
Automated Theorem Proving

Frank Pfenning
Carnegie Mellon University

Draft of November 12, 1999

Material for the course Automated Theorem Proving at Carnegie Mellon Univer-
sity, Fall 1999. This includes revised versions from the course notes on Linear
Logic (Spring 1998) and Computation and Deduction (Spring 1997). Material
for this course is available at

http://www.cs.cmu.edu/~fp/courses/atp/.

Please send comments to fp@cs.cmu.edu

This material is in rough draft form and is likely to contain errors. Furthermore,
citations are in no way adequate or complete. Please do not cite or distribute
this document.

This work was supported by NSF Grants CCR-9303383 and CCR-9619684.

Copyright c© 1999, Frank Pfenning

ii

Draft of November 12, 1999

Contents

1 Introduction 1

2 Natural Deduction 3
2.1 Intuitionistic Natural Deduction 5
2.2 Classical Logic . 17
2.3 Localizing Hypotheses . 17
2.4 Proof Terms . 20
2.5 Exercises . 24

3 Sequent Calculus 29
3.1 Intercalation . 29
3.2 Compact Proof Terms . 35
3.3 Sequent Calculus . 36
3.4 Cut Elimination . 43
3.5 Applications of Cut Elimination 48
3.6 Proof Terms for Sequent Derivations 49
3.7 Exercises . 52

4 Focused Derivations 55
4.1 Inversion . 55
4.2 Focusing . 65
4.3 Unification . 67
4.4 Exercises . 80

5 The Inverse Method 81
5.1 Forward Sequent Calculus . 82
5.2 Negation and Empty Succedents 85
5.3 The Subformula Property . 88
5.4 Naming Subformulas . 89
5.5 Forward Subsumption . 91
5.6 Proof Terms for the Inverse Method 91
5.7 Inverse Focusing . 92
5.8 Inverse Focusing with Negation 95
5.9 Exercises . 97

Draft of November 12, 1999

iv CONTENTS

6 Resolution 99
6.1 Forward Sequent Calculus . 99
6.2 Factoring . 104

7 Equality 107
7.1 Natural Deduction . 107
7.2 Sequent Calculus . 110

Bibliography 117

Draft of November 12, 1999

Chapter 1

Introduction

Logic is a science studying the principles of reasoning and valid inference. Au-
tomated deduction is concerned with the mechanization of formal reasoning,
following the laws of logic. The roots of the field go back to the end of the
last century when Frege developed his Begriffsschrift1, the first comprehensive
effort to develop a formal language suitable as a foundation for mathematics.
Alas, Russell discovered a paradox which showed that Frege’s system was in-
consistent, that is, the truth of every proposition can be derived in it. Russell
then devised his own system based on a type theory and he and Whitehead
demonstrated in the monumental Principia Mathematica how it can serve as a
foundation of mathematics. Later, Hilbert developed a simpler alternative, the
predicate calculus. Gentzen’s formulation of the predicate calculus in a system
of natural deduction provides a major milestone for the field. In natural deduc-
tion, the meaning of each logical connective is explained via inference rules, an
approach later systematically refined by Martin-Löf. This is the presentation
we will follow in these notes.

Gentzen’s seminal work also contains the first2 consistency proof for a for-
mal logical system. As a technical device he introduced the sequent calculus
and showed that it derives the same theorems as natural deduction. The fa-
mous Hauptsatz 3 establishes that all proofs in the sequent calculus can be found
according to a simple strategy. It is immediately evident that there are many
propositions which have no proof according to this strategy, thereby guarantee-
ing consistency of the system.

Most search strategies employed by automated deduction systems are either
directly based on or can be derived from the sequent calculus. We can broadly
classify procedures as either working backwards from the proposed theorem to-
ward the axioms, or forward from the axioms toward the theorem. Among the
backward searching procedures we find tableaux, connection methods, matrix
methods and some forms of resolution. Among the forward searching proce-

1literally translated as concept notation
2[?]
3literally just “main theorem”, often called the cut elimination theorem

Draft of November 12, 1999

2 Introduction

dures we find classical resolution and the inverse method. The prominence of
resolution among these methods is no accident, since Robinson’s seminal pa-
per represented a major leap forward in the state of the art. It is natural to
expect that a combination of forward and backward search could improve the
efficiency of theorem proving system. Such a combination, however, has been
elusive up to now, due to the largely incompatible basic choices in design and
implementation of the two kinds of search procedures.

In this course we study both types of procedures. We investigate high-level
questions, such as how these procedures relate to the basic sequent calculus. We
also consider low-level issues, such as techniques for efficient implementation of
the basic inference engine.

There is one further dimension to consider: which logic do we reason in?
In philosophy, mathematics, and computer science many different logics are of
interest. For example, there are classical logic, intuitionistic logic, modal logic,
relevance logic, higher-order logic, dynamic logic, temporal logic, linear logic,
belief logic, and lax logic (to mention just a few). While each logic requires
its own considerations, many techniques are shared. This can be attributed in
part to the common root of different logics in natural deduction and the sequent
calculus. Another reason is that low-level efficiency improvements are relatively
independent of higher-level techniques.

For this course we chose intuitionistic logic for a variety of reasons. First, in-
tuitionistic propositions correspond to logical specifications and proofs to func-
tional programs, which means intuitionistic logic is of central interest in the
study of programming languages. Second, intuitionistic logic is more complex
than classical logic and exhibits phenomena obscured by special properties which
apply only to classical logic. Third, there are relatively straightforward inter-
pretations of classical in intuitionistic logic which permits us to study logical
interpretations in connection with theorem proving procedures.

The course is centered around a project, namely the joint design and imple-
mentation of a succession of theorem provers for intuitionistic logic. We start
with natural deduction, followed by a sequent calculus, and a simple tableau
prover. Then we turn toward the inverse method and introduce successive re-
finements consisting of both high-level and low-level optimizations.4 The im-
plementation component is important to gain a deeper understanding of the
techniques introduced in our abstract study.

The goal of the course is to give students a thorough understanding of the
central techniques in automated theorem proving. Furthermore, they should
understand the systematic development of these techniques and their correct-
ness proofs, thereby enabling them to transfer methods to different logics or
applications. We are less interested here in an appreciation of the pragmatics
of highly efficient implementations or performance tuning.

4The precise order and extent of the improvements possible in a one-semester graduate
course has yet to be determined.

Draft of November 12, 1999

Chapter 2

Natural Deduction

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
,,Kalkül des natürlichen Schließens“.1

— Gerhard Gentzen
Untersuchungen über das logische Schließen [Gen35]

In this chapter we explore ways to define logics, or, which comes to the same
thing, ways to give meaning to logical connectives. Our fundamental notion is
that of a judgment based on evidence. For example, we might make the judg-
ment “It is raining” based on visual evidence. Or we might make the judgment
“‘A implies A’ is true for any proposition A” based on a derivation. The use
of the notion of a judgment as conceptual prior to the notion of proposition
has been advocated by Martin-Löf [ML85a, ML85b]. Certain forms of judg-
ments frequently recur and have therefore been investigated in their own right,
prior to logical considerations. Two that we will use are hypothetical judgments
and parametric jugments (the latter is sometimes called general judgment or
schematic judgment).

A hypothetical judgment has the form “J2 under hypothesis J1”. We con-
sider this judgment evident if we are prepared to make the judgment J2 once
provided with evidence for J1. Formal evidence for a hypothetical judgment
is a hypothetical derivation where we can freely use the hypothesis J1 in the
derivation of J2. Note that hypotheses need not be used, and could be used
more than once.

A parametric judgment has the form “J for any a” where a is a parameter
which may occur in J . We make this judgment if we are prepared to make the
judgment [O/a]J for arbitrary objects O of the right category. Here [O/a]J is
our notation for substituting the object O for parameter a in the judgment J .
Formal evidence for a parametric judgment J is a parametric derivation with
free occurrences of the parameter a.

1First I wanted to construct a formalism which comes as close as possible to actual rea-
soning. Thus arose a “calculus of natural deduction”.

Draft of November 12, 1999

4 Natural Deduction

Formal evidence for a judgment in form of a derivation is usually written in
two-dimensional notation:

D
J

ifD is a derivation of J . For the sake of brevity we sometimes use the alternative
notation D :: J . A hypothetical judgment is written as

u
J1

...
J2

where u is a label which identifies the hypothesis J1. We use the labels to
guarantee that hypotheses which are introduced during the reasoning process
are not used outside their scope.

The separation of the notion of judgment and proposition and the corre-
sponding separation of the notion of evidence and proof sheds new light on
various styles that have been used to define logical systems.

An axiomatization in the style of Hilbert [Hil22], for example, arises when
one defines a judgment “A is true” without the use of hypothetical judgments.
Such a definition is highly economical in its use of judgments, which has to
be compensated by a liberal use of implication in the axioms. When we make
proof structure explicit in such an axiomatization, we arrive at combinatory
logic [Cur30].

A categorical logic [LS86] arises when the basic judgment is not truth, but
entailment “A entails B”.2 Once again, presentations are highly economical
and do not need to seek recourse in complex judgment forms (at least for the
propositional fragment). But derivations often require many hypotheses, which
means that we need to lean rather heavily on conjunction here. Proofs are
realized by morphisms which are an integral part of the machinery of category
theory.

While these are interesting and in many ways useful approaches to logic
specification, neither of them comes particularly close to capturing the practice
of mathematical reasoning. This was Gentzen’s point of departure for the design
of a system of natural deduction [Gen35]. From our point of view, this system is
based on the simple judgment “A is true”, but relies critically on hypothetical
and parametric judgments. In addition to being extremely elegant, it has the
great advantage that one can define all logical connectives without reference to
any other connective. This principle of modularity extends to the meta-theoretic
study of natural deduction and simplifies considering fragments and extension of
logics. Since we will consider many fragments and extension, this orthogonality
of the logical connectives is a critical consideration. There is another advantage
to natural deduction, namely that its proofs are isomorphic to the terms in a λ-
calculus via the so-called Curry-Howard isomorphism [How69], which establishes
many connections to functional programming.

2[This has been disputed by practitioners of the field and should be re-evaluated.]

Draft of November 12, 1999

2.1 Intuitionistic Natural Deduction 5

Finally, we arrive at the sequent calculus (also introduced by Gentzen in his
seminal paper [Gen35]) when we split the single judgment of truth into two:
“A is an assumption” and “A is true”. While we still employ the machinery of
parametric and hypothetical judgments, we now need an explicit rule to state
that “A is an assumption” is sufficient evidence for “A is a true”. The reverse,
namely that if “A is true” then “A may be used as an assumption” is the Cut
rule which he proved to be redundant in his Hauptsatz. For Gentzen the sequent
calculus was primarily a technical device to prove consistency of his system of
natural deduction, but it exposes many details of the fine structure of proofs in
such a clear manner that many logic presentations employ sequent calculi. The
laws governing the structure of proofs, however, are more complicated than the
Curry-Howard isomorphism for natural deduction might suggest and are still
the subject of study [Her95, Pfe95].

We choose natural deduction as our definitional formalism as the purest
and most widely applicable. Later we justify the sequent calculus as a calculus
of proof search for natural deduction and explicitly relate the two forms of
presentation.

We begin by introducing natural deduction for intuitionistic logic, exhibiting
its basic principles.

2.1 Intuitionistic Natural Deduction

The system of natural deduction we describe below is basically Gentzen’s system
NJ [Gen35] or the system which may be found in Prawitz [Pra65]. The calculus
of natural deduction was devised by Gentzen in the 1930’s out of a dissatis-
faction with axiomatic systems in the Hilbert tradition, which did not seem to
capture mathematical reasoning practices very directly. Instead of a number of
axioms and a small set of inference rules, valid deductions are described through
inference rules only, which at the same time explain the meaning of the logical
quantifiers and connectives in terms of their proof rules.

A language of (first-order) terms is built up from variables x, y, etc., function
symbols f , g, etc., each with a unique arity, and parameters a, b, etc. in the usual
way.

Terms t ::= x | a | f(t1, . . . , tn)

A constant c is simply a function symbol with arity 0 and we write c instead of
c(). Exactly which function symbols are available is left unspecified in the gen-
eral development of predicate logic and only made concrete for specific theories,
such as the theory of natural numbers. However, variables and parameters are
always available. We will use t and s to range over terms.

The language of propositions is built up from predicate symbols P , Q, etc.
and terms in the usual way.

Propositions A ::= P (t1, . . . , tn) | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ¬A
| ⊥ | > | ∀x. A | ∃x. A

Draft of November 12, 1999

6 Natural Deduction

A propositional constant P is simply a predicate symbol with no arguments and
we write P instead of P (). We will use A, B, and C to range over propositions.
Exactly which predicate symbols are available is left unspecified in the general
development of predicate logic and only made concrete for specific theories.

The notions of free and bound variables in terms and propositions are defined
in the usual way: the variable x is bound in propositions of the form ∀x. A and
∃x. A. We use parentheses to disambiguate and assume that ∧ and ∨ bind
more tightly than ⊃. It is convenient to assume that propositions have no free
individual variables; we use parameters instead where necessary. Our notation
for substitution is [t/x]A for the result of substituting the term t for the variable
x in A. Because of the restriction on occurrences of free variables, we can assume
that t is free of individual variables, and thus capturing cannot occur.

The main judgment of natural deduction is “C is true” written as ` C, from
hypotheses ` A1, . . . , ` An. We will model this as a hypothetical judgment.
This means that certain structural properties of derivations are tacitly assumed,
independently of any logical inferences. In essence, these assumptions explain
what hypothetical judgments are.

Hypothesis. If we have a hypothesis ` A than we can conclude ` A.

Weakening. Hypotheses need not be used.

Duplication. Hypotheses can be used more than once.

Exchange. The order in which hypotheses are introduced is irrelevant.

In natural deduction each logical connective and quantifier is characterized
by its introduction rule(s) which specifies how to infer that a conjunction, dis-
junction, etc. is true. The elimination rule for the logical constant tells what
other truths we can deduce from the truth of a conjunction, disjunction, etc.
Introduction and elimination rules must match in a certain way in order to
guarantee that the rules are meaningful and the overall system can be seen as
capturing mathematical reasoning.

The first is a local soundness property: if we introduce a connective and
then immediately eliminate it, we should be able to erase this detour and find
a more direct derivation of the conclusion without using the connective. If this
property fails, the elimination rules are too strong: they allow us to conclude
more than we should be able to know.

The second is a local completeness property: we can eliminate a connective in
a way which retains sufficient information to reconstitute it by an introduction
rule. If this property fails, the elimination rules are too weak: they do not allow
us to conclude everything we should be able to know.

We provide evidence for local soundness and completeness of the rules by
means of local reduction and expansion judgments, which relate proofs of the
same proposition.

One of the important principles of natural deduction is that each connective
should be defined only in terms of inference rules without reference to other

Draft of November 12, 1999

2.1 Intuitionistic Natural Deduction 7

logical connectives or quantifiers. We refer to this as orthogonality of the con-
nectives. It means that we can understand a logical system as a whole by
understanding each connective separately. It also allows us to consider frag-
ments and extensions directly and it means that the investigation of properties
of a logical system can be conducted in a modular way.

We now show the introduction and elimination rules, local reductions and
expansion for each of the logical connectives in turn. The rules are summarized
on page 2.1.

Conjunction. A∧B should be true if both A and B are true. Thus we have
the following introduction rule.

` A ` B
∧I

` A ∧B

If we consider this as a complete definition, we should be able to recover both
A and B if we know A ∧B. We are thus led to two elimination rules.

` A ∧B ∧EL
` A

` A ∧B ∧ER
` B

To check our intuition we consider a deduction which ends in an introduction
followed by an elimination:

D
` A

E
` B

∧I
` A ∧B

∧EL
` A

Clearly, it is unnecessary to first introduce the conjunction and then eliminate it:
a more direct proof of the same conclusion from the same (or fewer) assumptions
would be simply

D
` A

Formulated as a transformation or reduction between derivations we have

D
` A

E
` B

∧I
` A ∧B

∧EL
` A

=⇒R
D
` A

and symmetrically

D
` A

E
` B

∧I
` A ∧B

∧ER
` B

=⇒R
E
` B

Draft of November 12, 1999

8 Natural Deduction

The new judgment
D
` A =⇒R

E
` A

relates derivations with the same conclusion. We say D locally reduces to E .
Since local reductions are possible for both elimination rules for conjunction,
our rules are locally sound. To show that the rules are locally complete we show
how to reintroduce a conjunction from its components in the form of a local
expansion.

D
` A ∧B =⇒E

D
` A ∧B

∧EL
` A

D
` A ∧B

∧ER
` B
∧I

` A ∧B

Implication. To derive ` A ⊃ B we assume ` A and then derive ` B.
Written as a hypothetical judgment:

u
` A
...
` B

⊃Iu

` A⊃ B

We must be careful that the hypothesis ` A is available only in the deriva-
tion above the premiss. We therefore label the inference with the name of the
hypothesis u, which must not be used already as the name for a hypothesis in
the derivation of the premiss. We say that the hypothesis ` A labelled u is
discharged at the inference labelled ⊃Iu. A derivation of ` A ⊃ B describes a
construction by which we can transform a derivation of ` A into a derivation
of ` B: we substitute the derivation of ` A wherever we used the assumption
` A in the hypothetical derivation of ` B. The elimination rule expresses this:
if we have a derivation of ` A ⊃ B and also a derivation of ` A, then we can
obtain a derivation of ` B.

` A⊃ B ` A
⊃E

` B

The local reduction rule carries out the substitution of derivations explained
above.

u
` A
D
` B

⊃Iu

` A⊃ B
E
` A

⊃E
` B

=⇒R

E
u

` A
D
` B

Draft of November 12, 1999

2.1 Intuitionistic Natural Deduction 9

The final derivation depends on all the hypotheses of E and D except u, for
which we have substituted E . An alternative notation for this substitution of
derivations for hypotheses is [E/u]D :: ` B. The local reduction described
above may significantly increase the overall size of the derivation, since the
deduction E is substituted for each occurrence of the assumption labeled u in
D and may thus be replicated many times. The local expansion simply rebuilds
the implication.

D
` A⊃ B =⇒E

D
` A⊃ B

u
` A
⊃E

` B
⊃Iu

` A⊃ B

Disjunction. A∨B should be true if either A is true or B is true. Therefore
we have two introduction rules.

` A ∨IL
` A ∨B

` B ∨IR
` A ∨B

If we have a hypothesis ` A ∨ B, we do not know how it might be inferred.
That is, a proposed elimination rule

` A ∨B
?

` A

would be incorrect, since a deduction of the form

E
` B

∨IR
` A ∨B

?
` A

cannot be reduced. As a consequence, the system would be inconsistent: if we
have at least one theorem (B, in the example) we can prove every formula (A,
in the example). How do we use the assumption A ∨B in informal reasoning?
We often proceed with a proof by cases: we prove a conclusion C under the
assumption A and also show C under the assumption B. We then conclude
C, since either A or B by assumption. Thus the elimination rule employs two
hypothetical judgments.

` A ∨B

u
` A
...
` C

w
` B
...
` C

∨Eu,w
` C

Draft of November 12, 1999

10 Natural Deduction

Now one can see that the introduction and elimination rules match up in two
reductions. First, the case that the disjunction was inferred by ∨IL.

D
` A

∨IL
` A ∨B

u
` A
E1
` C

w
` B
E2
` C

∨Eu,w
` C

=⇒R

D
u

` A
E1
` C

The other reduction is symmetric.

D
` B

∨IR
` A ∨B

u
` A
E1
` C

w
` B
E2
` C

∨Eu,w
` C

=⇒R

D
w

` B
E2
` C

As in the reduction for implication, the resulting derivation may be longer than
the original one. The local expansion is more complicated than for the previous
connectives, since we first have to distinguish cases and then reintroduce the
disjunction in each branch.

