Final Exam

15-816 Substructural Logics
Frank Pfenning

December 12, 2016

Name: Sample Solution Andrew ID: fp

Instructions

e This exam is closed-book, closed-notes.
e You have 3 hours to complete the exam.

e There are 6 problems.

Ordered Call by Cost True

Logic Focusing Push Value Semantics SSOs Concurrency

Prob1 | Prob2 | Prob3 | Prob4 | Prob5 | Prob 6 || Total

Score 45 45 60 40 40 20 250

Max 45 45 60 40 40 20 250




Problem 1: Ordered Logic (45 pts)

There is a “quick check” whether a sequent in the fragment of ordered logic with A\ B and Ae B
may be provable by translating the sequent into the free group over its propositional variables and
checking whether the antecedents and succedent denote the same group element.

Recall that a group can be defined by a binary operator a - b, a unit element e, and an inverse
operator a~! satisfying the laws on the left, with some additional useful properties on the right.

(a-b)-c=a-(b-c) (a )t
a-e=a=e-a “l=¢
a-at=e=a1l-a (a-b)t=b1.a!
The interpretation of propositions and antecedents is defined by
[[p]] =D for atoms or propositional variables p
[AeB] = [4]-1B]
[A \ Bl = [A]"-[B]
[] = e
[ 9] =[] [Q]

Then for any A such that 2 - A we have [2] = [A]. For example, -a \ (b\ (bea)) and
[a\ (b\ (bea)]=a'-[b\(bea)]=at b ' -[bea]=a' b - ba=at a=ec=]]

Task 1 (5 pts). Apply this test to check whether
((@\b)\ (a\a))\ ek (a\a)\((b\a)\¢)

might be provable. Do not try to prove or refute this formula.

[((a\ D)\ (a\a))\] [(a\a)\ ((b\a)\ )]
= [(@\b)\ (@a\a)] " -c = fa\al™" [0\ a)\ ]
= ([a\b]""-[a\a])"-c = (@'-a) " b\a e
= (@) @) = ()
= (bta-at-a)7t-c = alb-c
= al-b-c
Yes, they are equal! The sequent may be provable.

Task 2 (5 pts). Find two propositions A and By consisting only of propositional variables and the
connective \ such that Ay I By passes the test but is not provable.

Ay = a\a

By = b\ b



Task 3 (20 pts). Fill in some cases in the proof that 2 - A implies [Q] = [A].

Proof: By induction of the deduction of Q2 - A.
Case: Ruleid

Ara
Then [Q] = [A4] = [4].
Case: Rule \R
AQFB \R
Q- A\ B

Then [A] - [2] = [B] by induction hypothesis. Multiply both sides by [A] ' to obtain
[Q] =[A]" - [B] = [4\ B]

Case: Rule \L

VFA Q BQrFC
QLY (A\B) QpF C

Then [Q] = [A] and [Q.] - [B] - [©2r] = [C] by induction hypothesis.
Now [2.] - [T - (TA] " - [B]) - [2r] = [92.] - [A] - [A] " - [B] - [2] = [C]-




Task 4 (10 pts). Extend the translation to encompass A / B, A o B and 1 so that the test remains
valid. You do not need to extend the proof.

[A/B] = [A]-[B]
[AoB] = [B]-[A]
[1] = e

Task 5 (5 pts). Explain how to adapt this test to multiplicative linear logic with connectives A — B,
A ® B, and 1, and provide the interpretation of these connectives below.

We add commutativity to the laws, a - b = b - a, so that the interpretation is into the free
Abelian group over the propositional variables.

[A—B] = [4]"-[5]

[AeB] = [A]-[B]

1] = e



Problem 2: Focusing (45 pts)

Consider the sentence John never works for Jane where we attached the following types to the sen-
tence constituents:

John never works for Jane

ﬁ (n\s)/(n\s) n‘\s (s\s)/n n Fs

Task 1 (5 pts). Assume n is positive and s is negative. Polarize the following definitions by
inserting the minimal number of shifts.

advc = (n" \ s7 ) / L(n" \ s7)
itvm = nt \ s
prep” = (ls™ \ s ) / n"

Task 2 (20 pts). Provide all the synthetic rules of inference that arise from focusing on propositions
in the sequent that represents parsing John never works for Jane as a sentence.

