Midterm Exam

15-836: Substructural Logics
Frank Pfenning
Thursday, October 12, 2023
150 points

Name: \square Andrew ID: \qquad

Instructions

- This exam is closed-book, closed-notes.
- There are several appendices for reference.
- Reference pages will not be scanned (you may tear them off).
- Try to keep your answers inside the answer boxes to ensure proper scanning.
- You have 80 minutes to complete the exam.
- There are 5 problems.
- The maximal exam score is 150 points

	Ordered Inference	cut	Message Passing	Replication	Adjiont Logic	
Prob 1	Prob 2	Prob 3	Prob 4	Prob 5	Total	
Score						
Max	30	30	30	30	30	150

1 Ordered Inference ($\mathbf{3 0} \mathbf{~ p t s)}$

In this problem we use the binary representation of numbers as an ordered state. For example, the number $6=(110)_{2}$ would be represented as $\epsilon 110$. We write $\Omega(n)$ for the binary representation of n, so $\Omega(6)=\epsilon 110$. You may assume that $\Omega(n)$ has no leading zeros. As a reminder, the definition of increment

$$
\frac{0 \text { inc }}{1} \quad \frac{1 \text { inc }}{\text { inc } 0} \quad \frac{\epsilon \text { inc }}{\epsilon 1}
$$

which satisfies that $\Omega(n)$ inc $\longrightarrow^{*} \Omega(n+1)$. In the tasks below, you may use inc and other auxiliary propositions and rules as you see fit.

Task 1 (15 pts) Define an ordered program to compute the bit parity of a binary number.
Initial state: $\Omega(n)$ par.
Final state: b where $b=0$ means n had even parity and $b=1$ means n had odd parity.
For example, $\epsilon 101$ par $\longrightarrow{ }^{*} 0$ and $\epsilon 10$ par $\longrightarrow{ }^{*} 1$.
\square

Task 2 (15 pts) Define an ordered program to compute the number of bits in a binary number.
Initial state: $\Omega(n)$ size, where n is a binary number with $n \geq 1$.
Final state: $\Omega(|n|)$ where $|n|$ is the number of bits $(0,1)$ in n.
For example, ϵ size $\longrightarrow^{*} \epsilon$ and $\epsilon 101011$ size $\longrightarrow{ }^{*} \epsilon 110$.
\square

2 Cut (30 pts)

In the distant past, in a misguided attempt to model stacks and/or queues, I decided to reformulate the rule of cut in ordered logic so it can only cut the proposition at the left end of the antecedents. I called the resulting rule lop_{L}. (You can find the rules of ordered logic in Appendix A.)

Task 3 (10 pts) Recall: The usual proof of the admissibility of cut in ordered logic proceeds by ...
\square
Task 4 ($\mathbf{1 0} \mathbf{~ p t s) ~ G i v e ~ a n ~ e x a m p l e ~ c a s e ~ w h e r e ~ t h e ~ u s u a l ~ p r o o f ~ o f ~ t h e ~ a d m i s s i b i l i t y ~ o f ~ c u t ~ w o u l d ~ f a i l ~}$ in an attempt to prove the admissibility of lop_{L} (in the system without cut or lop).

Task 5 ($\mathbf{1 0} \mathbf{~ p t s) ~ E i t h e r ~ p r o v e ~ t h a t ~} \operatorname{lop}_{L}$ is admissible (in the system without cut and lop) or give a counterexample to its admissibility.
\square

3 Message Passing (30 pts)

Consider the recursive type of unary natural numbers in linear logic with recursion, where proofs are interpreted as linear message-passing programs.

$$
\text { nat }=\oplus\{\text { zero }: \mathbf{1}, \text { succ }: \text { nat }\}
$$

According to a homework assignment we know this type is subject to weakening and contraction.
In the answers below you may use the mathematical syntax we have been using in lecture or the MPASS syntax. We won't hold you to all the lexical details, but it should be otherwise correct and linear. You can also use prior definition in later answers, and write auxiliary processes as you see fit. (You can find the statics and dynamics of MPASS in Appendix B.)

Task 6 (5 pts) Complete the definition of the zero process.

```
type nat = +{'zero : 1, 'succ : nat}
proc zero (x : nat) =
```

Task 7 (5 pts) Complete the definition of the successor process.

```
proc succ (x : nat) (y : nat) =
```

Task 8 (5 pts) Complete the following definition of drop that consumes its argument.
proc drop $(u: 1)(x:$ nat $)=$

Task 9 (15 pts) Complete the following definition of $d u p$ that duplicates its argument. Recall that $\mathrm{A} * \mathrm{~B}$ is concrete syntax for $A \otimes B$.

```
proc dup (p : nat * nat) (x : nat) =
```


4 Replication (30 pts)

We can try to eliminate the exponential modality $!A$ from linear logic by defining instead

$$
\nabla A=1 \& A \&(\nabla A \otimes \nabla A)
$$

Because this family of propositions is defined recursively, for this problem we allow infinite derivations. They are finitely represented as circular proofs, when possible. (You can find the rules for linear logic without the exponential in Appendix C.)

