical procedure for analyzing English sentences would consist of 
four steps: 

I. Insert brackets in all admissible ways. 

11. T o  each word assign all types permitted by a given finite type list. (We 
ignore for the moment the difficulty arising from words which possess a poten- 
tially infinite number of types, as  do the chameleons and and only). 

111. For each grouping and type assignment compute the type of the total 
expression. 

IV. Select that  method of grouping and that  type assignment which yields 
the desired type s. 

A simple example, in which the problem of grouping does not arise, is 

time flies 
n n* 

n*\s/n n\s 
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Only the assignment 

time $lies 

produces a declarative sentence. This may be contrasted with 

(spiders time flies) without clocks, 
n* n*\s/n* n* s\s/n* n* 

and 

( T I M E  flies (10,000 copies)) to Montreal. 
n n\s/n* n*/n* n* s\s/n n 

6. Pronouns. So far we have confined attention to  the computation Rules 
(I) and (11). We have had one indication that  other rules may play a role: the 
discussion of Example (4) suggests the rule 

T o  give a heuristic introduction for the consideration of further rules, we enter 
into a short discussion of English pronouns. 

he works, he likes Jane 
(8)  

s/(n\s> n\s s/(n\s> n\s/n n 
Since he transforms such expressions as  works, likes Jane, . . . , of type n\s 

into sentences, we assign to i t  type s/(n\s). We could of course enlarge the class 
of names to include pronouns, but  then we should be hard put to explain why 
poor he works and Jane likes he are not sentences. A t  any rate, the assignment of 
type s/(n\s) t o  he is valid, irrespective of whether we regard pronouns as  
names. In fact, by the same argument, the name John also has type s/(n\s). 
This point will be discussed later. 

(9) that's him, Jane likes him, 
4%(s/~)\s  n n\s/n (s/n>\s 

Janeworks for him 
n n\s s\s/n (s/n)\s 

The expressions that's, Jane likes and Jane worksfor all have type s /n ,  hence 
we have ascribed type (s/n)\s to  him. (This assignment is not quite correct:* 
The example Jane likes poor John indicates that  the expression Jane likes poor 
also has type s / n ,  yet Jane likes poor him is not a sentence. Moreover the pres- 
ent assignment does not explain why that's he is a sentence in the speech of some 
people. We shall overlook these defects here.) We observe that  the difference 

* This was kindly pointed out t o  the author by N. Chomsky. 
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in form between he and him is reflected by a difference in type, indicating that  
the former operates from the left, while the latter operates from the right. Sapir 
[19,V I I ]has called these two forms the pre-verbal and post-verbal case of the 
pronoun respectively. 

A difficulty arises when we try to show the sentencehood of 

(10) he likes him ; 
s/ (n\s) n\s/n (s/n)\s 

for 

(s/(n\s>) (n\s/.) ((sln>\s) 

cannot be simplified any further by the Rules ( I )  and (11). We introduce two 
new rules 

(111) ( x l y )  ( y l z )  x/z,  (x\Y) (y\z) x\z.-+ -+ 

We may then assign type 

(s/(n\s)> (n\s/n> -+ s / n  
to he likes and type 

(a\$/%) ((s/n)\s) -+ n\s 

to  likes him,  permitting two equivalent resolutions 

--(he likes) him, he --(likes him). 

s / n  (s/n>\s s/(n\s) n\s 

Rules (111) also allow alternative, though equivalent, resolutions of expressions 
considered earlier; e.g., the sentence 

(John works) for Jane 
n n\s s\s/n n 

can now also be grouped John (works (for Jane) ) ,  where the predicate has type 

(n\s) ((s\s/n)n) -+ (n\s) (s\s) n\s.-+ 

We have seen above that  the name John also has the type of the pronoun 
he. For the same reason, it also has the type of the pronoun him. We symbolize 
the situation by writing 

n -+ s/(n\s), + (s/n)\s 
and more generally 

( I V )  x -+ Y/(X\Y), x -+ (y/x)\x. 

These new rules may actually be required for computations. Suppose that  
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from sample sentences such as books by him bore we arrived a t  the type n*\s/nt 
for by, where n' is short for (s/n)\s. The phrase books by John then requires the 
computation 

which utilizes rules (I), (IV) and (I) in this order. 
While Ajdukiewicz [ I ]  makes use of (111), Rules (IV) suggest that  the 

mathematical apparatus used hitherto may have to be expanded. 