n*lel—s* R ngszr - 9111922:{0:57

D — — - id id™
Q91 nt \ i Qo [’II,JF] Qq1 [57] Qoo HC
O L o] Q[ \ 5] Qs C V= e
21 n S 1N S 292 s—
JR; Q2 = Qa1 Q2 RSt ADV
Qp [adv ] Q- C ntadv™ QF s~
Mo =nt Q1 =Qy =0 =5"
— id" id™
Qo [TLJr] Q11 [,5'7] O EC
\R; Q1 = Q1 Qo — TV
O [itv ] Q- C ntitvT T

Qo s~ Qi = Qo = C =5~
R

id™

= nt Qo [isf] Q11 [Si] Qoo HC
idt \R; Q1 = Q1 Q1o
Qo1 F [nT] Q [Is™\s7] Q- C QF s—
/R; Q2 = Q1 Qo PREP
Q [prep | Qo - C Qprep” nt ks~




Task 3 (20 pts). Provide all the possible complete or partial failing proofs ending in
n adv itv prep n F s

using only the synthetic rules of inference. We think of proof construction proceeding upwards,
from the conclusion. Write out the (partial) proof below and fill in:

e There are 2 different complete proofs.

e There are 0 failing incomplete proofs.

Initially, only two rules apply: ADV or PREP. After that first step, all the steps are forced.
We only count situations where a rule can proceed at least for one step, which is why our
answer above is 0 (there are other correct answers, depending on the more precise definition).

— 1TV — ITV
nitv ks nitvk s
; PREP ————— ADV
nitv prep n k= s nadvitv ks
- ADV - PREP
n adv itv prepn F s n adv itv prepn F s




Problem 3: Call-by-Push-Value (60 pts)
In this problem we explore call-by-push-value (CBPV)

Task 1 (5 pts). In CBPYV,

computations are (circle one) (i) positive or (ii) negative NEGATIVE

values are (circle one) (i) positive or (ii) negative POSITIVE

Task 2 (20 pts). Annotate the given rules with their terms in CBPV on the right and give the types
A and B their correct polarity. Use M, N to stand for computations and V, W for values.

I'A-B oAt - M : B~
—— ] —1
I'+tA— B

F'FXe.M: AT —- B~

I'-A—-B T'HA 'FM:AT"—> B~ TH+HV:At
—F —

I'+B I'-MV:B~
T'+A U '-M: A"
'rlA I' - thunk M : JA~
TklA I'tVv:]JA™

JE B
I'HA I'tforce V: A~

Task 3 (5 pts). Give the local reduction(s) for —1 followed by —FE. You only need to express it on
the proof terms, not the deductions.

Ae. M)V — [V/z|M

Task 4 (5 pts). Give the local reduction(s) for | I followed | E. You only need to express it on the
proof terms, not the deductions.

force (thunk M) — M




Task 5 (5 pts). Polarize the following two types using only |, also assigning polarities to type
variables A, B, and C in each case.

Other polarizations are possible; here is one where all propositional variables are negative.
A= - ({B” — A7)

LA™ = (UB - 07 )) = (J(4A™ = B~ ) = (LA~ - ¢ ))

Task 6 (5 pts). We write E for the translation of a simply-typed term E into CBPV. Insert ap-
propriate constructs so that the following simply-typed term is well-typed under CBPV and your
polarization.

K : A— (B—A)
= Ar. \y. x

K = JXx. \y.forcex

Task 7 (5 pts). Insert appropriate constructs so that the following simply-typed terms well-typed
under CBPV and your polarization

S ¢+ A-B—-0C)—»(A—=-B)—-(A—=0))
= Az. Ay. Az (z 2) (y 2)
S = Az.)y. Az. ((force x) 2) (thunk ((force y) 2))

Task 8 (10 pts). Compute the terminal computation or value corresponding to the properly polar-
ized form of (S K) K by applying local reductions anywhere in the term. Show the result of each
reduction.