D
` A ∨B =⇒E

D
` A ∨B

u
` A

∨IL
` A ∨B

w
` B

∨IR
` A ∨B

∨Eu,w
` A ∨B

Negation. In order to derive ¬A we assume A and try to derive a contra-
diction. Thus it seems that negation requires falsehood, and, indeed, in most
literature on constructive logic, ¬A is seen as an abbreviation of A ⊃ ⊥. In
order to give a self-contained explanation of negation by an introduction rule,
we employ a judgment that is parametric in a propositional parameter p: If we
can derive any p from the hypothesis A we conclude ¬A.

u
` A
...
` p

¬Ip,u

` ¬A
` ¬A ` A

¬E
` C

Draft of November 12, 1999

2.1 Intuitionistic Natural Deduction 11

The elimination rule follows from this view: if we know ` ¬A and ` A then
we can conclude any formula C is true. In the form of a local reduction:

u
` A
D
` p

¬Ip,u
` ¬A

E
` A

¬E
` C

=⇒R

E
u

` A
[C/p]D
` C

The substitution [C/p]D is valid, since D is parametric in p. The local expansion
is similar to the case for implication.

D
` ¬A =⇒E

D
` ¬A

u
` A
¬E

` p
¬Ip,u

` ¬A

Truth. There is only an introduction rule for >:

>I
` >

Since we put no information into the proof of >, we know nothing new if we
have an assumption > and therefore we have no elimination rule and no local
reduction. It may also be helpful to think of > as a 0-ary conjunction: the
introduction rule has 0 premisses instead of 2 and we correspondingly have 0
elimination rules instead of 2. The local expansion allows the replacement of
any derivation of > by >I.

D
` > =⇒E >I

` >

Falsehood. Since we should not be able to derive falsehood, there is no in-
troduction rule for ⊥. Therefore, if we can derive falsehood, we can derive
everything.

` ⊥
⊥E

` C

Note that there is no local reduction rule for ⊥E. It may be helpful to think
of ⊥ as a 0-ary disjunction: we have 0 instead of 2 introduction rules and we
correspondingly have to consider 0 cases instead of 2 in the elimination rule.
Even though we postulated that falsehood should not be derivable, falsehood
could clearly be a consequence of contradictory assumption. For example, `

Draft of November 12, 1999

12 Natural Deduction

A ∧ ¬A⊃⊥ is derivable. While there is no local reduction rule, there still is a
local expansion in analogy to the case for disjunction.

D
` ⊥ =⇒E

D
` ⊥

⊥E
` ⊥

Universal Quantification. Under which circumstances should ` ∀x. A be
true? This clearly depends on the domain of quantification. For example, if we
know that x ranges over the natural numbers, then we can conclude ∀x. A if we
can prove [0/x]A, [1/x]A, etc. Such a rule is not effective, since it has infinitely
many premisses. Thus one usually retreats to rules such as induction. However,
in a general treatment of predicate logic we would like to prove statements
which are true for all domains of quantification. Thus we can only say that
∀x. A should be provable if [a/x]A is provable for a new parameter a about
which we can make no assumption. Conversely, if we know ∀x. A, we know that
[t/x]A for any term t.

` [a/x]A
∀Ia

` ∀x. A
` ∀x. A

∀E
` [t/x]A

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in any undischarged assumption in the proof
of [a/x]A or in ∀x. A itself. In other words, the derivation of the premiss must
be parametric in a. The local reduction carries out the substitution for the
parameter.

D
` [a/x]A

∀I
` ∀x. A

∀E
` [t/x]A

=⇒R
[t/a]D
` [t/x]A

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in A. Similarly, we would change
the hypotheses if a occurred free in any of the undischarged hypotheses of D.
This might render a larger proof incorrect. As an example, consider the formula
∀x. ∀y. P (x)⊃ P (y) which should clearly not be true for all predicates P . The

Draft of November 12, 1999

2.1 Intuitionistic Natural Deduction 13

following is not a deduction of this formula.

u
` P (a)

∀Ia?
` ∀x. P (x)

∀E
` P (b)

⊃Iu

` P (a)⊃ P (b)
∀Ib

` ∀y. P (a)⊃ P (y)
∀Ia

` ∀x. ∀y. P (x)⊃ P (y)

The flaw is at the inference marked with “?,” where a is free in the hypothesis
labelled u. Applying a local proof reduction to the (incorrect) ∀I inference
followed by ∀E leads to the the assumption [b/a]P (a) which is equal to P (b).
The resulting derivation

u
` P (b)

⊃Iu

` P (a)⊃ P (b)
∀Ib

` ∀y. P (a)⊃ P (y)
∀Ia

` ∀x. ∀y. P (x)⊃ P (y)

is once again incorrect since the hypothesis labelled u should read P (a), not
P (b).

The local expansion for universal quantification is much simpler.

D
` ∀x. A =⇒E

D
` ∀x. A

∀E
` [a/x]A

∀Ia
` ∀x. A

Existential Quantification. We conclude that ∃x. A is true when there is a
term t such that [t/x]A is true.

` [t/x]A
∃I

` ∃x. A

When we have an assumption ∃x. A we do not know for which t it is the case
that [t/x]A holds. We can only assume that [a/x]A holds for some parameter
a about which we know nothing else. Thus the elimination rule resembles the

Draft of November 12, 1999

14 Natural Deduction

one for disjunction.

` ∃x. A

u
` [a/x]A

...
` C

∃Ea,u
` C

The restriction is similar to the one for ∀I: the parameter a must be new, that is,
it must not occur in ∃x. A, C, or any assumption employed in the derivation of
the second premiss. In the reduction rule we have to perform two substitutions:
we have to substitute t for the parameter a and we also have to substitute for
the hypothesis labelled u.

D
` [t/x]A

∃I
∃x. A

u
` [a/x]A
E
` C

∃Ea,u
` C

=⇒R

D
u

` [t/x]A
[t/a]E
` C

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]E have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

D
` ∃x. A =⇒E

D
` ∃x. A

u
` [a/x]A

∃I
` ∃x. A

∃Ea,u
` ∃x. A

Here is a simple example of a natural deduction. We attempt to show the
process by which such a deduction may have been generated, as well as the
final deduction. The three vertical dots indicate a gap in the derivation we are
trying to construct, with hypotheses and their consequences shown above and
the desired conclusion below the gap.

...
` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

...
` B

⊃Iu

` A ∧ (A⊃ B) ⊃B

Draft of November 12, 1999

2.1 Intuitionistic Natural Deduction 15

;

u
` A ∧ (A ⊃B)

∧EL
` A
...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A ⊃B)

∧EL
` A

u
` A ∧ (A ⊃B)

∧ER
` A⊃ B

...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

∧ER
` A⊃ B

u
` A ∧ (A ⊃B)

∧EL
` A
⊃E

` B
...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

∧ER
` A⊃ B

u
` A ∧ (A ⊃B)

∧EL
` A
⊃E

` B
⊃Iu

` A ∧ (A ⊃B) ⊃ B

The symbols A and B in this derivation stand for arbitrary propositions; we
can thus established a judgment parametric in A and B. In other words, every
instance of this derivation (substituting arbitrary propositions for A and B) is
a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction.

Draft of November 12, 1999

16 Natural Deduction

Introduction Rules Elimination Rules

` A ` B
∧I

` A ∧B
` A ∧B ∧EL
` A

` A ∧B ∧ER
` B

` A ∨IL
` A ∨B

` B ∨IR
` A ∨B

` A ∨B

u
` A
...
` C

w
` B

...
` C

∨Eu,w
` C

u
` A
...
` B

⊃Iu

` A⊃ B
` A⊃ B ` A

⊃E
` B

u
` A
...
` p

¬Ip,u
` ¬A

` ¬A ` A
¬E

` C

>I
` > no > elimination

no ⊥ introduction

` ⊥
⊥E

` C

` [a/x]A
∀Ia

` ∀x. A
` ∀x. A

∀E
` [t/x]A

` [t/x]A
∃I

` ∃x. A

` ∃x. A

u
` [a/x]A

...
` C

∃Ea,u
` C

Draft of November 12, 1999

2.2 Classical Logic 17

2.2 Classical Logic

The inference rules so far only model intuitionistic logic, and some classically
true propositions such as A ∨ ¬A (for an arbitrary A) are not derivable, as we
will see in Section 3.5. There are three commonly used ways one can construct a
system of classical natural deduction by adding one additional rule of inference.
⊥C is called Proof by Contradiction or Rule of Indirect Proof, ¬¬C is the Double
Negation Rule, and XM is referred to as Excluded Middle.

u
¬A

...
⊥
⊥uC

A

¬¬A ¬¬C
A

XM
A ∨ ¬A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions
for classical inferences, but natural deduction is at heart an intuitionistic cal-
culus. The symmetries of classical logic are much better exhibited in sequent
formulations of the logic. In Exercise 2.3 we explore the three ways of extending
the intuitionistic proof system and show that they are equivalent.

Another way to obtain a natural deduction system for classical logic is to
allow multiple conclusions (see, for example, Parigot [Par92]).

2.3 Localizing Hypotheses

In the formulation of natural deduction from Section 2.1 correct use of hypothe-
ses and parameters is a global property of a derivation. We can localize it by
annotating each judgment in a derivation by the available parameters and hy-
potheses. We give here a formulation of natural deduction for intuitionistic logic
with localized hypotheses, but not parameters. For this we need a notation for
hypotheses which we call a context.

Contexts Γ ::= · | Γ, u:A

Here, “·” represents the empty context, and Γ, u:A adds hypothesis ` A labelled
u to Γ. We assume that each label u occurs at most once in a context in order
to avoid ambiguities. The main judgment can then be written as Γ ` A, where

·, u1:A1, . . . , un:An ` A

stands for
u1

` A1 . . .
un

` An
...
` A

Draft of November 12, 1999

18 Natural Deduction

in the notation of Section 2.1.
We use a few important abbreviations in order to make this notation less

cumbersome. First of all, we may omit the leading “·” and write, for example,
u1:A1, u2:A2 instead of ·, u1:A1, u2:A2. Secondly, we denote concatenation of
contexts by overloading the comma operator as follows.

Γ, · = Γ
Γ, (Γ′, u:A) = (Γ,Γ′), u:A

With these additional definitions, the localized version of our rules are as
follows.

Introduction Rules Elimination Rules

Γ ` A Γ ` B
∧I

Γ ` A ∧B
Γ ` A ∧B ∧EL

Γ ` A
Γ ` A ∧B ∧ER

Γ ` B

Γ ` A ∨IL
Γ ` A ∨B

Γ ` B ∨IR
Γ ` A ∨B

Γ ` A ∨B Γ, u:A ` C Γ, w:B ` C
∨Eu,w

Γ ` C

Γ, u:A ` B
⊃Iu

Γ ` A⊃ B
Γ ` A ⊃B Γ ` A

⊃E
Γ ` B

Γ, u:A ` p
¬Ip,u

Γ ` ¬A
Γ ` ¬A Γ ` A

¬E
Γ ` C

>I
Γ ` > no > elimination

no ⊥ introduction

Γ ` ⊥
⊥E

Γ ` C

Γ ` [a/x]A
∀Ia

Γ ` ∀x. A
Γ ` ∀x. A

∀E
Γ ` [t/x]A

Γ ` [t/x]A
∃I

Γ ` ∃x. A

Γ ` ∃x. A Γ, u:[a/x]A ` C
∃Ea,u

Γ ` C

We also have a new rule for hypotheses which was an implicit property of the
hypothetical judgments before.

u
Γ1, u:A,Γ2 ` A

Other general assumptions about hypotheses, namely that they may be used ar-
bitrarily often in a derivation and that their order does not matter, are indirectly

Draft of November 12, 1999

2.3 Localizing Hypotheses 19

reflected in these rules. Note that if we erase the context Γ from the judgments
throughout a derivation, we obtain a derivation in the original notation.

When we discussed local reductions in order to establish local soundness, we
used the notation

D
u

` A
E
` C

for the result of substituting the derivation D of ` A for all uses of the hy-
pothesis ` A labelled u in E . We would now like to reformulate the property
with localized hypotheses. In order to prove that the (now explicit) hypotheses
behave as expected, we use the principle of structural induction over derivations.
Simply put, we prove a property for all derivations by showing that, whenever
it holds for the premisses of an inference, it holds for the conclusion. Note that
we have to show the property outright when the rule under consideration has
no premisses. Such rules are the base cases for the induction.

Theorem 2.1 (Structural Properties of Hypotheses) The following prop-
erties hold for intuitionistic natural deduction.

1. (Exchange) If Γ1, u1:A,Γ2, u2:B,Γ3 ` C then Γ1, u2:B,Γ2, u1:A,Γ3 ` C.

2. (Weakening) If Γ1,Γ2 ` C then Γ1, u:A,Γ2 ` C.

3. (Contraction) If Γ1, u1:A,Γ2, u2:A,Γ3 ` C then Γ1, u:A,Γ2,Γ3 ` C.

4. (Substitution) If Γ1, u:A,Γ2 ` C and Γ1 ` A then Γ1,Γ2 ` C.

Proof: The proof is in each case by straightforward induction over the structure
of the first given derivation.

In the case of exchange, we appeal to the inductive assumption on the deriva-
tions of the premisses and construct a new derivation with the same inference
rule. Algorithmically, this means that we exchange the hypotheses labelled u1

and u2 in every judgment in the derivation.
In the case of weakening and contraction, we proceed similarly, either adding

the new hypothesis u:A to every judgment in the derivation (for weakening), or
replacing uses of u1 and u2 by u (for contraction).

For substitution, we apply the inductive assumption to the premisses of the
given derivation D until we reach hypotheses. If the hypothesis is different from
u we can simply erase u:A (which is unused) to obtain the desired derivation.
If the hypothesis is u:A the derivation looks like

D =
u

Γ1, u:A,Γ2 ` A

so C = A in this case. We are also given a derivation E of Γ1 ` A and have
to construct a derivation F of Γ1,Γ2 ` A. But we can just repeatedly apply
weakening to E to obtain F . Algorithmically, this means that, as expected, we

Draft of November 12, 1999

20 Natural Deduction

substitute the derivation E (possibly weakened) for uses of the hypotheses u:A
in D. Note that in our original notation, this weakening has no impact, since
unused hypotheses are not apparent in a derivation. 2

It is also possible to localize the derivations themselves, using proof terms.
As we will see in Section 2.4, these proof terms form a λ-calculus closely related
to functional programming. When parameters, hypotheses, and proof terms
are all localized our main judgment becomes decidable. In the terminology of
Martin-Löf [ML94], the main judgment is then analytic rather than synthetic.
We no longer need to go outside the judgment itself in order to collect evidence
for it: An analytic judgment encapsulates its own evidence.

2.4 Proof Terms

The basic judgment of the system of natural deduction is the derivability of a
formula A, written as ` A. It has been noted by Howard [How69] that there is
a strong correspondence between (intuitionistic) derivations and λ-terms. The
formulas A then act as types classifying λ-terms. In the propositional case,
this correspondence is an isomorphism: formulas are isomorphic to types and
derivations are isomorphic to simply-typed λ-terms. These isomorphisms are
often called the propositions-as-types and proofs-as-programs paradigms.

If we stopped at this observation, we would have obtained only a fresh inter-
pretation of familiar deductive systems, but we would not be any closer to the
goal of providing a language for reasoning about properties of programs. How-
ever, the correspondences can be extended to first-order and higher-order logics.
Interpreting first-order (or higher-order) formulas as types yields a significant
increase in expressive power of the type system. However, maintaining an iso-
morphism during the generalization to first-order logic is somewhat unnatural
and cumbersome. One might expect that a proof contains more information
than the corresponding program. Thus the literature often talks about extract-
ing programs from proofs or contracting proofs to programs. We do not discuss
program extraction further in these notes.

We now introduce a notation for derivations to be carried along in deduc-
tions. For example, if M represents a proof of A and N represents a proof of B,
then the pair 〈M,N〉 can be seen as a representation of the proof of A ∧ B by
∧-introduction. We write Γ `M : A to express the judgment M is a proof term
for A under hypotheses Γ. We also repeat the local reductions and expansions
from the previous section in the new notation. For local expansion we state the
proposition whose truth must established by the proof term on the left-hand
side. This expresses restrictions on the application of the expansion rules.

Draft of November 12, 1999

2.4 Proof Terms 21

Conjunction. The proof term for a conjunction is simply the pair of proofs
of the premisses.

Γ `M : A Γ ` N : B
∧I

Γ ` 〈M,N〉 : A ∧B

Γ `M : A ∧B ∧EL
Γ ` fstM : A

Γ `M : A ∧B ∧ER
Γ ` sndM : B

The local reductions now lead to two obvious local reductions of the proof terms.
The local expansion is similiarly translated.

fst 〈M,N〉 −→R M
snd 〈M,N〉 −→R N

M : A ∧B −→E 〈fstM, sndM〉

Implication. The proof of an implication A ⊃ B will be represented by a
function which maps proofs of A to proofs of B. The introduction rule explicitly
forms such a function by λ-abstraction and the elimination rule applies the
function to an argument.

Γ, u:A `M : B
⊃Iu

Γ ` (λu:A. M) : A⊃ B
Γ `M : A ⊃B Γ ` N : A

⊃E
Γ `MN : B

The binding of the variable u in the conclusion of ⊃I correctly models the
intuition that the hypothesis is discharged and not available outside deduction
of the premiss. The abstraction is labelled with the proposition A so that we
can later show that the proof term uniquely determines a natural deduction. If
A were not given then, for example, λu. u would be ambigous and serve as a
proof term for A⊃A for any formula A. The local reduction rule is β-reduction;
the local expansion is η-expansion.

(λu:A. M)N −→R [N/u]M

M : A⊃ B −→E λu:A. M u

In the reduction rule, bound variables in M that are free in N must be renamed
in order to avoid variable capture. In the expansion rule u must be new—it
may not already occur in M .

Disjunction. The proof term for disjunction introduction is the proof of the
premiss together with an indication whether it was inferred by introduction on
the left or on the right. We also annotate the proof term with the formula
which did not occur in the premiss so that a proof term always proves exactly
one proposition.

Γ `M : A ∨IL

Γ ` inlBM : A ∨B
Γ ` N : B ∨IR

Γ ` inrAN : A ∨B

Draft of November 12, 1999

22 Natural Deduction

The elimination rule corresponds to a case construction.

Γ `M : A ∨B Γ, u:A ` N1 : C Γ, w:B ` N2 : C
∨Eu,w

Γ ` (case M of inlu⇒ N1 | inrw⇒ N2) : C

Since the variables u and w label assumptions, the corresponding proof term
variables are bound in N1 and N2, respectively. The two reduction rules now
also look like rules of computation in a λ-calculus.

case inlBM of inlu⇒ N1 | inrw ⇒ N2 −→R [M/u]N1

case inrAM of inlu⇒ N1 | inrw ⇒ N2 −→R [M/w]N2

M : A ∨B −→E case M of inlu⇒ inlB u | inrw⇒ inrAw

The substitution of a deduction for a hypothesis is represented by the substitu-
tion of a proof term for a variable.

Negation. This is similar to implication. Since the premise of the rule is
parametric in p the corresponding proof constructor must bind a propositional
variable p, indicated by µp. Similarly, the elimination construct must record
the formula to maintain the property that every valid term proves exactly one
proposition. This is indicated as a subscript C to the infix operator “·”.

Γ, u:A `M : p
¬Ip,u

Γ ` µpu:A. M : ¬A
Γ `M : ¬A Γ ` N : A

¬E
Γ `M ·C N : C

The reduction performs formula and proof term substitutions.

(µpu:A. M) ·C N −→R [N/u][C/p]M

M : ¬A −→E µpu:A. M ·p u

Truth. The proof term for >I is written 〈 〉.

>I
Γ ` 〈 〉 : >

Of course, there is no reduction rule. The expansion rule reads

M : > −→E 〈 〉

Falsehood. Here we need to annotate the proof term abort with the formula
being proved to avoid ambiguity.

Γ `M : ⊥
⊥E

Γ ` abortCM : C

Again, there is no reduction rule, only an expansion rule.

M : ⊥ −→E abort⊥M

Draft of November 12, 1999

2.4 Proof Terms 23

In summary, we have

Terms M ::= u Hypotheses
| 〈M1,M2〉 | fstM | sndM Conjunction
| λu:A. M |M1 M2 Implication

| inlAM | inrAM Disjunction
| (case M of inlu1 ⇒M1 | inru2⇒ M2)
| µpu:A. M |M1 ·AM2 Negation
| 〈 〉 Truth

| abortAM Falsehood

and the reduction rules

fst 〈M,N〉 −→R M
snd 〈M,N〉 −→R N

(λu:A. M)N −→R [N/u]M

case inlBM of inlu⇒ N1 | inrw⇒ N2 −→R [M/u]N1

case inrAM of inlu⇒ N1 | inrw⇒ N2 −→R [M/w]N2

(µpu:A. M) ·C N −→R [N/u][C/p]M
no rule for truth

no rule for falsehood

The expansion rules are given below.

