
Final Exam

15-816 Substructural Logics
Frank Pfenning

December 12, 2016

Name: Sample Solution Andrew ID: fp

Instructions

• This exam is closed-book, closed-notes.

• You have 3 hours to complete the exam.

• There are 6 problems.

Ordered Call by Cost True

Logic Focusing Push Value Semantics SSOS Concurrency

Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Total

Score 45 45 60 40 40 20 250

Max 45 45 60 40 40 20 250

1

Problem 1: Ordered Logic (45 pts)

There is a “quick check” whether a sequent in the fragment of ordered logic with A \B and A •B
may be provable by translating the sequent into the free group over its propositional variables and
checking whether the antecedents and succedent denote the same group element.

Recall that a group can be defined by a binary operator a · b, a unit element e, and an inverse
operator a−1 satisfying the laws on the left, with some additional useful properties on the right.

(a · b) · c = a · (b · c) (a−1)−1 = a
a · e = a = e · a e−1 = e
a · a−1 = e = a−1 · a (a · b)−1 = b−1 · a−1

The interpretation of propositions and antecedents is defined by

[[p]] = p for atoms or propositional variables p
[[A •B]] = [[A]] · [[B]]

[[A \B]] = [[A]]−1 · [[B]]

[[]] = e
[[Ω1 Ω2]] = [[Ω1]] · [[Ω2]]

Then for any A such that Ω ` A we have [[Ω]] = [[A]]. For example, ` a \ (b \ (b • a)) and

[[a \ (b \ (b • a))]] = a−1 · [[b \ (b • a)]] = a−1 · b−1 · [[b • a]] = a−1 · b−1 · b · a = a−1 · a = e = [[]]

Task 1 (5 pts). Apply this test to check whether

((a \ b) \ (a \ a)) \ c ` (a \ a) \ ((b \ a) \ c)

might be provable. Do not try to prove or refute this formula.

[[((a \ b) \ (a \ a)) \ c]] [[(a \ a) \ ((b \ a) \ c)]]
= [[(a \ b) \ (a \ a)]]−1 · c = [[a \ a]]−1 · [[(b \ a) \ c]]
= ([[a \ b]]−1 · [[a \ a]])−1 · c = (a−1 · a)−1 · [[b \ a]]−1 · c
= ((a−1 · b)−1 · (a−1 · a))−1 · c = (b−1 · a)−1 · c
= (b−1 · a · a−1 · a)−1 · c = a−1 · b · c
= a−1 · b · c

Yes, they are equal! The sequent may be provable.

Task 2 (5 pts). Find two propositions A0 and B0 consisting only of propositional variables and the
connective \ such that A0 ` B0 passes the test but is not provable.

A0 = a \ a

B0 = b \ b

2

Task 3 (20 pts). Fill in some cases in the proof that Ω ` A implies [[Ω]] = [[A]].

Proof: By induction of the deduction of Ω ` A.

Case: Rule id

A ` A
id

Then [[Ω]] = [[A]] = [[A]].

Case: Rule \R

A Ω ` B
Ω ` A \B

\R

Then [[A]] · [[Ω]] = [[B]] by induction hypothesis. Multiply both sides by [[A]]−1 to obtain
[[Ω]] = [[A]]−1 · [[B]] = [[A \B]]

Case: Rule \L

Ω′ ` A ΩL B ΩR ` C
ΩL Ω′ (A \B) ΩR ` C

\L

Then [[Ω′]] = [[A]] and [[ΩL]] · [[B]] · [[ΩR]] = [[C]] by induction hypothesis.
Now [[ΩL]] · [[Ω′]] · ([[A]]−1 · [[B]]) · [[ΩR]] = [[ΩL]] · [[A]] · [[A]]−1 · [[B]] · [[ΩR]] = [[C]].

3

Task 4 (10 pts). Extend the translation to encompass A / B, A ◦ B and 1 so that the test remains
valid. You do not need to extend the proof.