7. Syntactic calculus. By an  expession we shall mean a string of words. Let 
us suppose that  to certain expressions there have been assigned certain primitive 
types. If A has type x and B has type y, we assign to the expression A B  the type 
xy, also written x .y .  We assign type z/y to all expressions A such that  AB has 
type z for any B of type y. We assign type x\z to all expressions B such that  
A B  has type z for any A of type x. We write x-ty to  mean that  any expression 
of type x also has type y. We write x e y  to mean that  x+y and y-x. 

The following rules are now valid: 

then x +z/y then y +x\z 
(dl if x +z/y (dl) ; fy+x \z  

then xy +z then xy -+ z 
(4 if x + y  and y - - t z  

then x +z 
Rules (a), (b), (b'), (e) hold trivially. Rules (c') and (d') are symmetric duals of 
(c) and (d), hence i t  suffices to prove the latter. 

Assume xy-+z, and let A have type x. Then for any B of type y, A B  has type 
z; hence A has type z/y. Thus x+z/y. 

Conversely, assume x+z/y, and let A ,  B have types x, y, respectively; then 
AB has type z. Thus xy+z. 

The system presented above may be viewed abstractly as a formal language 
with a number of primitive type symbols of type n, three connectives ., /, \ 
of type n\n/n, and a relation symbol --t of type n\s/n. If we furthermore regard 
(a),  (b) and (b') as axiom schemes and (c) to (e) a s  rules of inference, we obtain 
a deductive system which may be called syntactic calculus. A number of rules 
are provable in the system; for example, 
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(9  (Z/Y) (Y/x) 3z/x, 
(j)  Z/Y -+ ( z l 4/(Y/x), 
(k)  (X\Y)/~@ x\(Y/~), 
(1) (x/y)/z @ x/(~Y),  
(4 if x 3x' and y 3y' then xy 3x'y', 

(4 if x +x' and y +y' then x/yf 3xf/y. 

Here (f) follows from x y 3 x y  by (c), (g) follows from z/y+z/y by (d), (h) fol 
lows from (g) by (c'), (j)  follows from (i) by (c). Proofs of (i), (k) and (1) are a 
bit longer; we omit them in view of the decision procedure established in Section 
8. Proofs of (m) and (n) are arranged in tree form. 

Proof of (m). 

x'y -+ x'y  x'y' +x'y' 
X 3X'  X' 3(xfy)/y 

(c) y +  y' yf -+ x'\(xfy') (c') 
(e)  (e) 

x + (x'Y)/Y  Y xf\(x'y')-+ 

xy --t x'y (d) x'y -+ x'y' (d') 

xy -+ x'y' (e) 

Proof of (n). 

X/Y' +X/Y' 
( 4

(x/Y')Y' + x 
(c')

Y 3Y'  Y' -+ (x/yf)\x (e) X/Y +X/Y 

Y + (x/yf)\x (x/y) y + x 
(d)x -+ x' 

(d')  (e)
( ~ I Y ' ) Y+x  (X/Y)Y+x' 

( 4   (d) 
X/Y' +X/Y  X/Y --, X'/Y 

(e) 
X/Y' --,x'ly 

The  syntactic theorems (g), (h), (i), and (k) coincide with the Rules (I) 
(IV), (111), and (11), respectively. An illustration of ( j ) ,  or rather its symmetric 
dual, appeared in Section 3, where i t  was pointed out tha t  every sentence- 
modifying adverb is also a predicate-modifying adverb, symbolically, 

Rule (1) is due to  Schijnfinkel [ 20 ] , who observed that  a function of two 
variables may be regarded as  an ordinary function of one variable whose value 
is again an  ordinary function, so t ha t  
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If a, b and f(a, b) have types x, y and z respectively, then f occurs in f(a, b) 
with type z/(xy) and in (fa)b with type (z/y)/x, these two types being equivalent 
by (1). 

8. Decision procedure. Is there an effective method for testing whether a 
sentence x--y of the syntactic calculus is deducible from rules (a) to (e)? This 
is the so-called decision problem for the syntactic calculus. I t  turns out that  the 
decision procedure discovered by Gentzen [IS,XV] for the intuitionistic prop- 
ositional calculus can be adapted for the present purpose. 

Following Gentzen, we define the sequent 

to stand for 

where xl, . . . , x,, y are types. Now let x be any of the possible products of the 
xi obtained from some way of grouping the string ~ 1 x 2  - x,. Then i t  follows 
by repeated application of rules (b), (b'), (m) and (e) that  

Hence the above sequent is also equivalent to the formula x+y. 
Let capitals denote sequences of types, possibly empty sequences. By 

"U,  V" we mean the sequence obtained by juxtaposing U and V; if U is empty 
it means V, and if V is empty i t  means U.The following rules are consequences 
of (a) to (e), provided T, P and Q are not empty. 