Task 10 (10 pts) Construct three derived left rules for ∇, applying inversion to the premises as much as possible. Because ∇ is defined recursively, you may not be able to eliminate ∇ or other connectives from the premises as we usually expect. Assign names $\nabla L_{1}, \nabla L_{2}$ and ∇L_{3} to your rules. You do not need to show the derivation, just the final rules.

Task 11 ($\mathbf{1 0} \mathbf{~ p t s) ~ C o n s t r u c t ~ o n e ~ d e r i v e d ~ r i g h t ~ r u l e ~ f o r ~} \nabla$, applying inversion to the premises as much as possible. Again, ∇ or other connectives may remain in the premises. Assign the name ∇R to your rule. You do not need to show the derivation, just the final rule.

Task 12 ($\mathbf{1 0} \mathbf{~ p t s) ~ S h o w ~ t h a t ~ t h e ~ i d e n t i t y ~ o n ~} \nabla A$ is admissible by constructing a (possibly circular) proof of $\nabla A \vdash \nabla A$ using the identity only at A.

5 Adjoint Logic (30 pts)

We have been reading the sequent calculus rules bottom-up, as if were are constructing proofs in a goal-directed way. When writing a proof goal $\Delta \vdash A_{m}$ we presuppose that $\Delta \geq m$, and this property must be preserved reading rules bottom-up. (You can find the usual rules for adjoint logic in Appendix D.)

Rules may also be read top-down for different kinds of proof search procedures.
Task 13 ($\mathbf{3 0} \mathbf{~ p t s)}$ Fill in additional premises as needed in the following rules so that the conclusion satisfies our presupposition and the correct structural properties whenever all premises do. Do not add any redundant conditions. Write "(none)" when no conditions are needed.

$\frac{\Delta \vdash A_{k}}{\Delta \vdash \uparrow_{k}^{m} A_{k}} \uparrow R$

$\frac{\Delta, A_{m}, A_{m} \vdash C_{r}}{\Delta, A_{m} \vdash C_{r}}$ contract

$\Delta, A_{k} \vdash C_{r}$
$\Delta, \uparrow_{k}^{m} A_{k} \vdash C_{r}$

A Ordered Logic

$$
\begin{aligned}
& \frac{\Omega_{1} \vdash A \quad \Omega_{2} \vdash B}{\Omega_{1} \Omega_{2} \vdash A \bullet B} \bullet R \quad \frac{\Omega_{1} A B \Omega_{2} \vdash C}{\Omega_{1}(A \bullet B) \Omega_{2} \vdash C} \bullet L \\
& \frac{A \Omega \vdash B}{\Omega \vdash A \backslash B} \backslash R \quad \frac{\Omega_{A} \vdash A \quad \Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L} \Omega_{A}(A \backslash B) \Omega_{R} \vdash C} \backslash L \\
& \frac{\Omega A \vdash B}{\Omega \vdash B / A} / R \quad \frac{\Omega_{A} \vdash A \quad \Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L}(B / A) \Omega_{A} \Omega_{R} \vdash C} / L \\
& \frac{\Omega \vdash A \quad \Omega \vdash B}{\Omega \vdash A \& B} \& R \quad \frac{\Omega_{L} A \Omega_{R} \vdash C}{\Omega_{L}(A \& B) \Omega_{R} \vdash C} \& L_{1} \quad \frac{\Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L}(A \& B) \Omega_{R} \vdash C} \& L_{1} \\
& \frac{\Omega \vdash A}{\Omega \vdash A \oplus B} \oplus R_{1} \quad \frac{\Omega \vdash B}{\Omega \vdash A \oplus B} \oplus R_{2} \quad \frac{\Omega_{L} A \Omega_{R} \vdash C \quad \Omega_{L} B \Omega_{R} \vdash C}{\Omega_{L}(A \oplus B) \Omega_{R} \vdash C} \oplus L \\
& \stackrel{\vdash}{\cdot \vdash 1} 1 R \quad \frac{\Omega_{L} \Omega_{R} \vdash C}{\Omega_{L}(\mathbf{1}) \Omega_{R} \vdash C} \mathbf{1} L \\
& \overline{\Omega \vdash \top} T R \quad \text { no } T L \text { rules } \\
& \text { no } 0 R \text { rules } \quad \overline{\Omega_{L}(\mathbf{0}) \Omega_{R} \vdash C} \mathbf{0} L
\end{aligned}
$$