M : A ∧B −→E 〈fstM, sndM〉
M : A⊃ B −→E λu:A. M u

M : A ∨B −→E case M of inlu⇒ inlB u | inrw⇒ inrAw
M : ¬A −→E µpu:A. M ·p u
M : > −→E 〈 〉
M : ⊥ −→E abort⊥M

We can now see that the formulas act as types for proof terms. Shifting to
the usual presentation of the typed λ-calculus we use τ and σ as symbols for
types, and τ ×σ for the product type, τ → σ for the function type, τ +σ for the
disjoint sum type, 1 for the unit type and 0 for the empty or void type. Base
types b remain unspecified, just as the basic propositions of the propositional
calculus remain unspecified. Types and propositions then correspond to each
other as indicated below.

Types τ ::= b | τ1 × τ2 | τ1 → τ2 | τ1 + τ2 | 1 | 0
Propositions A ::= p | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | > | ⊥

We omit here the negation type which is typically not used in functional
programming and thus does not have a well-known counterpart. We can think
of ¬A as corresponding to τ → 0, where τ corresponds to A. We now summarize
and restate the rules above, using the notation of types instead of propositions
(omitting only the case for negation). Note that contexts Γ now declare variables
with their types, rather than hypothesis labels with their proposition.

Draft of November 12, 1999

24 Natural Deduction

Γ . M : τ Term M has type τ in context Γ

Γ . M : τ Γ . N : σ
pair

Γ . 〈M,N〉 : τ × σ

Γ . M : τ × σ
fst

Γ . fstM : τ

Γ . M : τ × σ
snd

Γ . sndM : σ

Γ, u:τ . M : σ
lam

Γ . (λu:τ. M) : τ → σ

u : τ in Γ
var

Γ . u : τ

Γ . M : τ → σ Γ . N : τ
app

Γ . M N : σ

Γ . M : τ
inl

Γ . inlσM : τ + σ

Γ . N : σ
inr

Γ . inrτ N : τ + σ

Γ . M : τ + σ Γ, u:τ . N1 : ν Γ, w:σ . N2 : ν
case

Γ . (case M of inlu⇒ N1 | inrw ⇒ N2) : ν

unit
Γ . 〈 〉 : 1

Γ . M : 0
abort

Γ . abortνM : ν

2.5 Exercises

Exercise 2.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that ⊃, ∧, and ∨ associate to the
right, that is, A⊃B⊃C stands for A⊃(B⊃C). A ≡ B is a syntactic abbreviation
for (A ⊃ B) ∧ (B ⊃ A). Also, we assume that ∧ and ∨ bind more tightly than
⊃, that is, A∧B⊃C stands for (A∧B)⊃C. The scope of a quantifier extends
as far to the right as consistent with the present parentheses. For example,
(∀x. P (x)⊃ C) ∧ ¬C would be disambiguated to (∀x. (P (x)⊃C)) ∧ (¬C).

1. ` A⊃ B ⊃ A.

2. ` A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

3. (Peirce’s Law). ` ((A⊃ B) ⊃A) ⊃A.

4. ` A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

5. ` A⊃ (A ∧B) ∨ (A ∧ ¬B).

6. ` (A⊃ ∃x. P (x)) ≡ ∃x. (A ⊃ P (x)).

7. ` ((∀x. P (x))⊃C) ≡ ∃x. (P (x)⊃C).

Draft of November 12, 1999

2.5 Exercises 25

8. ` ∃x. ∀y. (P (x)⊃ P (y)).

Exercise 2.2 We write A ` B if B follows from hypothesis A and A a` B
for A ` B and B ` A. Which of the following eight parametric judgments are
derivable intuitionistically?

1. (∃x. A)⊃ B a` ∀x. (A ⊃B)

2. A⊃ (∃x. B) a` ∃x. (A ⊃B)

3. (∀x. A)⊃ B a` ∃x. (A ⊃B)

4. A⊃ (∀x. B) a` ∀x. (A ⊃B)

Provide natural deductions for the valid judgments. You may assume that the
bound variable x does not occur in B (items 1 and 3) or A (items 2 and 4).

Exercise 2.3 Show that the three ways of extending the intuitionistic proof
system for classical logic are equivalent, that is, the same formulas are deducible
in all three systems.

Exercise 2.4 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives.
In the classical system, give a definition of disjunction and existential quantifi-
cation (in terms of other logical constants) and show that the introduction and
elimination rules now become admissible rules of inference. A rule of inference is
admissible if any deduction using the rule can be transformed into one without
using the rule.

Exercise 2.5 Assume we would like to design a system of natural deduction
for a simple temporal logic. The main judgment is now “A is true at time t”
written as

`t A.

1. Explain how to modify the given rules for natural deduction to this more
general judgment and show the rules for implication and universal quan-
tification.

2. Write out introduction and elimination rules for the temporal operator
©A which should be true if A is true at the next point in time. Denote
the “next time after t” by t + 1.

3. Show the local reductions and expansions which show the local soundness
and completness of your rules.

4. Write out introduction and elimination rules for the temporal operator
2A which should be true if A is true at all times.

5. Show the local reductions and expansions.

Exercise 2.6 Design introduction and elimination rules for the connectives

Draft of November 12, 1999

26 Natural Deduction

1. A ≡ B, usually defined as (A⊃ B) ∧ (B ⊃A),

2. A | B (exclusive or), usually defined as (A ∧ ¬B) ∨ (¬A ∧B),

without recourse to other logical constants or operators. Also show the corre-
sponding local reductions and expansions. For each of the following proposed
connectives, write down appropriate introduction and eliminations rules and
show the local reductions and expansion or indicate that no such rule may ex-
ist.

3. A∧B for ¬(A ∧B),

4. A∨B for ¬(A ∨B),

5. A⊃B for ¬(A⊃B),

6. +A for ¬¬A,

7. ∃∗x. A for ¬∀x. ¬A,

8. ∀∗x. A for ¬∃x. ¬A,

9. A⇒ B | C for (A ⊃B) ∧ (¬A⊃ C).

Exercise 2.7 A given introduction rule does not necessarily uniquely determine
matching elimination rules and vice versa. Explore if the following alternative
rules are also sound and complete.

1. Replace the two elimination rules for conjunction by

` A ∧B

u
` A

w
` B

...
` C

∧Eu,w
` C

2. Add the following elimination rule for truth.

` > ` C
>E

` C

3. Add the following introduction rule for falsehood.

` p
⊥Ip

` ⊥

Consider if any other of the standard connectives might permit alternative in-
troduction or elimination rules which preserve derivability.

Draft of November 12, 1999

2.5 Exercises 27

Exercise 2.8 For each of 14 following proposed entailments either write out a
proof term for the corresponding implication or indicate that it is not derivable.

1. A⊃ (B ⊃C) a` (A ∧B) ⊃ C

2. A⊃ (B ∧ C) a` (A ⊃B) ∧ (A⊃ C)

3. A⊃ (B ∨ C) a` (A ⊃B) ∨ (A⊃ C)

4. (A⊃ B) ⊃C a` (A ∨ C) ∧ (B ⊃ C)

5. (A ∨B) ⊃ C a` (A ⊃C) ∧ (B ⊃ C)

6. A ∧ (B ∨ C) a` (A ∧B) ∨ (A ∧ C)

7. A ∨ (B ∧ C) a` (A ∨B) ∧ (A ∨ C)

Exercise 2.9 The de Morgan laws of classical logic allow negation to be dis-
tributed over other logical connectives. Investigate which directions of the de
Morgan equivalences hold in intuitionistic logic and give proof terms for the
valid entailments.

1. ¬(A ∧B) a` ¬A ∨ ¬B

2. ¬(A ∨B) a` ¬A ∧ ¬B

3. ¬(A⊃ B) a` A ∧ ¬B

4. ¬(¬A) a` A

5. ¬> a` ⊥

6. ¬⊥ a` >

7. ¬∀x. A a` ∃x. ¬A

8. ¬∃x. A a` ∀x. ¬A

Exercise 2.10 An alternative approach to negation is to introduce another
judgment, A is false, and develop a system of evidence for this judgment. For
example, we might say that A ∧ B is false if either A is false or B is false.
Similarly, A∨B is false if both A and B are false. Expressed as inference rules:

A false

A ∧B false

B false

A ∧B false

A false B false

A ∨B false

1. Write out a complete set of rules defining the judgment A false for the
conjunction, implication, disjunction, truth, and falsehood.

2. Verify local soundness and completeness of your rules, if these notions
make sense.

Draft of November 12, 1999

28 Natural Deduction

3. Now we define that ¬A true if A false. Complete the set of rules and
verify soundness and completeness if appropriate.

4. Does your system satisfy that every proposition A is either true or false?
If so, prove it. Otherwise, show a counterexample.

5. Compare this notion of negation with the standard notion in intuitionistic
logic.

6. Extend your system to include universal and existential quantification (if
possible) and discuss its properties.

Draft of November 12, 1999

Chapter 3

Sequent Calculus

In this chapter we develop the sequent calculus as a formal system for proof
search in natural deduction. The sequent calculus was originally introduced
by Gentzen [Gen35], primarily as a technical device for proving consistency of
predicate logic. Our goal of describing a proof search procedure for natural
deduction predisposes us to a formulation due to Kleene [Kle52] called G3.

We introduce the sequent calculus in two steps. The first step is based
on the simple strategy of building a natural deduction by using introduction
rules bottom-up and elimination rules top-down. The result is an intercalation
calculus which applies both to intuitionistic and classical logic [Byr99]. The
second step consists of reformulating the rules for intercalation so that both
forms of rules work bottom-up, resulting in the sequent calculus.

We also show how intercalation derivations lead to more compact proof
terms, and how to extract proof terms from sequent calculus derivations.

3.1 Intercalation

A simple strategy in the search for a natural deduction is to use introduction
rules reasoning bottom-up (from the proposed theorem towards the hypotheses)
and the elimination rules top-down (from the assumptions towards the proposed
theorem). When they meet in the middle we have found a normal deduction.
Towards the end of this chapter we show that this strategy is in fact complete: if
a proposition A has a natural deduction then it has a normal deduction. First,
however, we need to make this strategy precise.

A general technique for representing proof search strategies is to introduce
new judgments which permit only those derivations which can be found by
the intended strategy. We then prove the correctness of the new, restricted
judgments by appropriate soundness and completeness theorems.

In this case, we introduce two judgments:
A ⇑ Proposition A has a normal deduction, and
A ↓ Proposition A is extracted from a hypothesis.

Draft of November 12, 1999

30 Sequent Calculus

They are defined by restricting the rules of natural deduction according to
their status as introduction or elimination rules. Hypotheses can be trivially
extracted. Therefore the necessary hypothetical judgments (in localized form,
see Section 2.3) are

u1:A1 ↓, . . . , un:An ↓ ` A ⇑ and
u1:A1 ↓, . . . , un:An ↓ ` A ↓.

We write Γ↓ for a context of the form shown above.

Hypotheses. The general rule for hypotheses simply reflects the nature of
hypothetical judgments.

u
Γ↓1, u:A ↓,Γ↓2 ` A ↓

Coercion. The bottom-up and top-down derivations must be able to meet in
the middle.

Γ↓ ` A ↓
↓⇑

Γ↓ ` A ⇑
Looked at another way, this rule allows us to coerce any extraction derivation
to a normal deduction. Of course, the opposite coercion would contradict the
intended strategy.

Conjunction. The rules for conjunction exhibit no unexpected features: the
introduction rule is classified as a bottom-up rule, the elimination rule is classi-
fied as a top-down rule.

Γ↓ ` A ⇑ Γ↓ ` B ⇑
∧I

Γ↓ ` A ∧B ⇑

Γ↓ ` A ∧B ↓
∧EL

Γ↓ ` A ↓

Γ↓ ` A ∧B ↓
∧ER

Γ↓ ` B ↓

Truth. For truth, there is only an introduction rule which is classified as
normal.

>I
Γ↓ ` > ⇑

Implication. The introduction rule for implication is straightforward. In the
elimination rule we require that the the second premise is normal. It is only the
first premise (whose primary connective is eliminated in this rule) which must
be extracted from a hypothesis.

Γ↓, u:A ↓ ` B ⇑
⊃Iu

Γ↓ ` A⊃ B ⇑

Γ↓ ` A⊃ B ↓ Γ↓ ` A ⇑
⊃E

Γ↓ ` B ↓

Draft of November 12, 1999

3.1 Intercalation 31

Disjunction. The introduction rules for disjunction are straightforward. For
the elimination rule, again the premise with the connective which is eliminated
must have a top-down derivation. The new assumptions in each branch also are
top-down derivations. Overall, for the derivation to be normal we must require
the derivations of both premises to be normal.

Γ↓ ` A ⇑
∨IL

Γ↓ ` A ∨B ⇑

Γ↓ ` B ⇑
∨IR

Γ↓ ` A ∨B ⇑

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ⇑ Γ↓, w:B ↓ ` C ⇑
∨Eu,w

Γ↓ ` C ⇑

It would also be consistent to allow the derivations of C to be extractions, but
it is not necessary to obtain a complete search procedure and complicates the
relation to the sequent calculus (see Exercise 3.1).

Falsehood. Falsehood corresponds to a disjunction with no alternatives. There-
fore there is no introduction rule, and the elimination rule has no cases. This
consideration yields

Γ↓ ` ⊥ ↓
⊥E.

Γ↓ ` C ⇑
For this rule, it does not appear to make sense to allow the conclusion as hav-
ing been constructed top-down, since the proposition C would be completely
unrestricted.

Negation. Negation combines elements from implication and falsehood, since
we may think of ¬A as A⊃⊥.1

Γ↓, u:A ↓ ` p ⇑
¬Ip,u

Γ↓ ` ¬A ⇑

Γ↓ ` ¬A ↓ Γ↓ ` A ⇑
¬E

Γ↓ ` C ⇑

Universal Quantification. Universal quantification does not introduce any
new considerations.

Γ↓ ` [a/x]A ⇑
∀Ia

Γ↓ ` ∀x. A ⇑

Γ↓ ` ∀x. A ↓
∀E

Γ↓ ` [t/x]A ↓

Existential Quantification. Existential quantification is similar to disjunc-
tion and a more lenient view of extraction is possible here, too (see Exercise 3.1).

Γ↓ ` [t/x]A ⇑
∃I

Γ↓ ` ∃x. A ⇑

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ⇑
∃Ea,u

Γ↓ ` C ⇑
1[reconsider]

Draft of November 12, 1999

32 Sequent Calculus

It is quite easy to see that normal and extraction derivations are sound with
respect to natural deduction. In order to state and prove this theorem, we
introduce some conventions. Given a context

Γ↓ = u1:A1 ↓, . . . , un:An ↓

we denote
u1:A1, . . . , un:An

by Γ and vice versa.

Theorem 3.1 (Soundness of Normal Deductions)

1. If Γ↓ ` A ⇑ then Γ ` A, and

2. if Γ↓ ` A ↓ then Γ ` A.

Proof: By induction on the structure of the given derivations. We show only
three cases, since the proof is absolutely straightforward.

Case:

E = u
Γ↓1, u:A ↓,Γ↓2 ` A ↓

The we construct directly Γ1, u:A,Γ2 ` A.

Case:

N =

E
Γ↓ ` A ↓

↓⇑
Γ↓ ` A ⇑

Then Γ ` A by induction hypothesis on E .

Case:

N =

N2

Γ↓, u:A1 ↓ ` A2 ⇑
⊃Iu

Γ↓ ` A1 ⊃ A2 ⇑

Γ, u:A1 ` A2 By i.h. on N2

Γ ` A1 ⊃A2 By rule ⊃I

2

When trying to give a translation in the other direction we encounter a diffi-
culty: certain patterns of inference cannot be annotated directly. For example,
consider

D
Γ ` A

E
Γ ` B

∧I
Γ ` A ∧B

∧EL.
Γ ` A

Draft of November 12, 1999

3.1 Intercalation 33

If we try to classify each judgment, we obtain a conflict:

D′
Γ ` A ⇑

E ′
Γ ` B ⇑

∧I
Γ ` A ∧B ?

∧EL.
Γ ` A ↓

In this particular case, we can avoid the conflict: in order to obtain the deriva-
tion of A ⇑ we can just translate the derivation D and avoid the final two
inferences! In general, we can try to apply local reductions to the given original
derivation until no situations of the form above remain. This approach is called
normalization. It is not easy to prove that normalization terminates, and the
situation is complicated by the fact that the local reductions alone do not suffice
to transform an arbitrary natural deduction into normal form (see Exercise 3.2).

Here, we follow an alternative approach to prove completeness of normal
deductions. First, we temporarily augment the system with another rule which
makes the translation from natural deductions immediate. Then we relate the
resulting system to a sequent calculus and show that the additional rule was
redundant.

A candidate for the additional rule is easy to spot: we just add the missing
coercion from normal to extraction deductions. Since all rules are present, we
can just coerce back and forth as necessary in order to obtain a counterpart
for any natural deduction in this extended system. Of course, the resulting
derivations are no longer normal, which we indicate by decorating the turnstile
with a “+”. The judgments Γ↓ `+ A ⇑ and Γ↓ `+ A ↓ are defined by all
counterparts of all rules which define normal and extracting derivations, plus
the rule

Γ↓ `+ A ⇑
⇑↓

Γ↓ `+ A ↓

Now the annotation in the example above can be completed.

D′
Γ `+ A ⇑

E ′
Γ `+ B ⇑

∧I
Γ `+ A ∧B ⇑

⇑↓
Γ `+ A ∧B ↓

∧EL

Γ `+ A ↓

Both soundness and completeness of the extended calculus with respect to nat-
ural deduction is easy to see.

Theorem 3.2 (Soundness of Annotated Deductions)

1. If Γ↓ `+ A ⇑ then Γ ` A, and

Draft of November 12, 1999

34 Sequent Calculus

2. if Γ↓ `+ A ↓ then Γ ` A.

Proof: By simultaneous induction over the structure of the given derivations.
2

The constructive proof of the completeness theorem below will contain an
algorithm for annotating a given natural deduction.

Theorem 3.3 (Completeness of Annotated Deductions)

1. If Γ ` A then Γ↓ `+ A ⇑, and

2. if Γ ` A then Γ↓ `+ A ↓.

Proof: By induction over the structure of the given derivation. We show only
two cases.

Case:

D =

D
Γ ` B ⊃A

E
Γ ` B

⊃E
Γ ` A

Γ↓ `+ B ⊃A ↓ By i.h. (2) on D
Γ↓ `+ B ⇑ By i.h. (1) on E
Γ↓ `+ A ↓ By rule ⊃E, proving (2)
Γ↓ `+ A ⇑ By rule ↓⇑, proving (1)

Case:

D =

D2

Γ, u:A1 ` A2

⊃Iu

Γ ` A1 ⊃A2

Γ↓, u:A1 ↓ `+ A2 ⇑ By i.h. (1) on D2

Γ↓ `+ A1 ⊃A2 ⇑ By rule ⊃Iu, proving (1)
Γ↓ `+ A1 ⊃A2 ↓ By rule ⇑↓, proving (2)

2

Even though natural deductions and annotated deductions are very similar,
they are not in bijective correspondence. For example, in an annotated deduc-
tion we can simply alternate the two coercions an arbitrary number of times.
Under the translation to natural deduction, all of these are identified.

Before we introduce the sequent calculus, we make a brief excursion to study
the impact of annotations on proof terms.

Draft of November 12, 1999

3.2 Compact Proof Terms 35

3.2 Compact Proof Terms

The proof terms introduced in Section 2.4 sometimes contain significant amounts
of redundant information. The reason are the propositions which label λ-
abstractions and also occur in the inlA, inrA, µpu:A, ·A, and abortA constructs.
For example, assume we are given a proof term λu:A. M and we are supposed to
check if it represents a proof of A′⊃B. We then have to check that A = A′ and,
moreover, the information is duplicated. The reason for this duplication was
the intended invariant that every term proves a unique proposition. Under the
interpretations of propositions as types, this means we can always synthesize a
unique type for every valid term. However, we can improve this if we alternate
between synthesizing a type and checking a term against a given type.

