Final Exam

15-816 Substructural Logics Frank Pfenning

December 12, 2016

Name: Andrew ID:

Instructions

- This exam is closed-book, closed-notes.
- You have 3 hours to complete the exam.
- There are 6 problems.

Problem 1: Ordered Logic (45 pts)

There is a "quick check" whether a sequent in the fragment of ordered logic with $A \setminus B$ and $A \bullet B$ *may* be provable by translating the sequent into the free group over its propositional variables and checking whether the antecedents and succedent denote the same group element.

Recall that a group can be defined by a binary operator $a \cdot b$, a unit element e , and an inverse operator a^{-1} satisfying the laws on the left, with some additional useful properties on the right.

$$
(a \cdot b) \cdot c = a \cdot (b \cdot c)
$$
 $(a^{-1})^{-1} = a$
\n $a \cdot e = a = e \cdot a$ $e^{-1} = e$
\n $a \cdot a^{-1} = e = a^{-1} \cdot a$ $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$

The interpretation of propositions and antecedents is defined by

 $\llbracket p \rrbracket$ = p for atoms or propositional variables p $[\![A \bullet B]\!] = [\![A]\!] \cdot [\![B]\!]$ $\llbracket A \setminus B \rrbracket = \llbracket A \rrbracket^{-1} \cdot \llbracket B \rrbracket$ $\begin{array}{ccc} \end{array}$ $\begin{array}{ccc} \end{array}$ $\begin{array}{ccc} \end{array}$ $\begin{array}{ccc} \end{array}$ = e $[\Omega_1 \Omega_2] = [\Omega_1] \cdot [\Omega_2]$

Then for any A such that $\Omega \vdash A$ we have $\llbracket \Omega \rrbracket = \llbracket A \rrbracket$. For example, $\vdash a \setminus (b \setminus (b \bullet a))$ and

$$
[\![a \setminus (b \setminus (b \bullet a))] = a^{-1} \cdot [\![b \setminus (b \bullet a)]\!] = a^{-1} \cdot b^{-1} \cdot [\![b \bullet a]\!] = a^{-1} \cdot b^{-1} \cdot b \cdot a = a^{-1} \cdot a = e = [\![\!]
$$

Task 1 (5 pts). Apply this test to check whether

$$
((a \setminus b) \setminus (a \setminus a)) \setminus c \vdash (a \setminus a) \setminus ((b \setminus a) \setminus c)
$$

might be provable. Do not try to prove or refute this formula.

Task 2 (5 pts). Find two propositions A_0 and B_0 consisting only of propositional variables and the connective \setminus such that $A_0 \vdash B_0$ passes the test but is not provable.

$$
A_0 =
$$

 $B_0 =$

Task 3 (20 pts). Fill in some cases in the proof that $\Omega \vdash A$ implies $\llbracket \Omega \rrbracket = \llbracket A \rrbracket$.

Proof: By induction of the deduction of $\Omega \vdash A$.

Case: Rule id

Case: Rule \R

Case: Rule \L

Task 4 (10 pts). Extend the translation to encompass A / B, A ◦ B and 1 so that the test remains valid. You do not need to extend the proof.

$$
\begin{bmatrix} A \ / \ B \end{bmatrix} =
$$

$$
\begin{bmatrix} A \circ B \end{bmatrix} =
$$

$$
\begin{bmatrix} 1 \end{bmatrix} =
$$

Task 5 (5 pts). Explain how to adapt this test to *multiplicative linear logic* with connectives $A \rightarrow B$, $A \otimes B$, and 1, and provide the interpretation of these connectives below.

$$
[A \multimap B] = [A]^{-1} \cdot [B]
$$

$$
[A \otimes B] = [A] \cdot [B]
$$

$$
[1] = e
$$

Problem 2: Focusing (45 pts)

Consider the sentence *John never works for Jane* where we attached the following types to the sentence constituents:

Task 1 (5 pts). Assume *n* is positive and *s* is negative. Polarize the following definitions by inserting the minimal number of shifts.

adv	=	$(n \setminus s) / (n \setminus s)$
ity	=	$n \setminus s$
prep	=	$(s \setminus s) / n$

Task 2 (20 pts). Provide all the synthetic rules of inference that arise from focusing on propositions in the sequent that represents parsing *John never works for Jane* as a sentence.