[[A / B]] = [[A]] · [[B]]−1

[[A ◦B]] = [[B]] · [[A]]

[[1]] = e

Task 5 (5 pts). Explain how to adapt this test to multiplicative linear logic with connectives A(B,
A⊗B, and 1, and provide the interpretation of these connectives below.

We add commutativity to the laws, a · b = b · a, so that the interpretation is into the free
Abelian group over the propositional variables.

[[A(B]] = [[A]]−1 · [[B]]

[[A⊗B]] = [[A]] · [[B]]

[[1]] = e

4

Problem 2: Focusing (45 pts)

Consider the sentence John never works for Jane where we attached the following types to the sen-
tence constituents:

John never works for Jane
: : : : :
n (n \ s) / (n \ s) n \ s (s \ s) / n n ` s

Task 1 (5 pts). Assume n is positive and s is negative. Polarize the following definitions by
inserting the minimal number of shifts.

adv− = (n+ \ s−) / ↓ (n+ \ s−)

itv− = n+ \ s−

prep− = (↓ s− \ s−) / n+

Task 2 (20 pts). Provide all the synthetic rules of inference that arise from focusing on propositions
in the sequent that represents parsing John never works for Jane as a sentence.

n+ Ω21 ` s−

Ω21 ` n+ \ s−
\R

Ω21 ` [↓(n+ \ s−)]
↓R

Ω12 = n+

Ω12 ` [n+]
id+

Ω11 = Ω22 = ·;C = s−

Ω11 [s−] Ω22 ` C
id−

Ω1 [n+ \ s−] Ω22 ` C
\R; Ω1 = Ω11 Ω12

Ω1 [adv−] Ω2 ` C
/R; Ω2 = Ω21 Ω22

n+ Ω ` s−

n+ adv− Ω ` s−
ADV

Ω12 = n+

Ω12 ` [n+]
id+

Ω11 = Ω2 = ·;C = s−

Ω11 [s−] Ω2 ` C
id−

Ω1 [itv−] Ω2 ` C
\R; Ω1 = Ω11 Ω12

n+ itv− ` s−
ITV

Ω21 = n+

Ω21 ` [n+]
id+

Ω12 ` s−

Ω12 ` [↓s−]
↓R

Ω11 = Ω22 = ·;C = s−

Ω11 [s−] Ω22 ` C
id−

Ω1 [↓s− \ s−] Ω22 ` C
\R; Ω1 = Ω11 Ω12

Ω1 [prep−] Ω2 ` C
/R; Ω2 = Ω21 Ω22

Ω ` s−

Ω prep− n+ ` s−
PREP

5

Task 3 (20 pts). Provide all the possible complete or partial failing proofs ending in

n adv itv prep n ` s

using only the synthetic rules of inference. We think of proof construction proceeding upwards,
from the conclusion. Write out the (partial) proof below and fill in:

• There are 2 different complete proofs.

• There are 0 failing incomplete proofs.

Initially, only two rules apply: ADV or PREP. After that first step, all the steps are forced.
We only count situations where a rule can proceed at least for one step, which is why our
answer above is 0 (there are other correct answers, depending on the more precise definition).

n itv ` s
ITV

n itv prep n ` s
PREP

n adv itv prep n ` s
ADV

n itv ` s
ITV

n adv itv ` s
ADV

n adv itv prep n ` s
PREP

6

Problem 3: Call-by-Push-Value (60 pts)

In this problem we explore call-by-push-value (CBPV)

Task 1 (5 pts). In CBPV,

computations are (circle one) (i) positive or (ii) negative NEGATIVE

values are (circle one) (i) positive or (ii) negative POSITIVE

Task 2 (20 pts). Annotate the given rules with their terms in CBPV on the right and give the types
A and B their correct polarity. Use M,N to stand for computations and V,W for values.