Therefore we introduce two classes of terms: those whose type can be syn-
thesized, and those which can be checked against a type. Interestingly, this
corresponds precisely with the annotations as introduction or elimination rules
given above. We ignore negation again, thinking of ¬A as A ⊃⊥. We already
discussed why the eliminations for disjunction and falsehood appear among the
intro terms.

Intro Terms I ::= 〈I1, I2〉 Conjunction
| λu. I Implication
| inl I | inr I Disjunction
| (case E of inlu1 ⇒ I1 | inru2 ⇒ I2)
| 〈 〉 Truth
| abortE Falsehood
| E Coercion

Elim Terms E ::= u Hypotheses
| E I Implication
| fstE | sndE Conjunction
| (I : A) Coercion

The presence of E as an intro term corresponds to the coercion ↓⇑ which
is present in normal deductions. The presence of (I : A) as an elim term
corresponds to the coercion ⇑↓ which is present only in the extended system.
Therefore, a normal deduction can be represented without any internal type in-
formation, while a general deduction requires information at the point where an
introduction rule is directly followed by an elimination rule. It is easy to endow
the annotated natural deduction judgments with the modified proof terms from
above. We leave the details to Exercise 3.3. The two judgments are Γ↓ `+ I : A ⇑
and Γ↓ `+ E : A ↓.

Now we can prove the correctness of bi-directional type-checking.

Theorem 3.4 (Bi-Directional Type-Checking)

1. Given Γ↓, I, and A. Then either Γ↓ `+ I : A ⇑ or not.

2. Given Γ↓ and E. Then either there is a unique A such that Γ↓ `+ E : A ↓
or there is no such A.

Draft of November 12, 1999

36 Sequent Calculus

Proof: See Exercise 3.3. 2

3.3 Sequent Calculus

In Section 3.1 we introduced normal deductions which embody the strategy
that proof search should proceed only bottom-up via introduction rules and
top-down via elimination rules. The bi-directional nature of this calculus makes
it somewhat unwieldy when it comes to the study of meta-theoretic properties
and, in particular, complicates its completeness proof. In this section we develop
a closely related calculus in which all proof search steps proceed bottom-up.
Pictorially, we would like to flip the elimination rules upside-down.

Hypotheses

?

Eliminations

↓⇑
66

Introductions

; Initial Sequents
66

Right Rules

6

Left Rules

This transformation turns introduction rules into so-called right rules, and
upside-down elimination rules into so-called left rules. We have two judgments,
A left (A is a proposition on the left) and A right (A is a proposition on the
right). They are assembled into the form of a hypothetical judgment

u1:A1 left, . . . , un:An left ` A right.

We call such a hypothetical judgment a sequent.
Note that the proposition A on the right directly corresponds to the propo-

sition whose truth is established by a natural deduction. On the other hand,
propositions on the left do not directly correspond to hypotheses in natural de-
duction, since in general they include hypotheses and propositions derived from
them by elimination rules.

Keeping this intuition in mind, the inference rules for sequents can now be
constructed mechanically from the rules for normal and extracting derivations.
To simplify the notation, we denote the sequent above by

A1, . . . , An =⇒ A

where the judgments left and right are implied by the position of the propo-
sitions. Moreover, labels ui are suppressed until we introduce proof terms.
Finally, left rules may be applied to any left proposition. Since the order of
the left propositions is irrelevant, we write Γ, A instead of the more pedantic
Γ, A,Γ′.

Draft of November 12, 1999

3.3 Sequent Calculus 37

Initial Sequents. These correspond to the coercion from extraction to normal
derivations, and not to the use of hypotheses in natural deductions.

init
Γ, A =⇒ A

Conjunction. The right and left rules are straightforward and provide a sim-
ple illustration of the translation, in particular in the way the elimination rules
are turned upside-down.

Γ =⇒ A Γ =⇒ B
∧R

Γ =⇒ A ∧B

Γ, A∧B,A =⇒ C
∧L1

Γ, A ∧B =⇒ C

Γ, A ∧B,B =⇒ C
∧L2

Γ, A ∧B =⇒ C

In the introduction rule (read bottom-up), we propagate Γ to both premises.
This reflects that in natural deduction we can use any available assumption
freely in both subdeductions. Furthermore, in the elimination rule the hypoth-
esis A ∧ B left persists. This reflects that assumptions in natural deduction
may be used more than once. Later we analyze which of these hypotheses are
actually needed and eliminate some redundant ones. For now, however, they
are useful because they allow us to give a very direct translation to and from
normal natural deductions.

Implication. The right rule for implication is straightforward. The left rule
requires some thought. Using an extracted implication A ⊃ B gives rise to two
subgoals: we have to find a normal proof of A, but we also still have to prove
our overall goal, now with the additional extracted proposition B.

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃ B
Γ, A⊃ B =⇒ A Γ, A⊃B,B =⇒ C

⊃L
Γ, A⊃B =⇒ C

Disjunction. This introduces no new considerations.

Γ =⇒ A ∨R1
Γ =⇒ A ∨B

Γ =⇒ B ∨R2
Γ =⇒ A ∨B

Γ, A∨B,A =⇒ C Γ, A∨B,B =⇒ C
∨L

Γ, A∨B =⇒ C

Negation. Negation requires a judgment parametric in a proposition. Some-
times, this is encoded as an empty right-hand side (see Exercise 3.6).

Γ, A =⇒ p
¬Rp

Γ =⇒ ¬A
Γ,¬A =⇒ A

¬L
Γ,¬A =⇒ C

Draft of November 12, 1999

38 Sequent Calculus

Truth. By our general method, there is no left rule, only a right rule which
models the introduction rule.

>R
Γ =⇒ >

Falsehood. Again by our general method, there is no right rule, only a left
rule which models the (upside-down) elimination rule.

⊥L
Γ,⊥ =⇒ C

Universal Quantification. These require only a straightforward transcrip-
tion, with the appropriate translation of the side condition.

Γ =⇒ [a/x]A
∀Ra

Γ =⇒ ∀x. A

Γ, ∀x. A, [t/x]A=⇒ C
∀L

Γ, ∀x. A =⇒ C

Existential Quantification. Again, the rules can be directly constructed
from the introduction and elimination rule of natural deduction.

Γ =⇒ [t/x]A
∃R

Γ =⇒ ∃x. A

Γ, ∃x. A, [a/x]A=⇒ C
∃La

Γ, ∃x. A =⇒ C

The intended theorem describing the relationship between sequent calculus
and natural deduction states that Γ↓ ` A ⇑ if and only if Γ =⇒ A. Prima
facie is unlikely that we can prove either of these directions without further
generalization, since the judgments Γ↓ ` A ⇑ and Γ↓ ` A ↓ are mutually
recursive, and the statement above does not even mention the latter.

In preparation for the upcoming proof, we recall the general property of
hypothetical judgments, namely that we can substitute a derivation of the ap-
propriate judgment for a hypothesis. When applied to normal and extracting
derivations, this yields the following property.

Lemma 3.5 (Substitution Property for Extractions)

1. If Γ↓1, u:A ↓,Γ↓2 ` C ⇑ and Γ↓1 ` A ↓ then Γ↓1,Γ
↓
2 ` C ⇑.

2. If Γ↓1, u:A ↓,Γ↓2 ` C ↓ and Γ↓1 ` A ↓ then Γ↓1,Γ
↓
2 ` C ↓.

Proof: By induction on the structure of the given derivations of C ⇑ and C ↓.
In the case where the hypothesis is used we employ weakening, that is, we adjoin
the additional hypotheses Γ↓2 to every judgment in the derivation of Γ↓1 ` A ↓.
2

Using this lemma, a direct proof goes through (somewhat surprisingly).

Theorem 3.6 (Soundness of Sequent Calculus)
If Γ =⇒ C then Γ↓ ` C ⇑.

Draft of November 12, 1999

3.3 Sequent Calculus 39

Proof: By induction on the structure of the given derivation S. We show a few
representative cases.

Case: Initial sequents.

init
Γ, C =⇒ C

Γ↓, u:C ↓ ` C ↓ By hypothesis u
Γ↓, u:C ↓ ` C ⇑ By rule ↓⇑

This case confirms that initial sequents correspond to the coercion from
extractions to normal deductions.

Case: Implication right rule.

S2

Γ, C1 =⇒ C2

⊃R
Γ =⇒ C1 ⊃C2

Γ↓, u:C1 ↓ ` C2 ⇑ By i.h. on S2

Γ↓ ` C1 ⊃C2 ⇑ By rule ⊃Iu

This case exemplifies how right rules correspond directly to introduction
rules.

Case: Implication left rule.

S1

Γ, A1 ⊃A2 =⇒ A1

S2

Γ, A1 ⊃ A2, A2 =⇒ C
⊃L

Γ, A1 ⊃A2 =⇒ C

Γ↓, u:A1 ⊃A2 ↓ ` A1 ⇑ By i.h. on S1

Γ↓, u:A1 ⊃A2 ↓ ` A1 ⊃ A2 ↓ By hypothesis u
Γ↓, u:A1 ⊃A2 ↓ ` A2 ↓ By rule ⊃E
Γ↓, u:A1 ⊃A2 ↓, w:A2 ↓ ` C ⇑ By i.h. on S2

Γ↓, u:A1 ⊃A2 ↓ ` C ⇑ By substitution property (Lemma 3.5)

This case illustrates how left rules correspond to elimination rules. The
general pattern is that the result of applying the appropriate elimination
rule is substituted for a hypothesis.

2

The proof of completeness is somewhat trickier—we first need to generalize
the induction hypothesis. Generalizing a desired theorem so that a direct in-
ductive proof is possible often requires considerable ingenuity and insight into
the problem. In this particular case, the generalization is of medium difficulty.

Draft of November 12, 1999

40 Sequent Calculus

The reader who has not seen the proof is invited to test his understanding by
carrying out the generalization and proof himself before reading on.

The nature of a sequent as a hypothetical judgment gives rise to several
general properties we will take advantage of. We make two of them, weakening
and contraction, explicit in the following lemma.

Lemma 3.7 (Structural Properties of Sequents)

1. (Weakening) If Γ =⇒ C then Γ, A =⇒ C.

2. (Contraction) If Γ, A, A =⇒ C then Γ, A =⇒ C.

Proof: First, recall our general convention that we consider the hypotheses of
a sequent modulo permutation. We prove each property by a straightforward
induction over the structure of the derivation. In the case of weakening we
adjoin an unused hypothesis A left to each sequent in the derivation. In the
case of contraction we replace any use of either of the two hypotheses by a
common hypothesis. 2

The theorem below only establishes the completeness of sequent derivations
with respect to normal deductions. That is, at this point we have not established
the completeness of sequents with respect to arbitrary natural deductions which
is more difficult.

Theorem 3.8 (Completeness of Sequent Derivations)

1. If Γ↓ ` C ⇑ then Γ =⇒ C.

2. If Γ↓ ` A ↓ and Γ, A =⇒ C then Γ =⇒ C.

Proof: By induction on the structure of the given derivations I and E . We
show some representative cases.

Case: Use of hypotheses.

E = u
Γ↓1, u:A ↓,Γ↓2 ` A ↓

Γ1, A,Γ2, A =⇒ C Assumption
Γ1, A,Γ2 =⇒ C By contraction (Lemma 3.7)

Case: Coercion.

I =

E
Γ↓ ` C ↓

↓⇑
Γ↓ ` C ⇑

Γ, C =⇒ C By rule init
Γ =⇒ C By i.h. on E

Draft of November 12, 1999

3.3 Sequent Calculus 41

Case: Implication introduction.

I =

I2

Γ↓, u:C1 ↓ ` C2 ⇑
⊃Iu

Γ↓ ` C1 ⊃ C2 ⇑

Γ, C1 =⇒ C2 By i.h. on I2

Γ =⇒ C1 ⊃ C2 By rule ⊃R

Case: Implication elimination.

E =

E2
Γ↓ ` A1 ⊃A2 ↓

I1

Γ↓ ` A1 ⇑
⊃E

Γ↓ ` A2 ↓

Γ, A2 =⇒ C Assumption
Γ, A1 ⊃ A2, A2 =⇒ C By weakening (Lemma 3.7)
Γ =⇒ A1 By i.h. on I1

Γ, A1 ⊃ A2 =⇒ A1 By weakening (Lemma 3.7)
Γ, A1 ⊃ A2 =⇒ C By rule ⊃L
Γ =⇒ C By i.h. on E2

2

In order to establish soundness and completeness with respect to arbitrary
natural deductions we establish a connection to annotated natural deductions.
Recall that this is an extension of normal deductions which we showed sound
and complete with respect to arbitrary natural deduction in Theorems 3.2 and
3.3. We related annotated natural deductions to the sequent calculus by adding
a rule called cut.

We write the extended judgment of sequent derivations with cut as Γ
+

=⇒ C.
It is defined by copies of all the rules for Γ =⇒ C, plus the rule of cut:

Γ
+

=⇒ A Γ, A
+

=⇒ C
cut

Γ
+

=⇒ C

Thought of from the perspective of bottom-up proof construction, this rule
corresponds to proving and then assuming a lemma A during a derivation.

Theorem 3.9 (Soundness of Sequent Calculus with Cut)

If Γ
+

=⇒ C then Γ↓ `+ C ⇑.

Proof: As in Theorem 3.6 by induction on the structure of the given derivation
S, with one additional case.

Draft of November 12, 1999

42 Sequent Calculus

Case: Cut.

S =

S1

Γ =⇒ A
S2

Γ, A =⇒ C
cut

Γ =⇒ C

Γ↓ `+ A ⇑ By i.h. on S1

Γ↓ `+ A ↓ By rule ⇑↓
Γ↓, u:A ↓ `+ C ⇑ By i.h. on S2

Γ↓ `+ C ⇑ By substitution (Lemma 3.5, generalized)

We see that, indeed, cut corresponds to the coercion from normal to ex-
traction derivations.

2

Theorem 3.10 (Completeness of Sequent Calculus with Cut)

1. If Γ↓ `+ C ⇑ then Γ
+

=⇒ C.

2. If Γ↓ `+ A ↓ and Γ, A
+

=⇒ C then Γ
+

=⇒ C.

Proof: As in the proof of Theorem 3.10 with one additional case.

Case: Coercion from normal to extraction derivations.

E =

I
Γ↓ `+ A ⇑

⇑↓
Γ↓ `+ A ↓

Γ =⇒ A By i.h. on I
Γ, A =⇒ C By assumption
Γ =⇒ C By rule cut

2

The central property of the sequent calculus is that the cut rule is redundant.

That is, if Γ
+

=⇒ C then Γ =⇒ C. This so-called cut elimination theorem
(Gentzen’s Hauptsatz [Gen35]) is one of the central theorems of logic. As an
immediately consequence we can see that not every proposition has a proof, since
no rule is applicable to derive · =⇒ ⊥. In the system with cut, a derivation of
this sequent might end in the cut rule and consistency is not at all obvious. The
proof of cut elimination and some of its many consequences are the subject of
the next section.

Draft of November 12, 1999

3.4 Cut Elimination 43

3.4 Cut Elimination

This section is devoted to proving that the rule of cut is redundant in the sequent
calculus. First we prove that cut is admissible: whenever the premises of the
cut rule are derivable in the sequent calculus without cut, then the conclusion
is. It is a simple observation that adding an admissible rule to a deductive
system does not change the derivable judgments. Formally, this second step is
an induction over the structure of a derivation that may contain cuts, proving

that if Γ
+

=⇒ C then Γ =⇒ C.
There is a stronger property we might hope to prove for cut: it could be a

derived rule of inference. Derived rules have a direct deduction of the conclusion
from the premises within the given system. For example,

Γ ` A Γ ` B Γ ` C
Γ ` A ∧ (B ∧ C)

is a derived rule, as evidenced by the following deduction:

Γ ` A
Γ ` B Γ ` C

∧I
Γ ` B ∧ C

∧I.
Γ ` A ∧ (B ∧ C)

Derived rules have the property that they remain valid under all extensions of
a given system. Admissible rules, on the other hand, have to be reconsidered
when new connectives or inference rules are added to a system, since these rules
may invalidate the proof of admissibility.

It turns out that cut is only admissible, but not derivable in the sequent
calculus. Therefore, we will prove the following theorem:

If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

We call A the cut formula. Also, each left or right rule in the sequent calculus
focuses on an occurrence of a proposition in the conclusion, called the principal
formula of the inference.

The proof combines two ideas: induction over the structure of the cut for-
mula with induction over the structures of the two given derivations. They are
combined into one nested induction: an outer induction over the structure of
the cut formula and an inner induction over the structure of the derivations
of the premises. The outer induction over the structure of the cut formula is
related to local reductions in natural deduction (see Exercise 3.7).

Theorem 3.11 (Admissibility of Cut)
If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

Proof: By nested inductions on the structure of A, the derivation D of Γ =⇒ A
and E of Γ, A =⇒ C. More precisely, we appeal to the induction hypothesis
either with a strictly smaller cut formula, or with an identical cut formula and

Draft of November 12, 1999

44 Sequent Calculus

two derivations, one of which is strictly smaller while the other stays the same.
The proof is constructive, which means we show how to transform

D
Γ =⇒ A

and
E

Γ, A =⇒ C
to

F
Γ =⇒ C.

The proof is divided into several classes of cases. More than one case may
be applicable, which means that the algorithm for constructing the derivation
of Γ =⇒ C from the two given derivations is naturally non-deterministic.

Case: D is an initial sequent.

D = init
Γ′, A =⇒ A

Γ = Γ′, A This case
Γ′, A, A =⇒ C Derivation E
Γ′, A =⇒ C By contraction (Lemma 3.7)
Γ =⇒ C By equality

Case: E is an initial sequent using the cut formula.

E = init
Γ, A =⇒ A

C = A This case
Γ =⇒ A Derivation D

Case: E is an initial sequent not using the cut formula.

E = init
Γ′, C, A =⇒ C

Γ = Γ′, C This case
Γ′, C =⇒ C By rule init
Γ =⇒ C By equality

Case: A is the principal formula of the final inference in both D and E . There
are a number of subcases to consider, based on the last inference in D and
E . We show some of them.

Subcase:

D =

D1

Γ =⇒ A1

D2

Γ =⇒ A2

∧R
Γ =⇒ A1 ∧A2

and E =

E1
Γ, A1 ∧A2, A1 =⇒ C

∧L1
Γ, A1 ∧A2 =⇒ C

Draft of November 12, 1999

3.4 Cut Elimination 45

Γ, A1 =⇒ C By i.h. on A1 ∧A2, D and E1
Γ =⇒ C By i.h. on A1 from above and D1

Actually we have ignored a detail: in the first appeal to the induction
hypothesis, E1 has an additionaly hypothesis (A1 left) and therefore
does not match the statement of the theorem precisely. However, we
can always weaken D to include this additional hypothesis without
changing the structure of D (see the proof of Lemma 3.7) and then
appeal to the induction hypothesis. We will not be explicit about
these trivial weakening steps in the remaining cases.

Subcase:

D =

D2

Γ, A1 =⇒ A2

⊃R
Γ =⇒ A1 ⊃A2

and E =

E1
Γ, A1 ⊃A2 =⇒ A1

E2
Γ, A1 ⊃ A2, A2 =⇒ C

⊃L
Γ, A1 ⊃ A2 =⇒ C

Γ =⇒ A1 By i.h. on A1 ⊃ A2, D and E1
Γ =⇒ A2 By i.h. on A1 from above and D2

Γ, A2 =⇒ C By i.h. on A1 ⊃ A2, D and E2
Γ =⇒ C By i.h. on A2 from above

Subcase:

D =

D1

Γ, A1 =⇒ p
¬Rp

Γ =⇒ ¬A1

and E =

E1
Γ,¬A1 =⇒ A1

¬L
Γ,¬A1 =⇒ C

Γ =⇒ A1 By i.h. on D and E1
Γ, A1 =⇒ C By substitution for parameter C in D1

Γ =⇒ C By i.h. on A1 from above

Note that the condition that p be a new parameter in D1 is necessary
to guarantee that in the substitution step above we have [C/p]A1 =
A1 and [C/p]Γ = Γ.