(SK)K = S (thunk K) (thunk K)
—  Ay. Az. ((force (thunk K)) 2) (thunk ((force y) z))
—  Az. ((force (thunk K)) 2) (thunk ((force (thunk K)) z))
at this point we have a terminal computation, but to see what we have . ..
Mz. (K z) (thunk (K 2))

Az. (\y. force ) (thunk (K 2))

Ll

Az. force z




Problem 4: Cost Semantics (40 pts)

In this problem with consider the ordered substructural operational semantics for the subsingleton
fragment of ordered logic with @ and 1

Task 1 (20 pts). Complete the following rules to describe asynchronous communication. The first
two rules have been filled in for you.

proc(P | Q) proc(<+)
proc(P) proc(Q)

Computation rules for & (process expressions R.lj; ; P and (caseL (I; = Qi)icr))

proc(R.l; ; P) msg(R.l; ; ) proc(casel (I; = Qi)icr)

proc(P) msg(R.l; ; <) proc(Qr)

Rules for 1 (process expressions closeR and waitL ; Q)

proc(closeR) msg(closeR) proc(waitlL ; Q)

msg(closeR) proc(Q)




Task 2 (20 pts). Instrument the operational semantics to count the total number of processes that
are spawned. Assume we start with the configuration proc(1, P) for - - P : 1. If we terminate with
the configuration msg(k, closeR) then k should be the total number of processes spawned during
the computation. Do not count any messages. Feel free to substitute, add, or delete rules.

proc(k, P | Q) msg(k, P)  proc(k, <)
spawn ; forward ™
proc(1, P) proc(k,Q) msg(k’' + k, P)
proc(k,R.ly ; P) msg(0, R.lx) proc(k,casel (I; = Q;)icr)
Ds or

proc(k, P) msg(0,R.l; ; ) proc(k, Q)

proc(k, closeR) msg(k, closeR)  proc(k’, waitL ; Q)

— 1s 1r

msg(k, closeR) proc(k + k', Q)

If we had negative connectives, we should also have

proc(k’,«+) msg(k, P)
msg(k' + k, P)

forward ™

but there are other ways to solve the counting problem for forwarding.

10



Problem 5: Substructural Operational Semantics (40 pts)

Consider the typing rules for the constructs in call-by-push-value associated with $A™.

r-v:A*" ! F'EM: 1A T,x:ATFN:C™

1E
I'FreturnV : tAT I'Fletvalz = MinN :C~

We present the evaluation rules in the form of an ordered substructural operational semantics,
which is based on three predicates eval(M), retn(T"), and cont(K), where M is a computation, T  is a
terminal computation, and K is a continuation with a “hole” indicated by an underscore.

ev_letval : eval(letvalz = MinN)\ 1 (eval(M) e cont(letvalz = _in N))

ev_return : eval(returnV) \ 1 retn(return V)

rt_return : retn(return V') e cont(letvalz = _in N) \ 1 eval([V/z]N)

Task 1 (20 pts). Re-express the ordered specification in a linear framework such as CLF by adding
destinations.

ev_letval : eval(letvalz = MinN, D)
—o 1 (3d’. eval(M,d') ® cont(d',letvalx = _in N, D))
ev_return : eval(return V, D’) —o 1 retn(return V, D’)

rt_return : retn(return V, D') @ cont(D’,letvalz = _in N, D) — 1 eval([V/z|N, D)

11



Task 2 (20 pts). Now we would like to introduce some parallelism into the evaluation of let val x =
M in N. Informally, we evaluate M and N concurrently, with a new destination d for x acting as a
form of channel connecting M and N.

In the specification, you may need a different form of continuation, and revise and possibly
add some rules. Introduce a new persistent predicate bind(V, d) which states that the value of the
destination d is permanently the value V.

We introduce a val d, a value that refers to a destination d. In the rule for evaluation of letval
we substitute a new val d’ it for the value variable z.

ev_letval : eval(letvalz = MinN,D) — 1 (3d'.eval(M,d') @ eval([val d'/z] N, D))
ev_return : eval(return V, D") — 71 bind(V, D’)

Now we need to update the rules that depend on the shape of a value to dereference in case
they see a value destination. Here is one possible way to accomplish this, using the example
of the force construct.

ev_force :eval(force (thunk M), D) — 1 eval(M, D)
ev_forceval : eval(force (val D’), D) ® bind(V, D) —o 7 eval(force V, D)

12



Problem 6: True Concurrency (20 pts)

Task 1 (10 pts). What is true concurrency?

We say a semantics is truly concurrent if there is no way to observe the relative order of
independent events.

Task 2 (10 pts). How is true concurrency manifest in the Concurrent Logical Framework (CLF)?