Γ, A ` B
Γ ` A→ B

→I
Γ, x:A+ `M : B−

Γ ` λx.M : A+ → B−
→I

Γ ` A→ B Γ ` A
Γ ` B

→E
Γ `M : A+ → B− Γ ` V : A+

Γ `M V : B−
→E

Γ ` A
Γ ` ↓A

↓I
Γ `M : A−

Γ ` thunkM : ↓A−
↓I

Γ ` ↓A
Γ ` A

↓E
Γ ` V : ↓A−

Γ ` force V : A−
↓E

Task 3 (5 pts). Give the local reduction(s) for→I followed by→E. You only need to express it on
the proof terms, not the deductions.

(λx.M)V −→ [V/x]M

Task 4 (5 pts). Give the local reduction(s) for ↓I followed ↓E. You only need to express it on the
proof terms, not the deductions.

force (thunkM) −→M

7

Task 5 (5 pts). Polarize the following two types using only ↓, also assigning polarities to type
variables A, B, and C in each case.

Other polarizations are possible; here is one where all propositional variables are negative.

↓ A− → (↓ B− → A−)

↓ (↓ A− → (↓ B− → C−)) → (↓ (↓ A− → B−) → (↓ A− → C−))

Task 6 (5 pts). We write E for the translation of a simply-typed term E into CBPV. Insert ap-
propriate constructs so that the following simply-typed term is well-typed under CBPV and your
polarization.

K : A→ (B → A)
= λx. λy. x

K = λx. λy. force x

Task 7 (5 pts). Insert appropriate constructs so that the following simply-typed terms well-typed
under CBPV and your polarization

S : (A→ (B → C))→ ((A→ B)→ (A→ C))
= λx. λy. λz. (x z) (y z)

S = λx. λy. λz. ((force x) z) (thunk ((force y) z))

Task 8 (10 pts). Compute the terminal computation or value corresponding to the properly polar-
ized form of (S K) K by applying local reductions anywhere in the term. Show the result of each
reduction.

(S K) K = S (thunk K) (thunk K)

−→ λy. λz. ((force (thunk K)) z) (thunk ((force y) z))

−→ λz. ((force (thunk K)) z) (thunk ((force (thunk K)) z))

at this point we have a terminal computation, but to see what we have . . .

−→ λz. (K z) (thunk (K z))

−→ λz. (λy. force z) (thunk (K z))

−→ λz. force z

8

Problem 4: Cost Semantics (40 pts)

In this problem with consider the ordered substructural operational semantics for the subsingleton
fragment of ordered logic with ⊕ and 1

Task 1 (20 pts). Complete the following rules to describe asynchronous communication. The first
two rules have been filled in for you.

proc(P | Q)

proc(P) proc(Q)

proc(↔)

·

Computation rules for ⊕ (process expressions R.lk ; P and (caseL (li ⇒ Qi)i∈I))

proc(R.lk ; P)

proc(P) msg(R.lk ;↔)

msg(R.lk ;↔) proc(caseL (li ⇒ Qi)i∈I)

proc(Qk)

Rules for 1 (process expressions closeR and waitL ; Q)

proc(closeR)

msg(closeR)

msg(closeR) proc(waitL ; Q)

proc(Q)

9

Task 2 (20 pts). Instrument the operational semantics to count the total number of processes that
are spawned. Assume we start with the configuration proc(1, P) for · ` P : 1. If we terminate with
the configuration msg(k, closeR) then k should be the total number of processes spawned during
the computation. Do not count any messages. Feel free to substitute, add, or delete rules.

proc(k, P | Q)

proc(1, P) proc(k,Q)
spawn

msg(k′, P) proc(k,↔)

msg(k′ + k, P)
forward+

proc(k,R.lk ; P)

proc(k, P) msg(0,R.lk ;↔)
⊕s

msg(0,R.lk) proc(k, caseL (li ⇒ Qi)i∈I)

proc(k,Qk)
⊕r

proc(k, closeR)

msg(k, closeR)
1s

msg(k, closeR) proc(k′,waitL ; Q)

proc(k + k′, Q)
1r

If we had negative connectives, we should also have

proc(k′,↔) msg(k, P)

msg(k′ + k, P)
forward−

but there are other ways to solve the counting problem for forwarding.