Task 3 (20 pts). Provide all the possible complete or partial failing proofs ending in

 n adv itv prep $n \vdash s$

using only the synthetic rules of inference. We think of proof construction proceeding upwards, from the conclusion. Write out the (partial) proof below and fill in:

- There are ___________ different complete proofs.
- There are __________ failing incomplete proofs.

Problem 3: Call-by-Push-Value (60 pts)

In this problem we explore call-by-push-value (CBPV)

Task 2 (20 pts). Annotate the given rules with their terms in CBPV on the right and give the types A and B their correct polarity. Use M, N to stand for computations and V, W for values.

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to I
$$
\n
$$
\frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \to E
$$
\n
$$
\frac{\Gamma \vdash A}{\Gamma \vdash \downarrow A} \downarrow I
$$
\n
$$
\frac{\Gamma \vdash A}{\Gamma \vdash A} \downarrow E
$$

Task 3 (5 pts). Give the local reduction(s) for \rightarrow I followed by \rightarrow E. You only need to express it on the proof terms, not the deductions.

Task 4 (5 pts). Give the local reduction(s) for \downarrow I followed \downarrow E. You only need to express it on the proof terms, not the deductions.

Task 5 (5 pts). Polarize the following two types using only ↓, also assigning polarities to type variables A , B , and C in each case.

$$
A \rightarrow (B \rightarrow A)
$$

$$
(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))
$$

Task 6 (5 pts). We write \overline{E} for the translation of a simply-typed term E into CBPV. Insert appropriate constructs so that the following simply-typed term is well-typed under CBPV and your polarization.

$$
K : A \rightarrow (B \rightarrow A)
$$

= $\lambda x. \lambda y. x$

$$
\overline{K} = \lambda x. \lambda y. \text{ force } x
$$

Task 7 (5 pts). Insert appropriate constructs so that the following simply-typed terms well-typed under CBPV and your polarization

$$
S : (A \to (B \to C)) \to ((A \to B) \to (A \to C))
$$

= \lambda x. \lambda y. \lambda z. (x z) (y z)

$$
\overline{S} = \lambda x. \lambda y. \lambda z. ((force x) z) (thunk ((force y) z))
$$

Task 8 (10 pts). Compute the terminal computation or value corresponding to the properly polarized form of $(S K) K$ by applying local reductions anywhere in the term. Show the result of each reduction.

$$
\overline{(S\ K)\ K} \quad = \quad \longrightarrow \quad
$$

$$
\vdots
$$

Problem 4: Cost Semantics (40 pts)

In this problem with consider the ordered substructural operational semantics for the subsingleton fragment of ordered logic with $oplus$ and 1

Task 1 (20 pts). Complete the following rules to describe *asynchronous* communication. The first two rules have been filled in for you.

$$
\frac{\operatorname{proc}(P \mid Q)}{\operatorname{proc}(P) - \operatorname{proc}(Q)} \qquad \qquad \frac{\operatorname{proc}(\leftrightarrow)}{\cdot}
$$

Computation rules for \oplus (process expressions R. l_k ; P and (caseL $(l_i \Rightarrow Q_i)_{i \in I}$))

Rules for 1 (process expressions closeR and waitL $; Q$)

Task 2 (20 pts). Instrument the operational semantics to count the total number of processes that are spawned. Assume we start with the configuration proc $(1, P)$ for $\cdot \vdash P : 1$. If we terminate with the configuration msg(k , closeR) then k should be the total number of processes spawned during the computation. Do not count any messages. Feel free to substitute, add, or delete rules.

