
15–212: Fundamental Structures of Computer Science II

Some Notes on Mutable References

Frank Pfenning

Draft of October 18, 1997

These notes provide a brief introduction to the evaluation model underlying mutable references
and arrays. We assume that the reader is already familiar with ML and the Notes on Evaluation
handed out earlier in this class.

1 Notation

Recall that e stands for arbitrary expressions in ML and v for values, which are a special kind of
expression. We wrote

e ↪→ v expression e evaluates to value v

e
1

=⇒ e′ expression e reduces to e′ in 1 step

e
k

=⇒ e′ expression e reduces to e′ in k steps
e =⇒ e′ expression e reduces to e′ in 0 or more steps

Our notion of step in the operational semantics is defined abstractly and does not coincide with
the actual operations performed in an implementation of ML. Since we will be mainly concerned
with proving correctness, but not complexity of implementation, the number of steps is largely
irrelevant and we will write e =⇒ e′ for reduction.

Evaluation and reduction are related in the sense that if e ↪→ v then e
1

=⇒ e1
1

=⇒ · · · 1
=⇒ v and

vice versa.
Note that values evaluate to themselves “in 0 steps”. In particular, for a value v there is no

expression e such that v
1

=⇒ e.

2 Store

A notion of mutable reference introduces a store into the operational semantics. Under this exten-
sion, expressions not only have a value (or fail to have a value if they do not terminate), but they
may now also have an effect on the store. Other effects we ignore here are exceptions (introduced
informally in class) and input/output.

A store is modelled as a collection of cells, each with a unique label c. Cells are typed, and each
cell contains a value which matches its type. We write c 7→ v if the contents of the cell c is v, and
we write a store s as

s = c1 7→ v1, . . . , cn 7→ vn

1



with the invariant that all ci are distinct.
The operational semantics now relates pairs 〈s; e〉 consisting of the store s and the expression e

to be evaluated. We write

〈s; e〉 1
=⇒ 〈s′; e′〉 expression e reduces to e′ in 1 step, transforming store s to s′

〈s; e〉 k
=⇒ 〈s′; e′〉 expression e reduces to e′ in k steps, transforming store s to s′

〈s; e〉 =⇒ 〈s′; e′〉 expression e reduces to e′ in 0 or more steps, transforming store s to s′

The rule we introduced previously have to be modified in a systematic way to account for the
store. As an example, we show the rules for Booleans.

if e1 then e2 else e3
1

=⇒ if e′1 then e2 else e3 if e1
1

=⇒ e′1
if true then e2 else e3

1
=⇒ e2

if false then e2 else e3
1

=⇒ e3

These now read

〈s; if e1 then e2 else e3〉 1
=⇒ 〈s′; if e′1 then e2 else e3〉 if 〈s; e1〉 1

=⇒ 〈s′; e′1〉
〈s; if true then e2 else e3〉 1

=⇒ 〈s; e2〉
〈s; if false then e2 else e3〉 1

=⇒ 〈s; e3〉

It should be clear from these how all the other rules should be modified.

3 Mutable References

We have a new type constructor ref.

Types. t ref for any type t. This is the type of cells with contents of type t.

Values. The only new values are the cells c, identified by their label. The label itself is not directly
accessible in ML, because it is unpredictable which label might be chosen for a freshly created cell.
Instead a value c with c 7→ v in the current store is printed as ref v. This is potentially confusing,
because two different cells with the same contents are printed the same way, even though they are
different. Always keep this in mind when interpreting output from ML’s top-level!

Operations. We have operations to create a new cell (ref e), to read the contents of a cell (!e),
and to update the contents of a cell (e1 := e2).

Typing Rules.

ref e : t ref if e : t

!e : t if e : t ref

e1 := e2 : unit if e1 : t ref and e2 : t.

In the last rule we see the use of type unit, which contains exactly one value (). A return value
of unit usually means that an expression is evaluated for effect (and not the value it returns, since
that carries no information).

2



Evaluation. As usual, expressions are evaluated from left to right. Once all the arguments to an
operator have been reduced to values, the corresponding operation is carried out.