Draft of November 12, 1999

46 Sequent Calculus

Subcase:

D =

D1

Γ =⇒ [t/x]A1

∃R
Γ =⇒ ∃x. A1

and E =

E1
Γ, ∃x. A1, [a/x]A1 =⇒ C

∃La
Γ, ∃x. A1 =⇒ C

Γ, [t/x]A1 =⇒ C By substitution for parameter a in E1
Γ, [t/x]A1 =⇒ C By i.h. on ∃x. A1, D and [t/a]E1
Γ =⇒ C By i.h. on [t/x]A1 from D1 and above

Note that this case requires that [t/x]A1 is considered smaller than
∃x. A1. Formally, this can be justified by counting the number of
quantifiers and connectives in a proposition and noting that the term
t does not contain any. A similar remark applies to check that [t/a]E1
is smaller than E . Also note how the side condition that a must be a
new parameter in the ∃L rule is required in the substitution step to
conclude that [t/a]Γ = Γ, [t/a][a/x]A1 = [t/x]A1, and [t/a]C.

Case: A is not the principal formula of the last inference in D. In that case D
must end in a left rule and we can appeal to the induction hypothesis on
one of its premises. We show some of the subcases.

Subcase:

D =

D1

Γ′, B1 ∧B2, B1 =⇒ A
∧L1

Γ′, B1 ∧B2 =⇒ A

Γ = Γ′, B1 ∧B2 This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D1 and E
Γ′, B1 ∧B2 =⇒ C By rule ∧L1

Γ =⇒ C By equality

Subcase:

D =

D1

Γ′, B1 ⊃ B2 =⇒ B1

D2

Γ′, B1 ⊃ B2, B2 =⇒ A
⊃L

Γ′, B1 ⊃B2 =⇒ A

Γ = Γ′, B1 ⊃ B2 This case
Γ′, B1 ⊃ B2, B2 =⇒ C By i.h. on A, D2 and E
Γ′, B2 ⊃ B2 =⇒ C By rule ⊃L on D1 and above
Γ =⇒ C By equality

Draft of November 12, 1999

3.4 Cut Elimination 47

Case: A is not the principal formula of the last inference in E . This overlaps
with the previous case, since A may not be principal on either side. In
this case, we appeal to the induction hypothesis on the subderivations of
E and directly infer the conclusion from the results. We show some of the
subcases.

Subcase:

E =

E1
Γ, A =⇒ C1

E2
Γ, A =⇒ C2

∧R
Γ, A =⇒ C1 ∧ C2

C = C1 ∧ C2 This case
Γ =⇒ C1 By i.h. on A, D and E1
Γ =⇒ C2 By i.h. on A, D and E2
Γ =⇒ C1 ∧C2 By rule ∧R on above

Subcase:

E =

E1
Γ′, B1 ∧B2, B1, A =⇒ C

∧L1
Γ′, B1 ∧B1, A =⇒ C

Γ = Γ′, B1 ∧B2 This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D and E1
Γ′, B1 ∧B2 =⇒ C By rule ∧L1 from above

2

As mentioned above, it is a general property of deductive system that adding
an admissible rule does not change the derivable judgments. We show the
argument in this special case.

Theorem 3.12 (Cut Elimination)

If Γ
+

=⇒ C then Γ =⇒ C.

Proof: In each case except cut we simply appeal to the induction hypotheses
and reapply the same rule on the resulting cut-free derivations. So we write out
only the case of cut.

Case:

D+ =

D+
1

Γ
+

=⇒ A

D+
2

Γ, A
+

=⇒ C
cut

Γ
+

=⇒ C

Γ =⇒ A By i.h. on D+
1

Γ, A =⇒ C By i.h. on D+
2

Γ =⇒ C By admissibility of cut (Theorem 3.11)

2

Draft of November 12, 1999

48 Sequent Calculus

3.5 Applications of Cut Elimination

The cut elimination theorem is the final piece needed to complete our study
of natural deduction and normal natural deduction and at the same time the
springboard to the development of efficient theorem proving procedures. Our
proof in the previous section is constructive and therefore contains an algorithm
for cut elimination. Because the cases are not mutually exclusive, the algorithm
is non-deterministic. However, the resulting derivation should always be the
same. While this property does not quite hold, the different derivations can be
shown to be equivalent in a natural sense. This is called the confluence property
for intuitionistic cut elimination modulo commutative conversions. It it is not
implicit in our proof, but has to be established separately.2 On the other hand,
our proof shows that any possible execution of the cut-elimination algorithm
terminates. This is called the strong normalization property for the sequent
calculus.

By putting the major results of this chapter together we can now prove the
normalization theorem for natural deduction.

Theorem 3.13 (Normalization for Natural Deduction)
If Γ ` A then Γ↓ ` A ⇑.

Proof: Direct from previous theorems.

Γ ` A Assumption
Γ↓ `+ A ⇑ By completeness of annotated deductions (Theorem 3.3)

Γ
+

=⇒ A By completeness of sequent calculus with cut (Theorem 3.10)
Γ =⇒ A By cut elimination (Theorem 3.12)
Γ↓ ` A ⇑ By soundness of sequent calculus (Theorem 3.6)

2

Among the other consequences of cut elimination are consistency and various
independence results.

Corollary 3.14 (Consistency) There is no deduction of ` ⊥.

Proof: Assume there is a deduction ` ⊥. By the results of this chapter then
· =⇒ ⊥. However, this sequent cannot be the conclusion of any inference rule
in the (cut-free) sequent calculus. Therefore ` ⊥ cannot be derivable. 2

In the same category are the following two properties. As in the proof above,
we analyze the inference rules which may have led to a given conclusion. This
proof technique is called inversion.

Corollary 3.15 (Disjunction and Existential Property)

1. If ` A ∨B then either ` A or ` B.

2[reference?]

Draft of November 12, 1999

3.6 Proof Terms for Sequent Derivations 49

2. If ` ∃x. A then ` [t/x]A for some t.

Proof: Direct by inversion on possible sequent derivations in both cases.

1. Assume ` A ∨ B. Then · =⇒ A ∨ B. By inversion, either · =⇒ A or
· =⇒ B. Therefore ` A or ` B.

2. Assume ∃x. A. then · =⇒ ∃x. A. By inversion, · =⇒ [t/x]A for some t.
Hence ` [t/x]A.

2

Note that the disjunction and existential properties rely on a judgment with-
out hypotheses. For example, we have B∨A =⇒ A∨B, but neither B∨A =⇒ A
for B ∨A =⇒ B hold.

The second class of properties are independence results which demonstrate
that certain judgments are not derivable. As a rule, these are parametric judg-
ments some instances of which may be derivable. For example, we will show
that the law of excluded middle is independent. Nonetheless, there are some
propositions A for which we can show ` A ∨ ¬A (for example, take A = ⊥).

Corollary 3.16 (Independence of Excluded Middle)
There is no deduction of ` A ∨ ¬A for arbitrary A.

Proof: Assume there is a deduction of ` A∨¬A. By the result of this section
then · =⇒ A ∨ ¬A. By inversion now either · =⇒ A or · =⇒ ¬A. The former
judgment (which is parametric in A) has no derivation. By inversion, the latter
can only be infered from A =⇒ p for a new parameter p. But there is no
inference rule with this conclusion, and hence there cannot be a deduction of
` A ∨ ¬A. 2

3.6 Proof Terms for Sequent Derivations

In this section we address the question of how to assign proof terms to sequent
calculus derivations. There are essentially two possibilities: we can either de-
velop a new proof term calculus specifically for sequent derivations, or we can
directly assign natural deduction proof terms. The former approach can be
found, for example, in [Pfe95]. The latter is more appropriate for our purposes
here, since we view natural deductions as defining truth and since we already
devised methods for compact representations in Section 3.2.

We define a new judgment, Γ =⇒ I : A, maintaining that Γ ` I : A. For this
purpose we abandon the previous convention of omitting labels for hypotheses,
since proof terms need to refer to them. On the other hand, we still consider
assumptions modulo permutations in order to simplify notation. We use the
compact proof terms here only for simplicity.

The proof terms to be assigned to each inference rule can be determined by a
close examination of the soundness proof for the sequent calculus (Theorem 3.6).

Draft of November 12, 1999

50 Sequent Calculus

Since that proof is constructive, it contains an algorithm for translating a se-
quent derivation to a normal natural deduction. We just have to write down
the corresponding proof terms.

Initial Sequents. These are straightforward.

init
Γ, u:A =⇒ u : A

Note that there may be several hypotheses A with different labels. In the
shorthand notation without labels before, it is ambiguous which one was used.

Conjunction. The right rule is straightforward, since it is isomorphic to the
introduction rule for natural deduction. The left rules require a substitution to
be carried out, just as in the proof of Theorem 3.6.

Γ =⇒ I : A Γ =⇒ J : B
∧R

Γ =⇒ 〈I, J〉 : A ∧B

Γ, u:A ∧B,w:A =⇒ I : C
∧L1

Γ, u:A ∧B =⇒ [fstu/w]I : C

Γ, u:A ∧B,w:B =⇒ I : C
∧L2

Γ, u:A ∧B =⇒ [sndu/w]I : C

There are two potential efficiency problems in the proof term assignment for the
left rule. The first is that if w is used many times in I, then fstu or sndu may
be replicated many times, leading to a large proof. The second is that when a
number of successive left rules are encountered, the term I we substitute into
will be traversed many times. These problems can be avoided in several ways
(see Exercise ??).

Implication. The pattern of the previous right and left rules continues here.

Γ, u:A =⇒ I : B
⊃R

Γ =⇒ λu. I : A ⊃B

Γ, u:A ⊃B =⇒ J : A Γ, u:A ⊃B,w:B =⇒ I : C
⊃L

Γ, u:A ⊃B =⇒ [u J/w]I : C

Disjunction. This introduces no new considerations.

Γ =⇒ I : A ∨R1
Γ =⇒ inl I : A ∨B

Γ =⇒ J : B ∨R2
Γ =⇒ inrJ : A ∨B

Γ, u:A ∨B, v:A =⇒ I : C Γ, u:A ∨B,w:B =⇒ J : C
∨L

Γ, u:A ∨B =⇒ (case u of inl v ⇒ I | inrw⇒ J) : C

Draft of November 12, 1999

3.6 Proof Terms for Sequent Derivations 51

Negation. This is similar to implication.3

Γ, u:A =⇒ I : p
¬Rp

Γ =⇒ µpu. I : ¬A
Γ, u:¬A =⇒ I : A

¬L
Γ, u:¬A =⇒ u · I : C

Truth. This is trivial, since there is no left rule.

>R
Γ =⇒ 〈 〉 : >

Falsehood. Again, this is immediate.

⊥L
Γ, u:⊥ =⇒ abortu : C

To treat the quantifiers we extend our proof term calculus to handle the
quantifier rules.4 We overload the notation by reusing λ-abstraction and pairing.
There is no ambiguity, because the proof term for universal quantification binds
a term variable x (rather than a proof variable u), and the first component of
the pair for existential quantification is a first-order term, rather than a proof
term as for conjunction.

First, we show the assignment of these terms to natural deductions, then to
the sequent calculus.

Universal Quantification. The proof term for a universal quantifier ∀x. A
is a function from a term t to a proof of [t/x]A. The elimination term applies
this function.

Γ ` [a/x]M : [a/x]A
∀Ia

Γ ` λx. M : ∀x. A

Γ `M : ∀x. A
∀E

Γ `M t : [t/x]A

The local reductions and expansions just mirror the corresponding operations
on natural deductions.

(λx. M) t −→R [t/x]M
M : ∀x. A −→E λx. M x (x not free in M)

Existential Quantification. The proof term for an existential ∃x. A is a pair
consisting of a witness term t and the proof of [t/x]A.

Γ `M : [t/x]A
∃I

Γ ` 〈t,M〉 : ∃x. A

Γ `M : ∃x. A Γ, u:[a/x]A ` [a/x]N : C
∃Ea,u

Γ ` let 〈x, u〉 = M in N : C

3[add to compact proof term section]
4[move earlier]

Draft of November 12, 1999

52 Sequent Calculus

The local reduction for the existential quantifier has to perform two substitu-
tions, just as on natural deductions.

let 〈x, u〉 = 〈t,M〉 in N −→R [M/u][t/x]N
M : ∃x. A −→E let 〈x, u〉 = M in 〈x, u〉

It is once again easy to see how to divide the proof terms into introduction
and elimination forms. We only show the resulting definition of compact proof
terms.

Intro Terms I ::= . . .
| λx. I Universal Quantification
| 〈t, I〉 Existential Quantification
| let 〈x, u〉 = E in I

Elim Terms E ::= . . . | E t Universal Quantification

On sequent calculus derivations, we follow the same strategy as in the pre-
ceding propositional rules.

Universal Quantification.

Γ =⇒ [a/x]I : [a/x]A
∀Ra

Γ =⇒ λx. I : ∀x. A

Γ, u:∀x. A, w:[t/x]A =⇒ I : C
∀L

Γ, u:∀x. A =⇒ [u t/w]I : C

Existential Quantification.

Γ =⇒ I : [t/x]A
∃R

Γ =⇒ 〈t, I〉 : ∃x. A

Γ, u:∃x. A, w:[a/x]A =⇒ [a/x]I : C
∃La

Γ, u:∃x. A =⇒ (let 〈x, w〉 = u in I) : C

3.7 Exercises

Exercise 3.1 Consider a system of normal deduction where the elimination
rules for disjunction and existential are allowed to end in an extraction judg-
ment.

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ↓ Γ↓, w:B ↓ ` C ↓
∨Eu,w

Γ↓ ` C ↓

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ↓
∃Ea,u

Γ↓ ` C ↓

Discuss the relative merits of allowing or disallowing these rules and show how
they impact the subsequent development in this Chapter (in particular, bi-
directional type-checking and the relationship to the sequent calculus).

Exercise 3.2

Draft of November 12, 1999

3.7 Exercises 53

1. Give an example of a natural deduction which is not normal (in the sense
defined in Section 3.1), yet contains no subderivation which can be locally
reduced.

2. Generalizing from the example, devise additional rules of reduction so that
any natural deduction which is not normal can be reduced. You should
introduce no more and no fewer rules than you need for this purpose.

3. Prove that your rules satisfy the specification in part (2).

Exercise 3.3 Write out the rules defining the judgments Γ↓ `+ I : A ⇑ and
Γ↓ `+ E : A ↓ and prove Theorem 3.4. Make sure to carefully state the induction
hypothesis (if it is different from the statement of the theorem) and consider all
the cases.

Exercise 3.4 Fill in the missing subcases in the proof of the admissibility of
cut (Theorem 3.11) where A is the principal formula in both D and E .

Exercise 3.5 Consider an extension of intuitionistic logic by a universal quan-
tifier over propositions, written as ∀2p. A, where p is variable ranging over
propositions.

1. Show introduction and elimination rules for ∀2.

2. Extend the calculus of normal and extraction derivations.

3. Show left and right rules of the sequent calulus for ∀2.

4. Extend the proofs of soundness and completeness for the sequent calculus
and sequent calculus with cut to accomodate the new rules.

5. Point out why the proof for admissibility of cut does not extend to this
logic.

Exercise 3.6 Gentzen’s original formulation of the sequent calculus for intu-
itionistic logic permitted the right-hand side to be empty. The introduction rule
for negation then has the form

Γ, A =⇒
¬R.

Γ =⇒ ¬A

Write down the corresponding left rule and detail the changes in the proof for
admissibility of cut. Can you explain sequents with empty right-hand sides as
judgments?

Exercise 3.7 The algorithm for cut elimination implicit in the proof for admis-
sibility of cut can be described as a set of reduction rules on sequent derivations
containing cut.

1. Write out all reduction rules on the fragment containing only implication.

Draft of November 12, 1999

54 Sequent Calculus

2. Show the extracted proof term before and after each reduction.

3. If possible, formulate a strategy of reduction on proof terms for natural
deduction which directly models cut elimination under our translation.

4. Either formulate and prove a theorem about the connection of the strate-
gies for cut elimination and reduction, or show by example why such a
connection is difficult or impossible.

Exercise 3.8

1. Prove that we can restrict initial sequents in the sequent calculus to have
the form Γ, P =⇒ P where P is an atomic proposition without losing
completeness.

2. Determine the corresponding restriction in normal and extraction deriva-
tions and prove that they preserve completeness.

3. If you see a relationship between these properties and local reductions or
expansions, explain. If you can cast it in the form of a theorem, do so and
prove it.

Exercise 3.9 For each of the following propositions, prove that they are deriv-
able in classical logic using the law of excluded middle. Furthermore, prove that
they are not true in intuitionistic logic for arbitrary A, B, and C.

1. ((A ⊃B) ⊃ A)⊃ A.

2. Any entailment in Exercise 2.8 which is only classically, but not intuition-
istically true.

Draft of November 12, 1999

Chapter 4

Focused Derivations

The sequent calculus as presented in the previous chapter is an excellent founda-
tion for proof search strategies, but it is not yet practical. For a typical sequent
there are many choices, such as which left or right rule to use to reduce the goal
in the bottom-up construction of a proof. After one step, similar choices arise
again, and so on. Without techniques to eliminate some of this non-determinism
one would be quickly overwhelmed with multiple choices.

In this chapter we present two techniques to reduce the amount of non-
determinism in search. The first are inversion properties which hold when the
premises of an inference rule are derivable if and only if the conclusion is. This
means that we do not lose completeness when applying an invertible rule as soon
as it is applicable. The second are focusing properties which allow us to chain
together non-invertible inference rules with consecutive principal formulas, once
again without losing completeness.

While inversion and focusing are motivated by bottom-up proof search, they
generally reduce the number of derivations in the search space. For this rea-
son they also apply in top-down search procedures such as the inverse method
introduced in Chapter 5.

4.1 Inversion

The simplest way to avoid non-determinism is to consider those propositions on
the left or right for which there is a unique way to apply a corresponding left
or right rule. For example, to prove A ∧B we can immediately apply the right
rule without losing completeness. On the other hand, to prove A∨B we can not
immediately apply a left rule. As a counterexample consider B ∨A =⇒ A ∨B,
where we first need to apply a left rule.

On a given sequent, a number of invertible rules may be applicable. However,
the order of this choice does not matter. In other words, we have replaced don’t-
know non-determinism by don’t-care non-determinism.

Determining the invertibility of left rules in order to support this strategy

Draft of November 12, 1999

56 Focused Derivations

requires some additional considerations. The pure inversion property states that
the premises should be derivable if and only if the conclusion is. However, in
left rule the principal formula is still present in the premises, which means we
can continue to apply the same left rule over and over again leading to non-
termination. So we require in addition that the principal formula of a left rule
is no longer needed, thereby guaranteeing the termination of the inversion phase
of the search.

Theorem 4.1 (Inversion)

1. If Γ =⇒ A ∧B then Γ =⇒ A and Γ =⇒ B.

2. If Γ =⇒ A⊃ B then Γ, A =⇒ B.

3. If Γ =⇒ ∀x. A then Γ =⇒ [a/x]A for a new individual parameter a.

4. If Γ =⇒ ¬A then Γ, A =⇒ p for a new propositional parameter p.

5. If Γ, A ∧B =⇒ C then Γ, A, B =⇒ C.

6. If Γ,> =⇒ C then Γ =⇒ C.

7. If Γ, A ∨B =⇒ C then Γ, A =⇒ C and Γ, B =⇒ C.

8. If Γ, ∃x. A =⇒ C then Γ, [a/x]A =⇒ C for a new individual parameter a.

Proof: By induction over the structure of the given derivations. Parts (5) and
(6) are somewhat different in that they extract and inversion property from two
and zero left rules, respectively. The proof is nonetheless routine. 2

There is an alternative proof which contains somewhat less information
about the derivations whose existence is asserted (see Exercise 4.1).

The rules >R and ⊥L are a special case: they can be applied eagerly without
losing completeness, but these rules have no premises and therefore do not
admit a theorem of the form above. None of the other rules permit an inversion
property, as the following counterexamples show. These counterexamples can
easily be modifed so that they are not initial sequents.

1. A ∨B =⇒ A ∨B (both ∨R1 or ∨R2 lead to an unprovable sequent).

2. ⊥ =⇒ ⊥ (no right rule applicable).

3. ∃x. A =⇒ ∃x. A (∃R leads to an unprovable sequent).

4. A ⊃B =⇒ A⊃ B (⊃L leads to an unprovable sequent).

5. ¬A =⇒ ¬A (¬L leads to an unprovable sequent).

6. ∀x. A =⇒ ∀x. A (∀L leads to an unprovable sequent if we erase the original
copy of ∀x. A).