(1)  X + X  

(2)  if T, y -+ x (2') i fy,  T-+ x 
then T -+ x/y then T -+ y\x 

(3)  if T-+yand U,x,V-+z (3') ij T +y and U,x, V -+ z 
the% U, x/y, T, V -+ z the% U, T, y\x, V -+ z 

(4)  if U, x, y, v -+ z 
then U, xy, V -+ z 

(5)  i f P - + x a n d Q + y  
then P, Q -+ xy 

Note that  each of Rules (2) to (5) introduces an occurrence of one of the con- 
nectives . , /, \ into the conclusion. 

T o  derive Rules (1) to  (5) from (a) to (e), we observe that  (1) is the same 
as (a),  (2) becomes (c), (2') becomes (c'), (4) is immediate, and (5) becomes (m), 
if the sequences T, U,  V ,P, and Q are replaced by the products of the terms in 
them. I t  remains only to  prove (3), since (3') is its symmetric dual. 
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First let us take the case where U and V are empty sequences. We replace 
T by some product t of its terms. Then (3) takes the form: if t-y and x+z then 
(x/y)t+z. This may be shown thus: 

Next suppose U is empty but  V is not. Replace the latter by a product v of its 
terms. Then (3) takes the form: if t+y and xv-+z then ((x/y)t)v+z. This is 
established thus: 

xv -+ Z 
(4x -+ z/v '--r (as above) 

(x/y)t +z/v (4
((x/y)t)v - z 

Similarly we deal with the remaining two cases in which U is not empty. 
Conversely, we shall deduce rules (a) t o  (e) from (1) to (5), so that  the two 

sets of rules are equivalent. For the moment we assume one additional rule, the 
so-called cut, 

( 6 )  if T - + x a n d  U, x, V+ythen U,T,  V-y 

I t  will appear later (Gentzen's theorem) that  this new rule does not increase 
the set of theorems deducible from (1) to (5). 

Now (a) coincides with ( I ) ,  and (e) is a special case of ( 6 ) , hence i t  suffices 
t o  prove (b), (c) and (d). Proofs are arranged in tree form. 

Proof of (b) 

Proof of (c). 
x-x y + y  

( 5 )  
x ,  Y -XY Y - Y  XY-z 

(2) (3)
x+  (XY)/Y (xY)/Y,Y+Z ( 6 )  

X , Y + Z  
(2) 

x --t Z/Y 
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Proof of (d). 

Let us verify that  we have, in fact, a decision procedure. Given a sequent 
U+x, we attempt to construct a proof in tree form, working from the bottom 
up, using Rules (1) to (5), but not (6). Every upward step eliminates an occur- 
rence of one of the connectives . , /, \, and there are only a finite number of 
ways of making this step. Therefore the total number of proofs that  can be 
attempted is finite. The  sequent U+x is deducible if and only if one of the 
attempted proofs is successful. 

9. Proof of Gentzen's theorem. If T+x and U ,  x, V-ty are both provable 
according to Rules (1) t o  (5), we will show that  U, T, V+y is also provable, so 
that  we may adopt as a new rule of inference the cut 

We prove this by reduction on the degree of the cut,  which is defined thus: Let 
d(x) be the number of separate occurrences of the connectives /, \ in the type a ,  

formula x, and let 

then the degree of the above cut is 

d(T) + d(U) + d(V) + 4 % )+ d(y). 

We will now show that  in any cut, whose premises have been proved without 
cut,  the conclusion is either identical with one of the premises, or else the cut 
can be replaced by one or two such cuts of smaller degree. Since no degree is 
negative, this will establish Gentzen's theorem. We consider seven cases, which 
need not be mutually exclusive. 

Case 1. T 4 x  is an instance of (1); then T = x  and the conclusion coincides 
with the other premise. 

Case 2. U, x, V+y is an  instance of (1) ; then U and V are empty and x =  y. 
Hence the conclusion coincides with the premise T-tx. 

Case 3. The last step in the proof of T-tx uses one of Rules (2) t o  (5), but  
does not introduce the main connective of x. Then T-+x is inferred by Rule (3), 
(3') or  (4) from one or two sequents, one of which has the form Tt-+x with 
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d(T f )  <d(T). The cut 
T 1 - + x  U , x , V - + y  

(6 )U ,  T', V --,y 

has smaller degree than the given cut. Moreover the rule which led from 
T'-+x to T-+x will also lead from U, TI, V 4 x  to U, TI V+x, as may be easily 
verified in the different subcases. 