10

Problem 5: Substructural Operational Semantics (40 pts)

Consider the typing rules for the constructs in call-by-push-value associated with ↑A+.

Γ ` V : A+

Γ ` returnV : ↑A+
↑I

Γ `M : ↑A+ Γ, x:A+ ` N : C−

Γ ` let valx = M inN : C−
↑E

We present the evaluation rules in the form of an ordered substructural operational semantics,
which is based on three predicates eval(M), retn(T), and cont(K), where M is a computation, T is a
terminal computation, and K is a continuation with a “hole” indicated by an underscore.

ev letval : eval(let valx = M inN) \ ↑ (eval(M) • cont(let valx = _ inN))

ev return : eval(returnV) \ ↑ retn(returnV)

rt return : retn(returnV) • cont(let valx = _ inN) \ ↑ eval([V/x]N)

Task 1 (20 pts). Re-express the ordered specification in a linear framework such as CLF by adding
destinations.

ev letval : eval(let valx = M inN,D)

(↑ (∃d′. eval(M,d′)⊗ cont(d′, let valx = _ inN,D))

ev return : eval(return V,D′) (↑ retn(return V,D′)

rt return : retn(return V,D′)⊗ cont(D′, let valx = _ inN,D) (↑ eval([V/x]N,D)

11

Task 2 (20 pts). Now we would like to introduce some parallelism into the evaluation of let valx =
M in N . Informally, we evaluate M and N concurrently, with a new destination d for x acting as a
form of channel connecting M and N .

In the specification, you may need a different form of continuation, and revise and possibly
add some rules. Introduce a new persistent predicate bind(V, d) which states that the value of the
destination d is permanently the value V .

We introduce a val d, a value that refers to a destination d. In the rule for evaluation of letval
we substitute a new val d′ it for the value variable x.

ev letval : eval(let valx = M inN,D) (↑ (∃d′. eval(M,d′)⊗ eval([val d′/x]N,D))

ev return : eval(return V,D′) (↑ bind(V,D′)

Now we need to update the rules that depend on the shape of a value to dereference in case
they see a value destination. Here is one possible way to accomplish this, using the example
of the force construct.

ev force : eval(force (thunkM), D) (↑ eval(M,D)

ev force val : eval(force (valD′), D)⊗ bind(V,D′) (↑ eval(force V,D)

12

Problem 6: True Concurrency (20 pts)

Task 1 (10 pts). What is true concurrency?

We say a semantics is truly concurrent if there is no way to observe the relative order of
independent events.

Task 2 (10 pts). How is true concurrency manifest in the Concurrent Logical Framework (CLF)?

In CLF, steps in the computation are represented by p = R, where R is a term consuming
antecedents describing the state of the computation, and p is a pattern binding variables that
name new components of the state. Two events p = R and q = S are independent if no variables
in p are used in S and no variables in q are used in R. Then the expressions

(let val p = R in let val q = S in E) = (let val q = S in let val p = R in E)

are equal and therefore indistinguishable in the framework.