Draft of November 12, 1999

4.1 Inversion 57

Now we can write out a pure inversion strategy in the form of an inference
system. One difficulty with such a system is that the don’t-care non-determinism
is not directly visible and has to be remarked on separately. We also refer to
don’t-care non-determinism as conjunctive non-determinism : eventually, all ap-
plicable rules have to be applied, but their order is irrelevant as far as provability
is concerned.

First, we distinguish those kinds of propositions for which either the left or
the right rule is not invertible. We call them passive propositions (either on the
left or on the right).1

Left passive propositions L ::= P | A1 ⊃ A2 | ∀x. A
Right passive propositions R ::= P | A1 ∨A2 | ⊥ | ∃x. A

Passive antecedents ∆ ::= · | ∆, L

We also write L+ and R+ for non-atomic left and right passive propositions,
respectively. Sequents are then composed of four judgments: left and right
propositions, each of which may be active or passive. In order to simplify the
notation, we collect like judgments into zones, keeping in mind that there can
only be one proposition on the right. Sequents are then written as

∆; Γ =⇒ A; · or ∆; Γ =⇒ ·;R

where the outer zones containing ∆ or R are passive and the inner zones con-
taining Γ or A are active. We still think of ∆ and Γ as unordered and omit
labels for the sake of brevity. We break down the principal connectives in the
active propositions eagerly until we have reduced the sequent to one with only
passive propositions. At that point we have to choose a left rule to apply and
then iterate the process.

Right Active Propositions.

∆; Γ =⇒ A; · ∆; Γ =⇒ B; ·
∧R

∆; Γ =⇒ A ∧B; ·
>R

∆; Γ =⇒ >

∆; Γ, A =⇒ B; ·
⊃R

∆; Γ =⇒ A⊃ B; ·

∆; Γ =⇒ [a/x]A; ·
∀Ra

∆; Γ =⇒ ∀x. A; ·

Left Active Propositions. In order to avoid duplicating the rules depending
on a passive or active succedent, we write ρ to stand for either A; · or ·;R.

1[for the moment, we do not consider negation explicitly, but think of it as defined]

Draft of November 12, 1999

58 Focused Derivations

∆; Γ, A, B =⇒ ρ
∧L

∆; Γ, A∧B =⇒ ρ

∆; Γ =⇒ ρ
>L

∆; Γ,>=⇒ ρ

∆; Γ, A =⇒ ρ ∆; Γ, B =⇒ ρ
∨L

∆; Γ, A∨B =⇒ ρ
⊥L

∆; Γ,>=⇒ ρ

∆; Γ, [a/x]A=⇒ ρ
∃La

∆; Γ, ∃x. A =⇒ ρ

Transitions. These rules can be applied to move passive propositions which
have been uncovered to their appropriate zones.

∆; Γ =⇒ ·;R
tR

∆; Γ =⇒ R; ·

(∆, L); Γ =⇒ ρ
tL

∆; (Γ, L) =⇒ ρ

Right Passive Propositions. The active and transition rules always termi-
nate when applied in a bottom-up fashion during proof search (see Lemma 4.7).
Moverover, they can be applied in any order until sequents of the form ∆; · =⇒
·;R are reached. Now a don’t-know non-deterministic choice arises: either we
apply a right rule to infer R or a left rule to one of the passive assumptions in
∆. We also refer to don’t-know non-determinism as disjunctive non-determinism
since we have to pick one of several possibilities, but one is sufficient.

∆; · =⇒ A; ·
∨R1

∆; · =⇒ ·;A∨B
∆; · =⇒ B; ·

∨R2
∆; · =⇒ ·;A∨B

no right rule for ⊥

∆; · =⇒ [t/x]A; ·
∃R

∆; · =⇒ ·; ∃x. A

Left Passive Propositions. Left passive propositions may be needed more
than once, so they are duplicated in the application of the left rules.2

∆, A⊃B; · =⇒ A; · ∆, A⊃ B;B =⇒ ·;R
⊃L

∆, A⊃ B; · =⇒ ·;R

∆, ∀x. A; [t/x]A =⇒ ·;R
∀L

∆, ∀x. A; · =⇒ ·;R

2[some optimization may be possible here.]

Draft of November 12, 1999

4.1 Inversion 59

Initial Sequents. This leaves the question of initial sequents, which is easily
handled by allowing an left passive atomic proposition to match a right passive
atomic proposition.

init
∆, P ; ·=⇒ ·;P

The judgments ∆; Γ =⇒ ρ are hypothetical in ∆, but not hypothetical in Γ.
This is because proposition in Γ do not persist, and because they have to be
empty in the initial sequents. In other words, contraction and weakening are not
available for Γ. However, it can be explained as a linear hypothetical judgment
where each linear hypothesis must be used exactly once in a derivation. We do
not formalize this notion any further, but just remark that appropriate versions
of the substitution property can be devised to explain its meaning.

First, the soundness theorem is straightforward, since inversion proofs merely
eliminate some disjunctive non-determinism.

Theorem 4.2 (Soundness of Inversion Proofs)
If ∆; Γ =⇒ A; · or ∆; Γ =⇒ ·;A then ∆,Γ =⇒ A.

Proof: By a straightforward induction over the given derivation, applying weak-
ening in some cases. 2

Formulating appropriate theorems for the study of inversion proofs is some-
what difficult, because of the nature conjunctive and disjunctive non-determinism.
To complement the soundness property, we first show the completeness theo-
rem for the deductive system. Note, however, that this does not yet take into
account the don’t care non-determinism we have in mind for the sequents with
active propositions.

The completeness theorem requires a number of lemmas about inversion
sequents. For a possible alternative path, see Exercise 4.2. The first set of results
expresses the invertibility of the rules concerning the active propositions. That
is, we can immediately apply any invertible rule witout losing completeness.
The second set of results expresses the opposite: we can always postpone the
non-invertible rules until all invertible rules have been applied.

To state inversion in the strongest form (which is needed in the completeness
proof for the search procedure, Theorem 4.8) we define the depth of a derivation
as one plus the maximum of the depth of the derivations of the premises of the
last rule applied. The depth is defined as 1 if the last inference rule has no
premises.

Lemma 4.3 (Inversion on Active Rules)

1. If ∆; Γ =⇒ A ∧B; · then ∆; Γ =⇒ A; · and ∆; Γ =⇒ B; ·.

2. If ∆; Γ =⇒ A ⊃B; · then ∆; Γ, A =⇒ B; ·.

3. If ∆; Γ =⇒ ∀x. A; · then ∆; Γ =⇒ [a/x]A; · for any new parameter a.

Draft of November 12, 1999

60 Focused Derivations

4. If ∆; Γ =⇒ R; · then ∆; Γ =⇒ ·;R.

5. If ∆; Γ, A∧B =⇒ ρ then ∆; Γ, A, B =⇒ ρ.

6. If ∆; Γ,>=⇒ ρ then ∆; Γ =⇒ ρ.

7. If ∆; Γ, A∨B =⇒ ρ then ∆; Γ, A =⇒ ρ and ∆; Γ, B =⇒ ρ.

8. If ∆; Γ, ∃x. A =⇒ ρ then ∆; Γ, [a/x]A=⇒ ρ for any new parameter a.

9. If ∆; Γ, L=⇒ ρ then ∆, L; Γ =⇒ ρ.

Moreover, in each case the derivations whose existence is asserted are of equal
or smaller depth than the given derivations.

Proof: By straightforward induction on the structure of the given derivations.
2

The dual lemma shows that passive rules can be postponed until after the
active rules. We define the active size of a sequent ∆; Γ =⇒ A; · or ∆; Γ =⇒
·;R as the number of logical quantifiers, connectives, constants, and atomic
propositions in Γ and A. Note that the active size of a sequent is 0 if and only
if it has the form ∆; · =⇒ ·;R.

Lemma 4.4 (Postponement of Passive Rules)

1. If ∆; Γ =⇒ A; · or ∆; Γ =⇒ ·;A then ∆; Γ =⇒ ·;A ∨B.

2. If ∆; Γ =⇒ B; · or ∆; Γ =⇒ ·;B then ∆; Γ =⇒ ·;A ∨B.

3. If ∆; Γ =⇒ [t/x]A; · or ∆; Γ =⇒ ·; [t/x]A then ∆; Γ =⇒ ·; ∃x. A.

4. If (∆, A⊃ B); Γ =⇒ A; · and (∆, A⊃ B); Γ, B =⇒ ρ
then (∆, A⊃ B); Γ =⇒ ρ.

5. If (∆, ∀x. A); Γ, [t/x]A=⇒ ρ then (∆, ∀x. A); Γ =⇒ ρ.

Proof: By induction on the active size of the given sequent. In the base case,
the result follows directly by an inference rule. In each other case we apply in-
version to an element of Γ (Lemma 4.3) and appeal to the induction hypothesis.
We show two cases in the proof of part (4).

Case: Γ = · and ρ = ·;R.

(∆, A⊃B);B =⇒ ·;R Assumption
(∆, A⊃B); · =⇒ A; · Assumption
(∆, A⊃B); · =⇒ ·;R By rule ⊃L

Case: Γ = Γ′, C ∧D.

Draft of November 12, 1999

4.1 Inversion 61

(∆, A⊃ B); Γ′, C ∨D,B =⇒ ρ Assumption
(∆, A⊃ B); Γ′, C, B =⇒ ρ and
(∆, A⊃ B); Γ′, D, B =⇒ ρ By inversion
(∆, A⊃ B); Γ′, C ∨D =⇒ A; · Assumption
(∆, A⊃ B); Γ′, C =⇒ A; · and
(∆, A⊃ B); Γ′, D =⇒ A; · By inversion
(∆, A⊃ B); Γ′, C =⇒ ρ By i.h. on Γ′, C
(∆, A⊃ B); Γ′, D =⇒ ρ By i.h. on Γ′, D
(∆, A⊃ B); Γ′, C ∨D =⇒ ρ By rule ∨L

2

In sequent calculus, the main judgment Γ =⇒ A is hypothetical in Γ. This
means Γ directly satisfies weakening and contraction (the additional substitu-
tion property is not relevant in this context). However, the inversion sequent
∆; Γ =⇒ ρ is not hypothetical in Γ. In particular, weakening is not obvious
(since Γ must be empty for a passive rule to apply) and contraction is not obvi-
ous (since elements of Γ are not propagated from the conclusion to the premises
of the rules).

For the proof of completeness, and also to permit some optimizations in the
search procedure, we need to show that weakening and contraction for propo-
sitions in Γ are admissible, at the price of possibly lengthening the derivation.
Note that weakening and contraction for ∆ is trivial, since inversion sequents
are hypothetical in ∆.

Lemma 4.5 (Structural Properties of Inversion Sequents)

1. If ∆; Γ =⇒ ρ then (∆, A); Γ =⇒ ρ.

2. If (∆, A, A); Γ =⇒ ρ then (∆, A); Γ =⇒ ρ.

3. If ∆; Γ =⇒ ρ then ∆; (Γ, A) =⇒ ρ.

4. If ∆; (Γ, A, A) =⇒ ρ then ∆; (Γ, A) =⇒ ρ.

Proof: Parts (1) and (2) follow as usual by straightforward structural induc-
tions over the given derivations. Parts (3) and (4) follow by induction on the
structure of A, taking advantage of the inversion properties for active proposi-
tions (Lemma 4.3) and parts (1) and (2) for passive propositions. 2

The first completeness theorem below does not express the conjunctive non-
determinism in the search for inversion proofs. This will be treated in a further
refinement.

Theorem 4.6 (Completeness of Inversion Proofs)
If Γ =⇒ A then ·; Γ =⇒ A; ·.

Draft of November 12, 1999

62 Focused Derivations

Proof: By induction on the structure of the given sequent derivation S, taking
advantage of the inversion, postponement, and structural properties proven in
this section. We consider in turn: invertible right rules, invertible left rules,
initial sequents, non-invertible right rules and non-invertible left rules.

Case:

S =

S1

Γ =⇒ A1

S2

Γ =⇒ A2

∧R
Γ =⇒ A1 ∧A2

·; Γ =⇒ A1; · By i.h. on S1

·; Γ =⇒ A2; · By i.h. on S2

·; Γ =⇒ A1 ∧A2; · By rule ∧R

Cases: The right invertible rules ⊃R and ∀R and also the case for >R are
similar to the case for ∧R.

Case:

S =

S1

Γ, B1 ∨B2, B1 =⇒ A
S2

Γ, B1 ∨B2, B2 =⇒ A
∨L

Γ, B1 ∨B2 =⇒ A

·; Γ, B1 ∨B2, B1 =⇒ A; · By i.h. on S1

·; Γ, B1 ∨B2, B2 =⇒ A; · By i.h. on S2

·; Γ, B1 ∨B2, B1 ∨B2 =⇒ A; · By rule ∨L
·; Γ, B1 ∨B2 =⇒ A; · By contraction (Lemma 4.5)

Cases: The left invertible rule ∃L and also the case for ⊥L are similar to the
case for ∨L.

Case:

S =

S1

Γ, B1 ∧B2, B1 =⇒ A
∧L1

Γ, B1 ∧B2 =⇒ A

·; Γ, B1 ∧B2, B1 =⇒ A; · By i.h. on S1

·; Γ, B1 ∧B2, B1, B2 =⇒ A; · By weakening (Lemma 4.5)
·; Γ, B1 ∧B2, B1 ∧B2 =⇒ A By rule ∧L
·; Γ, B1 ∧B2 =⇒ A By contraction (Lemma 4.5)

Case: The case for ∧L2 is symmetric to ∧L1. Note that there is no left rule
for > in the sequent calculus, so the >L rule on inversion sequents arises
only from weakening (see the following case).

Draft of November 12, 1999

4.1 Inversion 63

Case:

S = init
Γ, P =⇒ P

P ; · =⇒ ·;P By rule init
P ; · =⇒ P ; · By rule tR
·;P =⇒ P ; · By rule tL
·; Γ, P =⇒ P ; · By weakening (Lemma 4.5)

Case:

S =

S1

Γ =⇒ A1
∨R1

Γ =⇒ A1 ∨A2

·; Γ =⇒ A1; · By i.h. on S1

·; Γ =⇒ ·;A1 ∨A2 By postponement (Lemma 4.4)
·; Γ =⇒ A1 ∨A2; · By rule tR

Cases: The cases for the non-invertible right rules ∨R2 and ∃R are similar to
∨R1.

Case:

S =

S1

Γ, B1 ⊃ B2 =⇒ B1

S2

Γ, B1 ⊃B2, B2 =⇒ A
⊃L

Γ, B1 ⊃ B2 =⇒ A

·; Γ, B1 ⊃B2 =⇒ B1; · By i.h. on S1

B1 ⊃ B2; Γ =⇒ B1; · By inversion (Lemma 4.3)
·; Γ, B1 ⊃B2, B2 =⇒ A; · By i.h. on S2

B1 ⊃ B2; Γ, B2 =⇒ A; · By inversion (Lemma 4.3)
B1 ⊃ B2; Γ =⇒ A; · By postponement (Lemma 4.4)
·; Γ, B1 ⊃B2 =⇒ A; · By rule tL

Case: The cases for the non-invertible left rule ∀L is similar to ⊃L.

2

To capture the conjunctive non-determinism we think of an unproven se-
quent as a goal and the unproven leaves of a partially constructed derivation
as subgoals. From the inversion properties for active propositions we already
know that we do not lose completeness when applying active rules. However,
it is conceivable that the eager application of active rules does not terminate,
which means that the search procedure we have in mind would be incomplete.
Fortunately, this is not the case. While the following termination property is
not directly needed in the completeness proof for the search procedure, it fore-
shadows the argument used there.

Draft of November 12, 1999

64 Focused Derivations

Lemma 4.7 (Termination of Active Rules)
Given a goal ∆; Γ =⇒ ρ. Any sequence of applications of active rules terminates.

Proof: By induction on the active size of the given sequent. 2

Next we describe a non-deterministic algorithm for proof search. There are a
number of ways to eliminate the remaining disjunctive non-determinism. Typ-
ical is depth-first search, made complete by iterative deepening. The choice
of the term t in the rules ∃R and ∀L is later solved by introducing free vari-
ables and equational constraints into the search procedures which are solved by
unification (see Section 4.3). Many futher refinements and improvements are
possible on this procedures, but not discussed here.

Given a goal ∆; Γ =⇒ ρ.

1. If Γ = · and ρ = ·;P succeed if P is in ∆.

2. If Γ = · and ρ = ·;R, but the previous case does not apply, guess an
inference rule to reduce the goal. In the cases of ∃R and ∀L we also have to
guess a term t. Solve each subgoal by recursively applying the procedure.
This case represents a disjunctive choice (don’t know non-determinism).
If no rule applies, we fail.

3. If Γ is non-empty or ρ = A; ·, choose any active rule which applies and
solve each of the subgoals by recursively applying the procedure. This
represents a conjunctive choice (don’t care non-determinism). Note that
some active rule must always be applicable in this case.

This search procedure is clearly sound, because the inversion proof system
is sound (Theorem 4.2). Furthermore, if there is a derivation the procedure will
(in principle) always terminate and find some derivation if it guesses correctly
in step (2).

Theorem 4.8 (Completeness of Inversion Search)
Given a goal ∆; Γ =⇒ ρ. If there is a derivation of the goal, the inversion search
procedures terminates and finds a derivation for any choices made in step (3)
and some choices made in step (2).

Proof: By nested induction on depth of the given derivation I and the active
size of the given sequent. That is, we can apply the induction hypothesis if

1. the depth of the derivation I strictly decreases, or

2. the depth of I remains the same and the active size of the goal strictly
decreases.

Case: I is an initial sequent. Then we are in situation (1) and succeed.

Draft of November 12, 1999

4.2 Focusing 65

Case: I ends in a passive rule. Then we are in situation (2). We “guess”
the same rule instance to reduce our goal. Each of the resulting subgoals
now has a proof of strictly smaller depth, and we can apply the induction
hypothesis.

Case: I ends in an active rule. In that case we are in situation (3). Independent
of the last rule used in I, we can apply any active rule to reduce our
goal. By inversion (Lemma 4.3) each of the subgoals will have a proof of
smaller or equal depth than I. Moreover, the active size of the goal strictly
decreases and we can apply the induction hypothesis to each subgoal.

2

4.2 Focusing

The search procedure based on inversion developed in the previous section still
has an unacceptable amount of don’t know non-determinism. The problem lies
in the undisciplined use and proliferation of assumptions whose left rule is not
invertible.

In a typical situation we have some universally quantified implications as
assumptions. For example, ∆ could be

∀x1. ∀y1. ∀z1. P1(x1, y1, z1)⊃Q1(x1, y1, z1)⊃R1(x1, y1, z1),
∀x2. ∀y2. ∀z2. P2(x2, y2, z2)⊃Q2(x2, y2, z2)⊃R2(x2, y2, z2)

If the right-hand side is passive, we now have to apply ∀L to one of the
two assumptions. We assume we guess the first one and that we can guess an
appropriate term t1. After the ∀L rule and a left transition, we are left with

∀x1. ∀y1. ∀z1. P1(x1, y1, z1)⊃Q1(x1, y1, z1)⊃R1(x1, y1, z1),
∀x2. ∀y2. ∀z2. P2(x2, y2, z2)⊃Q2(x2, y2, z2)⊃R2(x2, y2, z2),
∀y1. ∀z1. P1(t1, y1, z1)⊃Q1(t1, y1, z1)⊃R1(t1, y1, z1).

Again, we are confronted with a don’t know non-deterministic choice, now
between 3 possibilities. One can see that the number of possible choices quickly
explodes. We can observe that the pattern above does not coincide with math-
ematical practice. Usually one applies an assumption or lemma of the form
above by instantiating all the quantifiers and all preconditions at once. This
strategy called focusing is a refinement of the inversion strategy presented in
the previous section.

Roughly, when all propositions in a sequent are passive, we focus either on an
assumption or the proposition we are trying to prove and then apply a sequence
of non-invertible rules to the chosen proposition. This phase stops when either
an invertible connective or an atomic proposition is reached.

As in the previous section, we capture this idea by a combination of a deduc-
tive system and a search strategy which distinguishes between conjunctive and
disjunctive choices. We still use the sequents ∆; Γ =⇒ A; · and ∆; Γ =⇒ ·;R

Draft of November 12, 1999

66 Focused Derivations

with the same notation for simplicity. All the active rules (but not the initial
sequents) are copied verbatim to this system. In addition, we need two new
forms of sequents to express the focusing phase of proof search. We write

∆;A� ·;R Focus on A on the left
∆; · � A; · Focus on A on the right

The initial and passive rules of the inversion derivation are replaced by the
following set of rules.