〈s; ref e〉 1
=⇒ 〈s′; ref e′〉 if 〈s; e〉 1

=⇒ 〈s′; e′〉
〈s; ref v〉 1

=⇒ 〈(s, c 7→ v); c〉 where c is a new cell

〈s; !e〉 1
=⇒ 〈s′; !e′〉 if 〈s; e〉 1

=⇒ 〈s′; e′〉
〈s; !c〉 1

=⇒ 〈s; v〉 if c 7→ v in s

〈s; e1 := e2〉 1
=⇒ 〈s′; e′1 := e2〉 if 〈s; e1〉 1

=⇒ 〈s′; e′1〉
〈s; c := e2〉 1

=⇒ 〈s′; c := e′2〉 if 〈s; e2〉 1
=⇒ 〈s′; e′2〉

〈s; c := v〉 1
=⇒ 〈s′; ()〉 where s = s1, c 7→ v0, s2 and s′ = s1, c 7→ v, s2

The operational semantics above specifies exactly how expressions are evaluated. For example,
in e1 := e2 we first evaluate e1 to a cell c (possibly affecting the store), then e2 to a value v

(possibly affecting the store further) and then modify the contents of c to contain v. This can lead
to extremely obscure behavior (see example below) and one should avoid nesting expressions with
effects. In the example we use the sequencing operator (e1; e2) which evaluates e1 for its effect
(discarding the value) and then returns the value of e2. Note that this is different from the optional
use of semi-colon to separate declarations.

val c = ref 5; (* val c : int ref = ref(5) *)

val x = ((c := 3; c) := !(c := !c-1; c); !c); (* val x : int = 2 *)

Note any cell that might be referenced in a program must have a unique value. It must have
a value, since an initial value must be supplied when a cell is created. The value must be unique
since all cell labels in the store are different. Note also that there is no explicit operation to delete a
cell from the store. Instead, a process called garbage collection will periodically remove cells which
are no longer accessible. For example, after evaluation of the expression

let val c = ref true in !c end;

the cell created by the call to ref true is no longer accessible and it is safe to garbage collect it
from the store.

4 Equality between Cells and Aliasing

Programming with mutable state is generally more difficult than pure programming, because it
requires keeping track of the store in addition to the values of expressions. Changes to the store
are not apparent in the type of functions, which means that explicit annotation of your code with
invariants is even more important than for pure programs.

It is also possible to confuse a cell with its contents, but fortunately the type systems helps
you in sorting them out. For the examples below we take advantage of the fact that cells permit
equality. But note that c1 = c2 compares cells, not their contents.

The output from an ML top level is shown as a comment. First we create two cells (binding
c1 and c2), then increment the second. Now c1 and c2 are still different cells (b1 = false), but
their contents is the same (b2 = true).

3



val c1 = ref 5; (* val c1 : int ref = ref(5) *)

val c2 = ref 4; (* val c2 : int ref = ref(4) *)

val = (c2 := !c2+1); (* *)

val b1 = (c1 = c2); (* val b1 : bool = false *)

val b2 = (!c1 = !c2); (* val b2 : bool = true *)

Next we can create an alias c3 for the cell c2. Note that c2 and c3 are now bound to the same
cell. Mutating this cell will thus affect c2 and c3. Failure to keep track of different expressions
denoting the same cell (a more general form of aliasing) is a common source of errors in programming
with state.

val c3 = c2; (* val c3 : int ref = ref(5) *)

val b3 = (c2 = c3); (* val b3 : bool = true *)

val = (c3 := !c3+1); (* *)

c3; (* val it : int ref = ref(6) *)

c2; (* val it : int ref = ref(6) *)

5 Arrays

An array in ML is a fixed-size sequence of mutable cells. The signature ARRAY in the Standard
ML Basis Library1 provides some basic operations on arrays. Most of these are definable from
operations analogous to those for references: create an array, mutate a cell in an array, and read
the contents of a cell in an array, defined informally below.

exception Subscript

signature ARRAY =

sig

eqtype ’a array

val array : int * ’a -> ’a array

val length : ’a array -> int

val sub : ’a array * int -> ’a

val update : ’a array * int * ’a -> unit

... more specifications ...

end

exception Subscript is a pervasive exception provided for arrays and similar structures.

t array is the type of arrays whose cells contain values of type t. Note that arrays admit equality,
which is like cell equality (each call to array creates a new array).

array (n, v) creates a new array of size n where each cell is initialized with value v.

length (a) returns the size of the array a.

sub (a, i) returns the contents of cell i in array a if 0 ≤ i < length(a) and raises exception
Subscript otherwise.

update (a, i, v) mutates cell i in array a to contain the value v if 0 ≤ i < length(a) and raises
exception Subscript otherwise.

1presently accessible at http://portal.research.bell-labs.com/orgs/ssr/sml/array.html or through the
course home page.

4