In CLF, steps in the computation are represented by p = R, where R is a term consuming
antecedents describing the state of the computation, and p is a pattern binding variables that
name new components of the state. Two events p = R and ¢ = S are independent if no variables
in p are used in S and no variables in ¢ are used in R. Then the expressions

(letvalp=Rinletvalg=Sin E) = (letvalg= Sinletvalp=Rin E)

are equal and therefore indistinguishable in the framework.

13



Appendix: Some Inference Rules

Propositions A,B,C := p|A®B|A&B|1
| A/B|B\A|AeB|AoB

Judgmental rules

id cut
AF A QL QQpkC 4
Propositional rules
QFA\B QL (A\B)QrFC
OAFB IR Q+A Q. BQ.FC
QFB/A QL (B/A)QYQrEC
QFA QFB QL ABQrEC I
[
QQII—AOB QL(AOB)QRI—C

QFB QFA
(0]

QQ'FAoB

QFA QL AQrEC

UBAQEC
Q1 (AoB) QrFC

Qp Qrt-C

— 1R — = 1L
-1 Qr1Qrt-C

QF A QFB QL AQrEC QL BQrE-C
T2 oR —— 2 4R, oL
OF Ae B OF Ao B O (A® B) QptC
OFA QFB Qp AQrEC 2 Q. BQrEC ol
QOFAgB Or (A&B)Qr-C ' QL (A&B)QrkC

14



Types A B,C

Processes P,(Q

Judgmental Rules

QF P, = (x:A) Qp (z

©{li + Aitier | &{li : Aitier | 1
A/B|B\A|A.B|AOB

QLQQRF(z%PT7Q1)

Propositional Rules
QF P (x:Ar) (kel)

QF (z.dg ; P) = (z: @{li: A Yier)

QF P (2 Ay)

(Viel)

i (2:0)

Qp (2:4;) Qr F Q; = (2:C)

Ty identity /forward
T4 P Qy cut/spawn
xlp; P|casex (I; = Qi)icr D, &
close x | wait z ; @ 1
sendxy; Ply<«reevz;Q, /,\,0,0
A) QrF Qi (2:0)
cut id

yAbx <y (x:A)

(Viel)

Qp, ($5@{li3Ai}ieI) Qgr b casex (lz = Qi)ie] i (ZC)
Qp (z:Ag) QrF P (2:C)

&R
Ot casex (lz = Pi)ie[ i (x&{llAl}lEI))

-+ close x :: (z:1)

Q (y:A) - Py :: (:B)

(kel

Qr (z: &{li:Ai}ier) Qr F (2 5 Q) 2 (2:C) &

QL Qp - Q = (2:C)

1R

1L

Qp (2:1) Qp F (wait z ; Q) =2 (2:C)

QF (y+recva; Py) : (x:B ] A)

(y:A) QF Py =2 (x:B)

/R

Qp (2:B) Qr - Q == (2:0)

QF (y < recvz; Py) 2 (x:A\ B)

QF P:: (:B)

\R

Qp (x:B/ A) (w:A) Qr - (send z w ; Q) :: (2:C)

Qp (2:B) Qr - Q == (2:0)

*

Qp (w:A) (x:A\ B) Qr I (send z w ; Q) :: (2:C)
Qr (y:A) (:B) Qr F Qy == (2:C)

(w:A) QF (send 2w ; P) :: (x:A e B)

QF P (x:B)

R

Qp (2:AeB) Qrt (y ¢ recv z ; Q) :: (2:0)

Qp (x:B) (y:A4) Qr F Qy =t (2:C)

R
Q (w:A)F (send z w; P) :: (z:Ao B) °

Computation Rules

cmp?

proc(w, Py,) proc(z, Qw)

proc(z, .y, ; P) proc(z,case z (I; =

proc(z, x + y)

proc(z, close x)

Qp (x:AeB) Qrt (y +recv x5 Q) = (2:C)

proc(z, wait x ; Q)

pI’OC(Jf, P) pI’OC(Z, Qk)

proc(x,y < recv z ; Py)

proc(z,send z w ; Q)

SL

&C

r=y fwd proc(z, Q) 1e
Qi)ier) proc(z, case  (l; = P;)icr) proc(z,z.ly 5 Q)
- proc(z,Q) proc(z, Py)
proc(z,send z w ; P) proc(z,y < recv x ; Qy)
/C\C

proc(z, P,) proc(z, Q)

proc(P)
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