B Linear Message Passing

Statics for MPass.

$$
\frac{\Delta \vdash P(x)::(x: A) \quad \Delta^{\prime}, x: A \vdash Q(x)::(z: C)}{\Delta, \Delta^{\prime} \vdash x_{A} \leftarrow P(x) ; Q(x)::(z: C)} \text { cut } \overline{y: A \vdash \mathrm{fwd} x y::(x: A)} \text { id }
$$

$$
\frac{\Delta \vdash Q::(z: C)}{\cdot \vdash \operatorname{send} x()::(x: \mathbf{1})} \mathbf{1} R \quad \frac{\Delta}{\Delta, x: \mathbf{1} \vdash \operatorname{recv} x(() \Rightarrow Q)::(z: C)} \mathbf{1} L
$$

$$
\frac{\Delta \vdash P::\left(x: A_{k}\right) \quad(k \in L)}{\Delta \vdash \operatorname{send} x k ; P::\left(x: \oplus\left\{\ell: A_{\ell}\right\}_{\ell \in L}\right)} \oplus R \frac{\Delta, x: A_{\ell} \vdash Q_{\ell}::(z: C) \quad(\forall \ell \in L)}{\Delta, x: \oplus\left\{\ell: A_{\ell}\right\}_{\ell \in L} \vdash \operatorname{recv} x\left(\ell \Rightarrow Q_{\ell}\right)_{\ell \in L}::(z: C)} \oplus L
$$

$$
\frac{\Delta \vdash P::(x: B)}{\Delta, w: A \vdash \operatorname{send} x w ; P::(x: A \otimes B)} \otimes R^{*} \frac{\Delta^{\prime}, y: A, x: B \vdash Q(y)::(z: C)}{\Delta^{\prime}, x: A \otimes B \vdash \operatorname{recv} x(y \Rightarrow Q(y))::(z: C)} \otimes L
$$

$$
\frac{\Delta \vdash P_{\ell}::\left(x: A_{\ell}\right) \quad(\forall \ell \in L)}{\Delta \vdash \operatorname{recv} x\left(\ell \Rightarrow P_{\ell}\right)_{\ell \in L}::\left(x: \&\left\{\ell: A_{\ell}\right\}_{\ell \in L}\right)} \& R \frac{\Delta, x: A_{k} \vdash Q::(z: C) \quad(k \in L)}{\Delta, x: \&\left\{\ell: A_{\ell}\right\}_{\ell \in L} \vdash \operatorname{send} x k ; Q::(z: C)} \& L
$$

$$
\frac{\Delta, y: A \vdash P::(x: B)}{\Delta \vdash \operatorname{recv} x(y \Rightarrow P(y))::(x: A \multimap B)} \multimap R \quad \frac{\Delta^{\prime}, x: B \vdash Q::(z: C)}{\Delta^{\prime}, w: A, x: A \multimap B \vdash \operatorname{send} x w ; Q::(z: C)} \multimap L^{*}
$$

$$
\frac{p(x: A) \overline{(y: B)}=P(x, \bar{y}) \in \Sigma}{\overline{(y: B)} \vdash \operatorname{call} x \bar{y}::(x: A)} \text { call }
$$

Dynamics for MPass.

C Linear Logic (without Exponential)

$$
\begin{aligned}
& \Delta \vdash A \quad \Delta^{\prime}, A \vdash C
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta \vdash A}{\Delta \vdash A \oplus B} \oplus R_{1} \quad \frac{\Delta \vdash B}{\Delta \vdash A \oplus B} \oplus R_{2} \quad \frac{\Delta, A \vdash C \quad \Delta, B \vdash C}{\Delta, A \oplus B \vdash C} \oplus L \\
& \text { no } \mathbf{0} R \text { rule } \quad \overline{\Delta, 0 \vdash C} 0 L \\
& \frac{\Delta_{1} \vdash A \quad \Delta_{2} \vdash B}{\Delta_{1}, \Delta_{2} \vdash A \otimes B} \otimes R \quad \frac{\Delta^{\prime}, A, B \vdash C}{\Delta^{\prime}, A \otimes B \vdash C} \otimes L \\
& \stackrel{\vdash}{\cdot \vdash \mathbf{1}} \mathbf{1} R \quad \frac{\Delta \vdash C}{\Delta, \mathbf{1} \vdash C} \mathbf{1} L \\
& \frac{\Delta \vdash A \quad \Delta \vdash B}{\Delta \vdash A \& B} \& R \quad \frac{\Delta, A \vdash C}{\Delta, A \& B \vdash C} \& L_{1} \quad \frac{\Delta, B \vdash C}{\Delta, A \& B \vdash C} \& L_{2} \\
& \overline{\Delta \vdash \top} \top R \quad \text { no } \top L \text { rule } \\
& \frac{\Delta, A \vdash B}{\Delta \vdash A \multimap B} \multimap R \quad \frac{\Delta_{1}^{\prime} \vdash A \quad \Delta_{2}^{\prime}, B \vdash C}{\Delta_{1}^{\prime}, \Delta_{2}^{\prime}, A \multimap B \vdash C} \multimap L
\end{aligned}
$$