Problem 5: Substructural Operational Semantics (40 pts)

Consider the typing rules for the constructs in call-by-push-value associated with $\uparrow A^+$.

$$
\frac{\Gamma \vdash V : A^+}{\Gamma \vdash \mathsf{return} \ V : \uparrow A^+} \uparrow I \qquad \frac{\Gamma \vdash M : \uparrow A^+ \quad \Gamma, x : A^+ \vdash N : C^-}{\Gamma \vdash \mathsf{let} \mathsf{val} \ x = M \mathsf{in} \ N : C^-} \uparrow \!\! E
$$

We present the evaluation rules in the form of an ordered substructural operational semantics, which is based on three predicates eval(M), retn(T), and cont(K), where M is a *computation*, T is a *terminal computation*, and K is a continuation with a "hole" indicated by an underscore.

> ev_letval : eval(let val $x = M$ in N) $\setminus \uparrow$ (eval(M) • cont(let val $x = \phi$ in N)) ev_return : eval(return V) \ \uparrow retn(return V) rt_return : retn(return V) • cont(let val $x = \ln N$) \ \uparrow eval($[V/x]$ N)

Task 1 (20 pts). Re-express the ordered specification in a linear framework such as CLF by adding destinations.

ev letval :

ev_return :

rt_return :

Task 2 (20 pts). Now we would like to introduce some parallelism into the evaluation of let val $x =$ M in N. Informally, we evaluate M and N concurrently, with a new destination d for x acting as a form of channel connecting M and N .

In the specification, you may need a different form of continuation, and revise and possibly add some rules. Introduce a new *persistent* predicate bind(V, d) which states that the value of the destination d is permanently the value V .

Problem 6: True Concurrency (20 pts)

Task 1 (10 pts). What is *true concurrency*?

Task 2 (10 pts). How is *true concurrency* manifest in the Concurrent Logical Framework (CLF)?

Appendix: Some Inference Rules

Propositions A, B, C ::=
$$
p | A \oplus B | A \otimes B | 1
$$

\n $| A / B | B \setminus A | A \bullet B | A \circ B$

Judgmental rules

$$
\frac{\Omega \vdash A \quad \Omega_L \quad A \quad \Omega_R \vdash C}{\Omega_L \quad \Omega \quad \Omega_R \vdash C} \text{ cut}_A
$$

Propositional rules

$$
\begin{array}{lll}\n\text{Types} & A, B, C & ::= & \bigoplus \{l_i : A_i\}_{i \in I} \mid \bigotimes \{l_i : A_i\}_{i \in I} \mid \mathbf{1} \\
& | & A \mid B \mid B \setminus A \mid A \bullet B \mid A \circ B\n\end{array}
$$

Processes P,Q ::= $x \leftarrow y$ identity/forward $\vert x \leftarrow P_x$; Q_x cut/spawn $\begin{array}{ll} \mid & x.l_k \; ; \, P \mid \texttt{case } x \; (l_i \Rightarrow Q_i)_{i \in I} \quad \quad \oplus, \otimes \ \mid & \texttt{close } x \mid \texttt{wait } x \; ; \, Q \quad \quad \quad \mathbf{1} \end{array}$ $|\quad$ send $x~y~;~P~|~y \leftarrow$ recv $x~;~Q_x~~/,\backslash,$ \bullet, \circ

Judgmental Rules

$$
\frac{\Omega \vdash P_x :: (x:A) \quad \Omega_L (x:A) \quad \Omega_R \vdash Q_x :: (z:C)}{\Omega_L \quad \Omega_R \vdash (x \leftarrow P_x ; Q_x) :: (z:C)} \quad \text{cut} \qquad \qquad \frac{}{y:A \vdash x \leftarrow y :: (x:A)} \quad \text{id}
$$