Decision. These rules decide which formula to focus on and are treated in a
don’t know non-deterministic manner. While we allow focusing on an atomic
assumption, focusing on the succedent requires it to be non-atomic. The reason
is our handling of initial sequents.

(∆, L);L� ·;R
dL

(∆, L); · =⇒ ·;R

∆; · � R+; ·
dR

∆; · =⇒ ·;R+

Right Focus Propositions. The non-invertible rules on the right maintain
the focus on principal formula of the inference. When we have reduced the
right-hand side to a right-invertible or atomic proposition, we blur our focus
and initiate decomposition with an active sequent. Here R is either P , A ⊃ B,
A ∧B, >, and ∀x. A.

∆; · � A; ·
∨R1

∆; · � A ∨B; ·

∆; · � B; ·
∨R2

∆; · � A ∨B; ·

no right focus rule for ⊥

∆; · � [t/x]A; ·
∃R

∆; · � ∃x. A; ·

∆; · =⇒ R; ·
bR

∆; · � R; ·

Left Focus Propositions. The non-invertible rules on the left also maintain
their focus on the principal formula of the inference. When we have reached a
non-atomic left-invertible proposition, we blur our focus and initiate decompo-

sition with an active sequent. Here L
+

is either A ∨B, ⊥, ∃x. A.

∆;B� ·;R ∆; · =⇒ A; ·
⊃L

∆;A⊃B � ·;R

∆;A� ·;R
∧L1

∆;A ∧B � ·;R
∆;B � ·;R

∧L2
∆;A∧B � ·;R

no rule for >L

∆;L
+

=⇒ ·;R
bL

∆;L
+ � ·;R

Draft of November 12, 1999

4.3 Unification 67

Note that the second premise of the ⊃L rule is an unfocused sequent. From a
practical point of view it is important to continue with the focusing steps in
the first premise before attempting to prove the second premise, because the
decomposition of B may ultimately fail when an atomic proposition is reached.
Such a failure would render the possibly difficult proof of A useless.

It is possible to extend the definition of L
+

to include conjunction and > and
remove the left focus rules for conjunction. In some situations this would clearly
lead to shorter proofs, but the present version appears to have less disjunctive
non-determinism.3

Initial Sequents. There is a slight, but important asymmetry in the initial
sequents: we require that we have focused on the left proposition.

init
∆;P � ·;P

Since this is the only rule which can be applied when the left focus formula
is atomic, a proof attempt fails in a situation where ∆;P � ·;Q for P 6= Q.
This is a very important property of the search, limiting non-determinism in
focusing.

If one shows only applications of the decision rules in a derivation, the format
is very close to assertion-level proofs as proposed by Huang [Hua94]. His mo-
tivation was the development of a formalism appropriate for the presentation
of mathematical proofs in a human-readable form. This provides independent
evidence for the value of focusing proofs. Focusing derivations themselves were
developed by Andreoli [And92] in the context of classical linear logic. An adap-
tation to intuitionistic linear logic was given by Howe [How98] which is related
the calculus LJT devised by Herbelin [Her95]. Herbelin’s goal was to devise
a sequent calculus whose derivations are in bijective correspondence to normal
natural deductions. Due to the ∨, ⊥ and ∃ elimination rules, this is not the
case here.

The search procedure which works with focusing sequents is similar to the
one for inversion: it mixes conjunctive non-determinism for active rules with
disjunctive non-determinism for choice and focused rules. After the detailed
development of inversion proofs, we will not repeat or extend the development
here, but refer the interested reader to the literature. The techniques are very
similar to the ones shown in Section 4.1.

4.3 Unification

When proving a proposition of the form ∃x. A by its right rule in the sequent
or focusing calculus, we must supply a term t and then prove [t/x]A. The
domain of quantification may include infinitely many terms (such as the natural

3[evaluate]

Draft of November 12, 1999

68 Focused Derivations

numbers), so this choice cannot be resolved simply by trying all possible terms
t. Similarly, when we use a hypothesis of the form ∀x. A we must supply a term
t to substitute for x. We refer to this a existential non-determinism.

Fortunately, there is a technique called unification which is sound and com-
plete for syntactic equality between terms. The basic idea is quite simple: we
postpone the choice of t and instead substitute a new existential variable (often
called meta-variable or logic variable) X for x and continue with the bottom-up
construction of a derivation. When we reach initial sequents we check if there is
a substitution for the existential variables such that the hypothesis matches the
conclusion. If so, we apply this instantiation globally to the partial derivation
and continue to search for proofs of other subgoals. Finding an instantiation
for existential variables under which two propositions or terms match is called
unification. It is decidable if a unifying substitution or unifier exists, and if so,
we can effectively compute it in linear time. Moreover, we can do so with a
minimal commitment and we do not need to choose between various possible
unifiers.

Because of its central importance in both backward- and forward-directed
search, unification has been thoroughly investigated. Herbrand [Her30] is given
credit for the first description of a unification algorithm in a footnote of his
thesis, but it was not until 1965 that it was introduced into automated deduc-
tion through the seminal work by Alan Robinson [Rob65, Rob71]. The first
algorithms were exponential, and later almost linear [Hue76, MM82] and linear
algorithms [MM76, PW78] were discovered. In the practice of theorem proving,
generally variants of Robinson’s algorithm are still used, due to its low constant
overhead on the kind of problems encountered in practice. For further discussion
and a survey of unification, see [Kni89]. We describe a variant of Robinson’s
algorithm.

Before we describe the unification algorithm itself, we relate it to the problem
of proof search. We use here the sequent calculus with atomic initial sequents,
but it should be clear that precisely the same technique of residuation applies to

focused derivations. We enrich the judgment Γ
−

=⇒ A by a residual proposition
F such that

1. if Γ
−

=⇒ A then Γ
−

=⇒ A \ F and F is true, and

2. if Γ
−

=⇒ A \ F and F is true then Γ
−

=⇒ A.

Generally, we cannot prove such properties directly by induction, but we need
to generalize them, exhibiting the close relationship between the derivations of
the sequents and residual formulas F .

Residual formulas F are amenable to specialized procedures such as unifi-
cation, since they are drawn from a simpler logic or deductive system than the
general propositions A. In practice they are often solved incrementally rather
than collected throughout a derivation and only solved at the end. This is
important for the early detection of failures during proof search. Incremental
solution of residual formulas is the topic of Exercise ??.

Draft of November 12, 1999

4.3 Unification 69

What do we need in the residual propositions so that existential choices and
equalities between atomic propositions can be expressed? The basic proposition
is one of equality between atomic propositions, P1

.
= P2. We also have conjunc-

tion F1 ∧ F2, since equalities may be collected from several subgoals, and > if
there are no residual propositions to be proven. Finally, we need the existen-
tial quantifier ∃x. F to express the scope of existential variables, and ∀x. F to
express the scope of parameters introduced in a derivation. We add equality
between terms, since it is required to describe the unification algorithm itself.
We refer to the logic with these connectives as unification logic, defined via a
deductive system.

Formulas F ::= P1
.
= P2 | t1

.
= t2 | F1 ∧ F2 | > | ∃x. F | ∀x. F

The main judgment “F is valid”, written |= F , is defined by the following
rules, which are consistent with, but more specialized than the rules for these
connectives in intuitionistic natural deduction (see Exercise ??).

.
= I

|= P
.
= P

.
= I′

|= t
.
= t

|= F1 |= F2
∧I

|= F1 ∧ F2

>I
|= >

|= [t/x]F
∃I

|= ∃x. F

|= [a/x]F
∀Ia

|= ∀x. F

The ∀Ia rule is subject to the usual proviso that a is a new parameter not
occurring in ∀x. F . There are no elimination rules, since we do not need to
consider hypotheses about the validity of a formula F which is the primary
reason for the simplicity of theorem proving in the unification logic.

We enrich the sequent calculus with residual formulas from the unification
logic, postponing all existential choices. Recall that in practice we merge resid-
uation and solution in order to discover unprovable residual formulas as soon as
possible. This merging of the phases is not represented in our system.

Initial Sequents. Initial sequents residuate an equality between its principal
propositions. Any solution to the equation will unify P ′ and P , which means
that this will translate to a correct application of the initial sequent rule in the
original system.

init
Γ, P ′

−
=⇒ P \ P ′ .= P

Propositional Connectives. We just give a few sample rules for the con-
nectives which do not involve quantifiers, since all of them simply propagate or

Draft of November 12, 1999

70 Focused Derivations

combine unification formulas, regardless whether they are additive, multiplica-
tive, or exponential.

Γ, A
−

=⇒ B \ F
⊃R

Γ
−

=⇒ A⊃ B \ F
>R

Γ
−

=⇒ > \ >

Γ, A⊃ B −
=⇒ A \ F1 Γ, A⊃B,B −

=⇒ C \ F2
⊃L

Γ, A⊃B −
=⇒ C \ F1 ∧ F2

Quantifiers. These are the critical rules. Since we residuate the existential
choices entirely, the ∃R and ∀L rules instantiate a quantifier by a new parameter,
which is existentially quantified in the residual formula in both cases. Similarly,
the ∀R and ∃L rule introduce a parameter which is universally quantified in the
residual formula.

Γ
−

=⇒ [a/x]A \ [a/x]F
∀Ra

Γ
−

=⇒ ∀x. A \ ∀x. F

Γ, ∀x. A, [a/x]A
−

=⇒ C \ [a/x]F
∀La

Γ, ∀x. A −
=⇒ C \ ∃x. F

Γ
−

=⇒ [a/x]A \ [a/x]F
∃Ra

Γ
−

=⇒ ∃x. A \ ∃x. F

Γ, ∃x. A, [a/x]A
−

=⇒ C \ [a/x]F
∃La

Γ, ∃x. A −
=⇒ C \ ∀x. A

The soundness of residuating equalities and existential choices in this manner
is straightforward.

Theorem 4.9 (Soundness of Equality Residuation)

If Γ
−

=⇒ A \ F and |= F then Γ
−

=⇒ A.

Proof: By induction on the structure of the given derivation R. We show the
critical cases. Note how in the case of the ∃R rule the derivation of |= ∃x. F
provides the essential witness term t.

Case:

R = init
Γ, P ′

−
=⇒ P \ P ′ .= P

|= P ′
.
= P By assumption

P ′ = P By inversion

Γ, P ′
−

=⇒ P By rule init

Case:

R =

R1

Γ
−

=⇒ [a/x]A1 \ [a/x]F1

∃Ra

Γ
−

=⇒ ∃x. A1 \ ∃x. F1

Draft of November 12, 1999

4.3 Unification 71

|= ∃x. F1 By assumption
|= [t/x]F1 for some t By inversion

Γ
−

=⇒ [t/x]A1 \ [t/x]F1 By substitution for parameter a

Γ
−

=⇒ [t/x]A1 By i.h.

Γ
−

=⇒ ∃x. A1 By rule ∃R

Case:

R =

R1

Γ
−

=⇒ [a/x]A1 \ [a/x]F1

∀Ra

Γ
−

=⇒ ∀x. A1 \ ∀x. F1

|= ∀x. F1 By assumption
|= [b/x]F1 for a new parameter b By inversion
|= [a/x]F1 By substititution of a for b

Γ
−

=⇒ [a/x]A1 By i.h.

Γ
−

=⇒ ∀x. A1 By rule ∀R

2

The opposite direction is more difficult. The desired theorem:

If Γ
−

=⇒ A then Γ
−

=⇒ A \ F for some F with |= F

cannot be proved directly by induction, since the premisses of the two deriva-
tions are different in the ∃R and ∀L rules. However, one can be obtained from
the other by substituting terms for parameters. Since this must be done simul-
taneously, we introduce a new notation.

Parameter Substitution ρ ::= · | ρ, t/a

We assume all the parameters a substituted for by ρ are distinct to avoid ambi-
guity. We write A[ρ], F [ρ], and Γ[ρ], for the result of applying the substitution
ρ to a proposition, formula, or context, respectively.

Lemma 4.10 If Γ
−

=⇒ A where A = A′[ρ], Γ = Γ′[ρ] then Γ′
−

=⇒ A′ \ F for
some F such that |= F [ρ].

Proof: The proof proceeds by induction on the structure of the given derivation
D. We show only two cases, the second of which required the generalization of
the induction hypothesis.

Case:

D = init
Γ1, P

−
=⇒ P

Draft of November 12, 1999

72 Focused Derivations

Γ1 = Γ′1[ρ], P = P ′[ρ], and P = P ′′[ρ] Assumption

Γ′1, P
′ −=⇒ P ′′ \ P ′ .= P ′′ By rule init

|= P ′[ρ]
.
= P ′′[ρ] By rule

.
= I

Case:

D =

D1

Γ
−

=⇒ [t/x]A1

∃R
Γ
−

=⇒ ∃x. A1

∃x. A1 = A′[ρ] Assumption
A′ = ∃x. A′1 for a new parameter a with
[a/x]A1 = ([a/x]A′1)[ρ, a/a] By definition of substitution
[t/x]A1 = ([a/x]A′1)[ρ, t/a] By substitution for parameter a
Γ = Γ′[ρ] Assumption
Γ′[ρ] = Γ′[ρ, t/a] Since a is new

Γ′
−

=⇒ [a/x]A′1 \ [a/x]F1, and
|= ([a/x]F1)[ρ, t/a] By i.h.

Γ′
−

=⇒ ∃x. A′1 \ ∃x. F1 By rule ∃R
|= (∃x. F1)[ρ] By rule ∃R and definition of substitution

2

Theorem 4.11 (Completeness of Equality Residuation)

If Γ
−

=⇒ A then Γ
−

=⇒ A \ F for some F and |= F .

Proof: From Lemma 4.10 with A′ = A, Γ′ = Γ, and ρ the identity substitution
on the parameters in Γ and A. 2

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in
the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways for describing unification algorithms in the liter-
ature. We describe the computation of the algorithm as the bottom-up search
for the derivation of a judgment. We restrict the inference rules such that they
are essentially deterministic, and the inference rules themselves can be seen as
describing an algorithm. This algorithm is in fact quite close to the implemen-
tation of it in ML which is available together with these notes.

In order to describe the algorithm in this manner, we need to introduce
existential variables (often called meta-variables or logic variables) which are
place-holders for the terms to be determined by unification. We use X and
Y to stand for existential variables. Existential variables are different from
parameters which are interpreted universally : all instances of a derivation with
a parameter are valid. Existential variables in a derivation require only one

Draft of November 12, 1999

4.3 Unification 73

instance to arrive at a valid derivation. While parameters are always local to a
subderivation, we consider existential variables to be global in a derivation.4

The second concept we need is that of a substitution for existential variables.
We use a new notation, because this form of substitution is quite different from
substitutions for bound variables x or parameters a.

Substitutions θ ::= · | θ,X 7→ t

We require that all variables X defined by a substitution are distinct. We write
dom(θ) for the variables defined by a substitution and cod(θ) for all the variables
occuring in the terms t. For a ground substitution cod(θ) is empty. For the
technical development it is convenient to assume that the domain and co-domain
of a substitution share no variables. This rules out “circular” substitutions
such as X 7→ f(X) and it also disallows identity substitutions X 7→ X. The
latter restriction can be dropped, but it does no harm and is closer to the
implementation. As for contexts, we consider the order of the definitions in a
substitution to be irrelevant.

We write t[θ], A[θ], and Γ[θ] for the application of a substitution to a term,
proposition, or context. This is defined to be the identity on existential variables
which are not explicitly defined in the substitution.

We also need an operation of composition, written as θ1 ◦ θ2 with the prop-
erty that t[θ1 ◦ θ2] = (t[θ1])[θ2] and similarly for propositions and contexts.
Composition is defined by

(·) ◦ θ2 = θ2

(θ1, X 7→ t) ◦ θ2 = (θ1 ◦ θ2), X 7→ t[θ2]

In order for composition to be well-defined and have the desired properties we
require that dom(θ1), dom(θ2) and cod(θ2) are disjoint, but of course variables
in the co-domain of θ1 can be defined by θ2.

Now we introduce the judgment which implicitly defines an algorithm for
unification. We write

|= F / θ θ is a most general unifier for F .

The intent (to be proven later) is that if |= F / θ then |= F [θ], which means
that θ is a unifier for F . Moreover, we show that whenever |= F [θ′] then there
exists a substitution θ′′ such that θ′ = θ ◦ θ′′, which means that θ is a most
general unifier for F (any unifier is an instance of θ).

Conjunction and Truth. Algorithmically, we impose a left-to-right order
on the solution of F1 and F2, but this just fixes a don’t care non-deterministic
choice.

|= F1 / θ1 |= F2[θ1] / θ2
∧I

|= F1 ∧ F2 / θ1 ◦ θ2

>I
|= > / ·

After all the rules have been shown, it will be easy to see that the side conditions
on composition are satisfied and θ1 ◦ θ2 is well-defined.

4[example]

Draft of November 12, 1999

74 Focused Derivations

Existential Quantification. Existential variables are introduced for exis-
tential quantifiers. They must be “new” (even though the judgment is not
parametric). Because of the way existential variables are global to a derivation,
this freshness requirement is a global requirement: in a complete derivation,
the existential variables chosen for all existential quantifiers must be distinct.
To be completely formal about this condition would require to thread a list of
existential variables or a counter through a derivation. We will dispense with
this complication here. We define (θ′, X 7→ t) −X = θ′ and θ −X = θ if X is
not in the domain of θ.

|= [X/x]F / θ X globally new
∃I

|= ∃x. F / θ −X

Despite the strong freshness requirement on X, the derivation of the premise
is not parametric in X. That is, we cannot substitute an arbitrary term t for
X in a derivation of the premiss and obtain a valid derivation, since the vr, rv,
vv6=, and vv= rules below require one or both sides of the equation to be an
existential variable. Substituting for such a variable invalidates the application
of these rules. MoreoverX can still appear in the co-domain of θ in the generated
substitution.

Predicate and Function Constants. An equation between the same func-
tion constant applied to arguments is decomposed into equations between the
arguments. Unification fails if different function symbols are compared, but this
is only indirectly reflected by an absence of an appropriate rule. Failure can also
be explicitly incorporated in the algorithm (see Exercise ??).

|= t1
.
= s1 ∧ · · · ∧ tn .

= sn / θ
pp

|= p(t1, . . . , tn)
.
= p(s1, . . . , sn) / θ

|= t1
.
= s1 ∧ · · · ∧ tn .

= sn / θ
rr

|= f(t1, . . . , tn)
.
= f(s1, . . . , sn) / θ

These rules violate orthogonality by relying on conjunction in the premises for
the sake of conciseness of the presentation. We could avoid this by introducing
a separate judgment for the unification of lists of terms. When f or p have no
arguments, the empty conjunction in the premise should be read as >.

Existential Variables. There are four rules for variables. We write r for
terms of the form f(t1, . . . , tn). Existential variables always range over terms
(and not propositions), so we do not need rules for equations of the form X

.
= P

or P
.
= X.

X not in r
vr

|= X
.
= r / (X 7→ r)

X not in r
rv

|= r
.
= X / (X 7→ r)

These two rules come with the proviso that the existential variable X does not
occur in the term r. This is necessary to ensure that the substitution X 7→ r is
indeed a unifier. Otherwise unification fails and we can recognize formulas such

Draft of November 12, 1999

4.3 Unification 75

as ∃x. x .
= f(x) as false. This leaves equations of the form X

.
= Y between two

existential variables.

Y 6= X
vv6=

|= X
.
= Y / (X 7→ Y)

vv=
|= X

.
= X / ·

We now explore the soundness and completeness of these rules, and then an-
alyze the rules as the basis of an algorithm. In the statement of the properties
below we take some care so that for a judgment |= F , F never contains free
existential variables which are seen only as part of the algorithm, not the def-
inition of the logic. We write σ for ground substitutions. We say σ grounds a
formula F if F [σ] contains no existential variables. We assume that there is a
closed term to be substituted for each variable. This assumption is necessary,
for example, to prove that ∃x. x .

= x is valid.

Theorem 4.12 (Soundness of Unification)
If |= F / θ then for any substitution σ which grounds F [θ] we have |= (F [θ])[σ].

Proof: By induction on the structure of the derivation U for |= F / θ.