13

Appendix: Some Inference Rules

Propositions A,B,C ::= p | A⊕B | ANB | 1
| A / B | B \A | A •B | A ◦B

Judgmental rules

A ` A
idA

Ω ` A ΩL A ΩR ` C
ΩL Ω ΩR ` C

cutA

Propositional rules

A Ω ` B
Ω ` A \B

\R
Ω′ ` A ΩL B ΩR ` C
ΩL Ω′ (A \B) ΩR ` C

\L

Ω A ` B
Ω ` B / A

/R
Ω′ ` A ΩL B Ωr ` C
ΩL (B / A) Ω′ ΩR ` C

/L

Ω ` A Ω′ ` B
Ω Ω′ ` A •B

•R
ΩL A B ΩR ` C

ΩL (A •B) ΩR ` C
•L

Ω ` B Ω′ ` A
Ω Ω′ ` A ◦B

◦R
ΩL B A ΩR ` C

ΩL (A ◦B) ΩR ` C
◦L

· ` 1
1R

ΩL ΩR ` C
ΩL 1 ΩR ` C

1L

Ω ` A
Ω ` A⊕B

⊕R1
Ω ` B

Ω ` A⊕B
⊕R2

ΩL A ΩR ` C ΩL B ΩR ` C
ΩL (A⊕B) ΩR ` C

⊕L

Ω ` A Ω ` B
Ω ` ANB

NR
ΩL A ΩR ` C

ΩL (ANB) ΩR ` C
NL1

ΩL B ΩR ` C
ΩL (ANB) ΩR ` C

NL2

14

Types A,B,C ::= ⊕{li : Ai}i∈I | N{li : Ai}i∈I | 1
| A / B | B \A | A •B | A ◦B

Processes P,Q ::= x← y identity/forward
| x← Px ; Qx cut/spawn
| x.lk ; P | case x (li ⇒ Qi)i∈I ⊕,N
| close x | wait x ; Q 1
| send x y ; P | y ← recv x ; Qx /, \, •, ◦

Judgmental Rules

Ω ` Px :: (x:A) ΩL (x:A) ΩR ` Qx :: (z:C)

ΩL Ω ΩR ` (x← Px ; Qx) :: (z:C)
cut

y:A ` x← y :: (x:A)
id

Propositional Rules

Ω ` P :: (x:Ak) (k ∈ I)

Ω ` (x.lk ; P) :: (x : ⊕{li:Ai}i∈I)
⊕Rk

ΩL (x:Ai) ΩR ` Qi :: (z:C) (∀i ∈ I)

ΩL (x:⊕{li:Ai}i∈I) ΩR ` case x (li ⇒ Qi)i∈I :: (z:C)
⊕L

Ω ` Pi :: (x:Ai) (∀i ∈ I)

Ω ` case x (li ⇒ Pi)i∈I :: (x:N{li:Ai}i∈I))
NR

ΩL (x:Ak) ΩR ` P :: (z:C) (k ∈ I)

ΩL (x : N{li:Ai}i∈I) ΩR ` (x.lk ; Q) :: (z:C)
NLk

· ` close x :: (x:1)
1R

ΩL ΩR ` Q :: (z:C)

ΩL (x:1) ΩR ` (wait x ; Q) :: (z:C)
1L

Ω (y:A) ` Py :: (x:B)

Ω ` (y ← recv x ; Py) :: (x:B / A)
/R

ΩL (x:B) ΩR ` Q :: (z:C)

ΩL (x:B / A) (w:A) ΩR ` (send x w ; Q) :: (z:C)
/L∗

(y:A) Ω ` Py :: (x:B)

Ω ` (y ← recv x ; Py) :: (x:A \B)
\R

ΩL (x:B) ΩR ` Q :: (z:C)

ΩL (w:A) (x:A \B) ΩR ` (send x w ; Q) :: (z:C)
\L∗

Ω ` P :: (x:B)

(w:A) Ω ` (send x w ; P) :: (x:A •B)
•R∗

ΩL (y:A) (x:B) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
•L

Ω ` P :: (x:B)

Ω (w:A) ` (send x w ; P) :: (x:A ◦B)
◦R∗

ΩL (x:B) (y:A) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
◦L

Computation Rules

proc(z, x← Px ; Qx)

proc(w,Pw) proc(z,Qw)
cmpw

proc(x, x← y)

x = y fwd

proc(x, close x) proc(z,wait x ; Q)

proc(z,Q)
1C

proc(x, x.lk ; P) proc(z, case x (li ⇒ Qi)i∈I)

proc(x, P) proc(z,Qk)
⊕C

proc(x, case x (li ⇒ Pi)i∈I) proc(z, x.lk ; Q)

proc(x,Q) proc(z, Pk)
NC

proc(x, y ← recv x ; Py) proc(z, send x w ; Q)

proc(x, Pw) proc(z,Q)
/C, \C

proc(x, send x w ; P) proc(z, y ← recv x ; Qy)

proc(P) proc(Qw)
•C, ◦C

15