Propositional Rules

$$
\frac{\Omega \vdash P :: (x:A_k) \quad (k \in I)}{\Omega \vdash (x.I_k; P) :: (x : \oplus \{l_i:A_i\}_{i \in I})} \oplus R_k \quad \frac{\Omega_L (x:A_i) \Omega_R \vdash Q_i :: (z:C) \quad (\forall i \in I)}{\Omega_L (x : \oplus \{l_i:A_i\}_{i \in I}) \Omega_R \vdash \text{case } x (l_i \Rightarrow Q_i)_{i \in I} :: (z:C)} \oplus L
$$
\n
$$
\frac{\Omega \vdash P_i :: (x:A_i) \quad (\forall i \in I)}{\Omega \vdash \text{case } x (l_i \Rightarrow P_i)_{i \in I} :: (x : \otimes \{l_i:A_i\}_{i \in I}))} \& R \quad \frac{\Omega_L (x:A_k) \Omega_R \vdash P :: (z:C) \quad (k \in I)}{\Omega_L (x : \otimes \{l_i:A_i\}_{i \in I}) \Omega_R \vdash (x.I_k; Q) :: (z:C)} \& L_k
$$
\n
$$
\frac{\Omega_L \Omega_R \vdash Q :: (z:C)}{\vdash \text{close } x :: (x:\mathbf{1})} \mathbf{1}R \quad \frac{\Omega_L (x:\mathbf{1}) \Omega_R \vdash (\text{wait } x \, ; Q) :: (z:C)}{\Omega_L (x:\mathbf{1}) \Omega_R \vdash (\text{wait } x \, ; Q) :: (z:C)} \mathbf{1}L
$$
\n
$$
\frac{\Omega \vdash (y \leftarrow \text{recv } x \, ; P_y) :: (x:B) \quad \Omega_L (x:B/A) \quad (w:A) \Omega_R \vdash \text{(send } x \, w \, ; Q) :: (z:C)}{\Omega \vdash (y \leftarrow \text{recv } x \, ; P_y) :: (x:B) \quad \Omega_R \quad \Omega_L (x:B) \Omega_R \vdash Q :: (z:C)} \quad \text{(x:B)} \quad \Omega \vdash \text{(y:B)} \quad \Omega_R \vdash \text{(send } x \, w \, ; Q) :: (z:C)} \quad \text{(x:B)} \quad \Omega \vdash \text{(y:B)} \quad \Omega_R \vdash \text{(send } x \, w \, ; Q) :: (z:C) \quad \Omega \vdash \text{(w:A)} \Omega \vdash (\text{send } x \, w \, ; P) :: (x:B) \quad \text{one} \quad R^* \quad \Omega_L (x:A \bullet B) \Omega_R \vdash (y \leftarrow \text{recv } x \, ; Q_y) :: (z:C) \
$$

Computation Rules

$$
\frac{\text{proc}(z, x \leftarrow P_x : Q_x)}{\text{proc}(w, P_w) - \text{proc}(z, Q_w)} \text{cmp}^w - \frac{\text{proc}(x, x \leftarrow y)}{x = y} \text{fwd} - \frac{\text{proc}(x, \text{close } x) - \text{proc}(z, \text{wait } x : Q)}{\text{proc}(z, Q)} \text{1C}
$$
\n
$$
\frac{\text{proc}(x, x.l_k ; P) - \text{proc}(z, \text{case } x (l_i \Rightarrow Q_i)_{i \in I})}{\text{proc}(x, P) - \text{proc}(z, \text{case } x (l_i \Rightarrow Q_i)_{i \in I})} \oplus C - \frac{\text{proc}(x, \text{case } x (l_i \Rightarrow P_i)_{i \in I}) - \text{proc}(z, x.l_k ; Q)}{\text{proc}(x, Q) - \text{proc}(z, P_k)} \text{8C}
$$
\n
$$
\frac{\text{proc}(x, y \leftarrow \text{recv } x : P_y) - \text{proc}(z, \text{send } x w : Q)}{\text{proc}(x, P_w) - \text{proc}(z, Q)} \text{/C}, \text{NC} - \frac{\text{proc}(x, \text{send } x w : P) - \text{proc}(z, y \leftarrow \text{recv } x : Q_y)}{\text{proc}(P) - \text{proc}(Q_w)} \bullet C, \text{oc}
$$