D Adjoint Logic

Syntax with $\ell \geq m \geq k$ and $\sigma(m) \subseteq\{\mathrm{W}, \mathrm{C}\}$.

$$
A_{m}::=P_{m}\left|A_{m} \rightarrow B_{m}\right| A_{m} \times B_{m}|\mathbf{1}| A_{m} \& B_{m}|\top| A_{m}+B_{m}|\mathbf{0}| \uparrow_{k}^{m} A_{k} \mid \downarrow_{m}^{\ell} A_{\ell}
$$

Rules.

$$
\begin{gathered}
\frac{\mathrm{W} \in \sigma(m) \Delta \vdash C_{r}}{\Delta, A_{m} \vdash C_{r}} \text { weaken } \quad \frac{\mathrm{C} \in \sigma(m) \quad \Delta, A_{m}, A_{m} \vdash C_{r}}{\Delta, A_{m} \vdash C_{r}} \text { contract } \\
\frac{\Delta \geq m \geq r \quad \Delta \vdash A_{m} \quad \Delta^{\prime}, A_{m} \vdash C_{r}}{A_{m} \vdash A_{m}} \text { id } \text { cut } \\
\frac{\Delta \vdash \Delta^{\prime} \vdash C_{r}}{\Delta \vdash A_{k}} \uparrow R \quad \frac{k \geq r \quad \Delta, A_{k} \vdash C_{r}}{\Delta, \uparrow_{k}^{m} A_{k} \vdash C_{r}} \uparrow L \\
\frac{\Delta \geq \ell \quad \Delta \vdash A_{\ell}}{\Delta \vdash \downarrow_{m}^{\ell} A_{\ell}} \downarrow R \\
\frac{\Delta, A_{\ell} \vdash C_{r}}{\Delta, \downarrow_{m}^{\ell} A_{\ell} \vdash C_{r}} \downarrow L
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\Delta, A_{m} \vdash B_{m}}{\Delta \vdash A_{m} \rightarrow B_{m}} \rightarrow R \quad \frac{\Delta \geq m \quad \Delta \vdash A_{m} \quad \Delta^{\prime}, B_{m} \vdash C_{r}}{\Delta, \Delta^{\prime}, A_{m} \rightarrow B_{m} \vdash C_{r}} \rightarrow L \\
& \frac{\Delta \vdash A_{m} \quad \Delta^{\prime} \vdash B_{m}}{\Delta, \Delta^{\prime} \vdash A_{m} \times B_{m}} \times R \quad \frac{\Delta, A_{m}, B_{m} \vdash C_{r}}{\Delta, A_{m} \times B_{m} \vdash C_{r}} \times L \\
& \frac{-\vdash 1}{} 1 R \quad \frac{\Delta \vdash C_{r}}{\Delta, 1 \vdash C_{r}} \mathbf{1} L \\
& \begin{array}{c}
\frac{\Delta \vdash A_{m} \quad \Delta \vdash B_{m}}{\Delta \vdash A_{m} \& B_{m}} \& R \quad \frac{\Delta, A_{m} \vdash C_{r}}{\Delta, A_{m} \& B_{m} \vdash C_{r}} \& L_{1} \frac{\Delta, B_{m} \vdash C_{r}}{\Delta, A_{m} \& B_{m} \vdash C_{r}} \& L_{2} \\
\frac{\operatorname{s\vdash \top } \top R \quad \text { no } T L \text { rule }}{}
\end{array} \\
& \frac{\Delta \vdash A_{m}}{\Delta \vdash A_{m}+B_{m}}+R_{1} \frac{\Delta \vdash B_{m}}{\Delta \vdash A_{m}+B_{m}}+R_{2} \quad \frac{\Delta, A_{m} \vdash C_{r} \quad \Delta, B_{m} \vdash C_{r}}{\Delta, A_{m}+B_{m} \vdash C_{r}}+L \\
& \text { no } \mathbf{0} R \text { rule } \quad \overline{\Delta, \mathbf{0} \vdash C_{r}} \mathbf{0} L
\end{aligned}
$$