Case 4. The last step in the proof of U , x ,  V+y uses one of Rules (2 ) to ( 5 ) ,  
but does not introduce the main connective of x. Then U, x ,  V+y is inferred 
from one or two sequents, one of which has the form U', x ,  V'+yl. Since the 
inference introduces an occurrence of one connective, 

d(U1)+ d(V1)+ 4 ~ ' )< d(U)  + d(V)+ 4 y ) .  
Therefore the cut 

T -+ x U', x, V' --,y' 
(6)U', T ,  V' -+ y' 

has smaller degree than the given cut. Moreover, the same rule which led from 
U', x ,  V ' 4 y 1  to U ,  x ,  V+y will lead from U', TI Vr-+y' to U ,  TI V 4 y 1as is 
easily verified in the different subcases. 

Case 5. The last steps in the proofs of both premises introduce the main 
connective of x =x'x" =x's x". We may replace 

T' +x' TI' x" u, x', x", v -+ y 
T', T" +x x ' 'is) u,x'x", V 4 y (4) 

(6)U ,  TI, T", V +  y 

T' + x' U ,  x', x", V +y 
TI' -+ x" U ,  T', x", V +  y (6)  

(6)U ,  T', TI', V + y  

where both new cuts have smaller degree. 

Case 6. The last steps in the proofs of both premises introduce the main con- 
nective of x=xl/x" .  We may replace 

T ,  x" +x' V' 4 XI' U , X I ,  V" +y 
T +xl/x" (2)  U ,  x'/xl', V',  V" +y (3) 

,*, 

U ,  T ,  V',  V" +y (6) 
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where both new cuts have smaller degree. 

Case 7. This last case is like Case 6, except that  x=xl'\x', and is treated 
symmetrically. 

10. Algebraic remarks. The following remarks may be of mathematical inter- 
est. If we write = instead of &, the deductive system studied here becomes a 
partially ordered system which resembles a residuated lattice [3, XIII] .  I t  
may be mapped homomorphically onto a free group by mapping each element 
x onto its congruence class modulo =, where x = y  means that  there exists a 
sequence x =XI, . , xn=y (n 2 I),  such that  xi-+xi+l or x;+l+x; (1 si<n).If 
this group is abelianized, we obtain something very much like the group of 
dimension symbols, which plays an important role in the grammar of physics. 

I t  turns out that  x = y  if and only if 

(1) x-t  and y- t  for svmet, 
or equivalently 

(2) z -+ x and z -+y for some z .  

This result is easily proved by induction on the length of the given sequence 
connecting x with y, once the equivalence of (1) and (2) has been established. 

Assuming (I),  we put  

and verify (2) by computation; assuming (2), we put  

and verify (1) by computation. 
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VARIABLE MATRIX SUBSTITUTION IN ALGEBRAIC 
CRYPTOGRAPHY 

JACK LEVINE, North Carolina State College 

1. Introduction. The use of algebraic methods in cryptography is well-known 
through two important papers by Hill [I], [2]. Briefly, the basic idea can be 
formulated in the following way. Consider the system of simultaneous congru-
ences 

n 

yi = adjxj (mod 26)) i =  l , . - . , n )  
j- 1 

where the constants a;* are chosen so that the determinant I aijl is prime to  26. 
By means of (1.1) the set of n variables (xl, . . , x,) is transformed to the 
set (yl, . . . , y,) and, conversely, the set (yl, , y,) will be transformed to  
the unique set (xl, . . . , xn) by means of the inverse transformation which 
exists by the assumption on I ai j l .  

T o  each of the 26 letters of the alphabet we associate an integer from the set 
0, 1, . . . , 25, so that no two letters correspond to the same integer. For sim-
plicity we illustrate with the correspondence (used throughout this paper) 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z  
(1.2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 

Now to encipher a message, or plain text, by means of (1.1), first replace 
each letter of the text by means of its numerical equivalent, using for illustra-
tion, (1.2). Then divide the resulting sequence of numbers into groups contain-
ing n numbers each. Call these 

(1.3) piipia ' ' ' pin P21p22 ' ' ' P2n ' ' ' pilpi2 ' ' ' pin ' ' ' . 
Each group of (1.3) is then used in (1.1) for xl . . . x,, and the transformed set 