Case:

U = >I
|= > / ·

>[·][σ] = > By definition of substitution
|= > By rule >I

Case:

U =

U1

|= F1 / θ1

U2

|= F2[θ1] / θ2

∧I
|= F1 ∧ F2 / θ1 ◦ θ2

σ grounds (F1 ∧ F2)[θ1 ◦ θ2] Assumption
θ2 ◦ σ grounds F1[θ1] By properties of substitution
|= (F1[θ1])[θ2 ◦ σ] By i.h. on U1

σ grounds (F2[θ1])[θ2] By properties of substitution
|= (F2[θ1][θ2])[σ] By i.h. on U2

|= (F1 ∧ F2)[θ1 ◦ θ2][σ] By rule ∧I and properties of substitution

Case:

U =

U1

|= [X/x]F1 / θ
′

∃I
|= ∃x. F1 / θ

′ −X

In this case we distinguish subcases, depending on whether X is in the
domain of θ′.

Draft of November 12, 1999

76 Focused Derivations

Subcase: θ′ = θ,X 7→ t. Recall that we assume that there are ground
terms.

σ grounds (∃x. F1)[θ] Assumption
σ ◦ σ′ grounds ([X/x]F1)[θ,X 7→ t]

for any appropriate σ′ which grounds t[σ]
|= ([X/x]F1)[θ,X 7→ t][σ ◦ σ′] By i.h. on U∞
|= [t[σ ◦ σ′]/x](F1[θ][σ]) By properties of substitution
|= (∃x. F1)[θ][σ] By rule ∃I and properties of substitution

Subcase: θ′ = θ and contains no binding for X. Then we proceed as in
the previous subcase, using σ′ = X 7→ t′ for some arbitrary ground
term t′.

Case:

U =
X not in r

vr
|= X

.
= r / (X 7→ r)

σ grounds (X
.
= r)[X 7→ r] Assumption

(X
.
= r)[X 7→ r] = (r

.
= r) By precondition for rule

|= (X
.
= r)[X 7→ r][σ] By rule

.
= I

Case: Rule rv for r
.
= X is symmetric.

Case: Rule vv6= for X
.
= X is similar.

Case: Rule vv= for X
.
= X and X

.
= Y for X 6= Y is also similar.

Case:

U =

U1

|= s1 = t1 ∧ . . . ∧ sn = tn / θ
rr

|= f(s1, . . . , sn) = f(t1, . . . , tn) / θ

σ grounds s1[θ], . . . , sn[θ] and t1[θ], . . . , tn[θ] From assumption
|= (s1

.
= t1 ∧ . . . ∧ sn .

= tn)[θ][σ] By i.h. on U1

s1[θ][σ] = t1[θ][σ], . . . , sn[θ][σ] = tn[θ][σ] By inversion
|= f(s1, . . . , sn)

.
= f(t1, . . . , tn)[θ][σ] By rule

.
= I

2

For the completeness theorem, it is convenient to introduce an intermediate
system in which equality is structural, rather than allowing general equality
of the form t

.
= t as axioms. This is because there is a mismatch between

the algorithm and the specification in that the algorithm analyzes and equality
layer-by-layer, while the specification proves |= t

.
= t all at once. We write |=− F

for a system which contains all the rules in |= F , except that
.
= I is replaced

Draft of November 12, 1999

4.3 Unification 77

by the following family of rules (one for each constant, function symbol, or
predicate symbol h).

|=
−
s1

.
= t1 ∧ . . . ∧ sn

.
= tn .

= Ih
|=− h(s1, . . . , sn)

.
= h(t1, . . . , tn)

Again, as in the case of the unification algorighm, we take the empty conjunction
(for n = 0) to be >. In the extension with parameters, we would have a separate
rule for equality between parameters.

Lemma 4.13 (Structural Equality)

|= F if and only if |=− F .

Proof: See Exercise 4.3. 2

Using this property, we can show completeness for structural equality and
easily lift it to the general system. In this completeness lemma we need to show
that the solution found by the unification algorithm is minimally committed,
that is, any actual ground solution is an instance of the solution found by the
algorithm.

Lemma 4.14 (Completeness Lemma for Unification)

If |=− F [σ] for a substitution σ which grounds F , then |= F / θ for some θ and
σ = θ ◦ σ′ for some σ′.

Proof: By induction on the structure of derivation E of |=− F [σ]. We show
some of the cases.

Case:

E = >I
|=
−
>[σ]

|= > / · By rule >I
σ = · ◦ σ By definition of composition
θ = · and σ′ = σ satisfy the claim

Case:

E =

E1
|=− F1[σ]

E2
|=− F2[σ]

∧I
|=
−

(F1 ∧ F2)[σ]

|= F1 / θ1 and σ = θ1 ◦ σ1 for some θ1 and σ1 By i.h. on E1
F2[σ] = (F2[θ1])[σ1] where σ1 grounds F2[θ1] By props. of substitution
|= F2[θ1] / θ2 and σ1 = θ2 ◦ σ2 for some θ2 and σ2 By i.h. on E2
|= (F1 ∧ F1) / θ1 ◦ θ2 By rule ∧I
σ = θ1 ◦ σ1 = θ1 ◦ (θ2 ◦ σ2) = (θ1 ◦ θ2) ◦ σ2 By above
θ = θ1 ◦ θ2 and σ′ = σ2 satisfy the claim

Draft of November 12, 1999

78 Focused Derivations

Case:

E =

E1
|=− [t/x]F1[σ]

∃I
|=− (∃x. f1)[σ]

[t/x]F1[σ] = ([X/x]F1)[σ,X 7→ t] for a fresh X By definition of substitution
|= [X/x]F1 / θ1 and σ,X 7→ t = θ1 ◦ σ1

for some θ1 and σ1 By i.h. on E1
|= ∃x. F1 / θ1 −X By rule ∃I

Now we distinguish two subcases: X is in the domain of θ1 and X is not.

Subcase: θ1 = θ′1, X 7→ t′.

σ,X 7→ t = (θ′1, X 7→ t′) ◦ σ1

= (θ′1 ◦ σ1), X 7→ t′[σ1] By definition of substitution
θ = θ′1 and σ′ = σ1 satisfy the claim

Subcase: X is not in the domain of θ1.

σ,X 7→ t = θ1 ◦ σ1 By above
σ1 = σ′1, X 7→ t Since X 6∈ dom(θ1)
θ = θ1 and σ′1 satisfy the claim

Case:

E =

E1
|=− s′1

.
= t′1 ∧ . . . ∧ s′n

.
= t′n .

= If
|=
−

(s
.
= t)[σ]

where s[σ] = f(s′1, . . . , s
′
n) and t[σ] = f(t′1, . . . , t

′
n). Here we distinguish

several subcases, depending on the structure of s and t.

Subcase: s = t = X for some existential variable X.

|= X
.
= X / · By rule vv=

σ = · ◦ σ By definition of substitition
θ = · and σ′ = σ satisfy the claim

Subcase: s = X and t = Y for X 6= Y .

X[σ] = Y [σ] By Lemma 4.13
σ = σ1, X 7→ X[σ], Y 7→ Y [σ] By definition of substitution
|= X

.
= Y / X 7→ Y By rule vv6=

σ = (X 7→ Y) ◦ (σ1, Y 7→ Y [σ]) By definition of composition
θ = X 7→ Y and σ′ = σ1, Y 7→ Y [σ] satisfy claim

Subcase: s = X and r = f(t1, . . . , tn).

Draft of November 12, 1999

4.3 Unification 79

X[σ] = r[σ] By Lemma 4.13
X not in r From above
|= X

.
= r / X 7→ r By rule vr

σ = σ1, X 7→ r[σ1] By properties of substitution
σ = (X 7→ r) ◦ σ1 By definition of composition
θ = X 7→ r and σ = σ1 satisfy the claim

Subcase: s = f(s1, . . . , sn) and r = Y . Symmetric to previous case.

Subcase: s = f(s1, . . . , sn) and t = f(t1, . . . , tn).

|= s1
.
= t1 ∧ . . .∧ sn .

= tn / θ and
σ = θ ◦ σ′ for some θ and σ′ By i.h. on E1
|= f(s1, . . . , sn)

.
= f(t1, . . . , tn) / θ By rule rr

θ and σ′ satisfy the claim

2

Theorem 4.15 (Completeness of Unification)
If |= F (where F contains no existential variables) then |= F / ·.

Proof: By Lemma 4.13 we can reduce the problem to structural equality. On
this, we apply Lemma 4.14 using the empty substitution for σ. 2

Soundness and completeness of the deductive system for unification are not
enough to yield all the desired properties of an implementation for unification.
We also need to verify that, when given an F it always terminates, either failing
or returning a substitution θ. By the properties above we know that failure will
mean that there is no unifier, and that θ is indeed a most general unifier.

Termination is not a trivial property of the system for unification. This is
because in the rule for conjunction of F1 ∧ F2 we apply unification to F2[θ1]
where θ1 is a unifier for F1. In general, F2[θ1] could be a much bigger than F2,
so a simple termination argument based on the structure of the formula F will
fail. If no special measures are taken, an implementation would be exponential,
since the textual size of the unifier of two terms may be exponential in the size
of the inputs. Consider, for example,

∃x1. ∃x2. ∃x2. f(x1, x2, x3)
.
= f(g(x2, x2), g(x3, x3), g(x4, x4))

In practice, this rather unfortunate complexity bound does not seem to be much
of a problem. Most implementations are straightforward, since the size of the
terms in realistic theorem proving problems tends to remain relatively small.
Moreover, the practically expensive part of unification (the occurs-check in the
vr and rv rules) can largely be compiled away and does not need to be carried
out very often.

For the proof of termination of unification, see Exercise 4.4.

Draft of November 12, 1999

80 Focused Derivations

4.4 Exercises

Exercise 4.1 Give an alternative proof of the inversion properties (Theorem 4.1)
which does not use induction, but instead relies on admissibility of cut in the
sequent calculus (Theorem 3.11).

Exercise 4.2 Formulate one or several cut rules directly on inversion sequents
as presented in Section 4.1 and prove that they are admissible. Does this simplify
the development of the completeness result for inversion proofs? Show how
admissibility might be used, or illustrate why it is not much help.

Exercise 4.3 Prove Lemma 4.13.

Exercise 4.4 Prove that the rules for unification read as an algorithm for com-
puting θ from F always terminate, either with failure to construct a derivation
(in which case there is no unifier) or with a θ (in which case θ is a most general
unifier).

Draft of November 12, 1999

Chapter 5

The Inverse Method

After the definition of logic via natural deduction, we have developed a succes-
sion of techniques for theorem proving based on sequent calculi. We considered
a sequent Γ =⇒ C as a goal, to be solved by backwards-directed search which
was modeled by the bottom-up construction of a derivation. The critical choices
were disjunctive non-determinism (resolved by guessing and backtracking) and
existential non-determinism (resolved by introducing existential variables and
unification). The limiting factor in more refined theorem provers based on this
method is generally the number of disjunctive choices which have to be made.
It is complicated by the fact that existential variables are global in a partial
derivation, which means that choices in one conjunctive branch have effects in
other branches. This effects redundancy elimination, since subgoals are not
independent of each other.

The diametrically opposite approach would be to work forward from the
initial sequents until the goal sequent is reached. If we guarantee a fair strategy
in the selection of axioms and inference rules, every goal sequent can be derived
this way. Without further improvements, this is clearly infeasible, since there
are too many derivations for us to hope that we can find one for the goal sequent
in this manner.

The inverse method is based on the property that in a cut-free derivation
of a goal sequent, we only need to consider subformulas of the goal and their
substitution instances. For example, when we have derived both A and B in
the forward direction, we only derive their conjunction A ∧ B if A ∧ B is a
subformula of the goal sequent.

The nature of forward search under these restrictions is quite different from
the backward search. Since we always add new consequences to the sequents al-
ready derived, knowledge grows monotonically and no disjunctive non-determinism
arises. Similarly for existential non-determinism, if we keep sequents in their
maximally general form. On the other hand, there is a potentially very large
amount of conjunctive non-determinism, since we have to apply all applicable
rules to all sequents in a fair manner in order to guarantee completeness. The
critical factor in forward search is to limit conjunctive non-determinism. We

Draft of November 12, 1999

82 The Inverse Method

can view this as redundancy elimination: among the many ways that a given
sequent may be derived, we try to actually consider a few as possible. The
techniques developed in the preceding chapters, with some modifications, can
be applied in this new setting.

Historically, the inverse method is due to Maslov [Mas64]. It has been
adapted to intuitionistic and other non-classical logics by Voronkov [Vor92],
Mints [Min94], and Tammet [Tam96, Tam97].

5.1 Forward Sequent Calculus

As a first step towards the inverse method, we write out a sequent calculus
appropriate for forward search. This stems from a basic reinterpretation of a
sequent during search. Previously, Γ =⇒ C expressed that we may use all
hypotheses in Γ to prove that C is true. Now we will think of Γ −→ C to mean
that we needed all the hypotheses in Γ in order to prove that C is true.

This means that weakening is no longer valid for sequents Γ −→ C and we
have to take special care when we formulate correctness theorems. Secondly,
we do not need to keep duplicate assumptions, so we view Γ in the sequent
Γ −→ C as a set of assumptions. We write Γ1 ∪ Γ2 for the union of two sets of
assumptions, and Γ, A stands for Γ ∪ {A}.1

Initial Sequents. Previously, we allowed Γ, A =⇒ A, since the assumptions
in Γ can be used, but are just not needed in this case. In the forward calculus,
initial sequents

init
A −→ A

express that only the hypothesis A is needed to derive the truth ofA and nothing
else.

Conjunction. In the right rule for conjunction, we previously concluded Γ =⇒
A ∧ B from Γ =⇒ A and Γ =⇒ B. This expressed that all assumptions Γ are
available in both branches. Now we need to take the union of the two sets of
assumptions, expressing that both are needed to prove the conclusion.

Γ1 −→ A Γ2 −→ B
∧R

Γ1 ∪ Γ2 −→ A ∧B

On the left rules, so such considerations arise.

Γ, A −→ C
∧L1

Γ, A ∧B −→ C

Γ, B −→ C
∧L2

Γ, A ∧B −→ C

Note that if A ∧ B is already present in Γ in the two left rules, it will not be
added again.

1In the language of judgments, Γ −→ A is a strict hypothetical judgment.

Draft of November 12, 1999

5.1 Forward Sequent Calculus 83

Truth. As in the backward sequent calculus, there is only a right rule. Unlike
the backward sequent calculus, it does not permit any hypotheses.

>R
· −→ >

Implication. In the backward sequent calculus, the right rule for implication
has the form

Γ, A =⇒ B
⊃R.

Γ =⇒ A ⊃B
In the forward direction this would not be sufficient, because it would allow us
to conclude A ⊃ B only if A is actually needed in the proof of B. To account
for this case, we introduce two separate rules.

Γ, A −→ B
⊃R1

Γ −→ A ⊃B
Γ −→ B ⊃R2

Γ −→ A ⊃B

Another, more efficient possibility combines these rules into one which removes
A from the context of the premise if it is there and otherwise leaves it unchanged
(see Section ??). In the left rule we have to take a union as in the right rule for
conjunction.

Γ1 −→ A Γ2, B −→ C
⊃L

Γ1 ∪ Γ2, A⊃ B −→ C

Note that the principal proposition A ⊃ B does not occur in the premises.
However, it might occur in Γ1 or Γ2, in which case it is not added again in the
conclusion.

Disjunction. This introduces no new considerations.

Γ −→ A ∨R1
Γ −→ A ∨B

Γ −→ B ∨R2
Γ −→ A ∨B

Γ1, A −→ C Γ2, B −→ C
∨L

Γ1,Γ2, A ∨B −→ C

Falsehood. There is only a left rule.

⊥L
⊥ −→ C

We postpone the consideration of negation and quantifiers.
The soundness of the forward sequent calculus is easy to establish.

Theorem 5.1 (Soundness of Forward Sequent Calculus)
If Γ −→ C then Γ =⇒ C

Draft of November 12, 1999

84 The Inverse Method

Proof: By induction on the structure of the derivation F of Γ −→ C. We show
only some of the cases, since the patterns are very similar in the remaining ones.
In order to avoid confusion, we write Γ, A and Γ ∪ {A} for forward sequents to
be more explicit about possible contractions.

Case:

F = init
C −→ C

C =⇒ C By rule init

Case:

F =

F1

Γ1 −→ C1

F2

Γ2 −→ C2

∧R
Γ1 ∪ Γ2 −→ C1 ∧ C2

Γ1 =⇒ C1 By i.h. on F1

Γ1 ∪ Γ2 =⇒ C1 By weakening
Γ2 =⇒ C2 By i.h. on F2

Γ1 ∪ Γ2 =⇒ C2 By weakening
Γ1 ∪ Γ2 =⇒ C1 ∧ C2 By rule ∧R

Case:

F =

F1

Γ1 −→ A
F2

Γ2, B −→ C
⊃L

Γ1 ∪ Γ2 ∪ {A⊃ B} −→ C

Γ1 =⇒ A By i.h. on F1

Γ1 ∪ Γ2, A⊃ B =⇒ A By weakening
Γ2, B =⇒ C By i.h. on F2

Γ1 ∪ Γ2, A⊃ B,B =⇒ C By weakening
Γ1 ∪ Γ2, A⊃ B =⇒ C By rule ⊃L
Γ1 ∪ Γ2 ∪ {A⊃B} =⇒ C By contraction (if needed)

2

Completeness is more difficult. In fact, it is false! For example, for atomic
propositions P and Q we can not derive P,Q =⇒ P . Fortunately, the absence of
weakening is the only source of difficulty and can easily be taken into account.

Theorem 5.2 (Completeness of Forward Sequent Calculus)
If Γ =⇒ C then Γ′ −→ C for some Γ′ ⊆ Γ.

Proof: By induction on the structure of S for Γ =⇒ C.

Draft of November 12, 1999

5.2 Negation and Empty Succedents 85

Case:

S = init
Γ1, C =⇒ C

C −→ C By rule init
{C} ⊆ Γ1, C By definition of ⊆

Case:

S =

S1

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃ B

Γ′′ −→ B for some Γ′′ ⊆ Γ, A By i.h. on S1

Γ′′ = Γ′, A and Γ′ ⊆ Γ First subcase
Γ′ −→ A ⊃B By rule ⊃R1

Γ′′ ⊆ Γ Second subcase
Γ′′ −→ A⊃ B By rule ⊃R2

Case:

S =

S1

Γ1, A⊃ B =⇒ A
S2

Γ1, A⊃B,B =⇒ C
⊃L

Γ1, A⊃B =⇒ C

Γ′1 −→ A for some Γ′1 ⊆ Γ1, A⊃ B By i.h. on S1

Γ′2 −→ C for some Γ′2 ⊆ Γ1, A⊃B,B By i.h. on S2

Γ′2 = Γ′′2 , B and Γ′′2 ⊆ Γ1, A⊃ B First subcase
Γ′1 ∪ Γ′′2 ∪ {A⊃B} −→ C By rule ⊃L
Γ′1 ∪ Γ′′2 ∪ {A⊃B} ⊆ Γ1 ∪ {A⊃B} By properties of ⊆
Γ′2 ⊆ Γ1, A⊃ B Second subcase
Γ′ = Γ′2 satisfies claim

2

5.2 Negation and Empty Succedents

In the backward sequent calculus, the rules for negation

Γ, A =⇒ p
¬Rp

Γ =⇒ ¬A
Γ,¬A =⇒ A

¬L
Γ,¬A =⇒ C

require propositional parameters p. In Gentzen’s original formulation of the
sequent calculus he avoided this complication by allowing an empty right-hand
side. A sequent of the form

Γ =⇒ ·

Draft of November 12, 1999

86 The Inverse Method

can then be interpreted as

Γ =⇒ p for a parameter p not in Γ

As a result we can substitute an arbitrary proposition for the right-hand side (the
defining property for parametric judgments) and obtain an evident judgment.
In the sequent calculus with empty right-hand sides, this can be accomplished
by weakening on the right:

If Γ =⇒ · then Γ =⇒ C for any proposition C.

When the right-hand side can be empty or a singleton we write Γ =⇒ γ,
where γ = C or γ = ·.

In a forward sequent calculus we can take advantage of this in order to avoid
overcommitment in the rules for negation and falsehood. We first show the
forward rules for negation; then we reexamine all the previous rules.

Negation. We just take advantage of the new form of judgment, avoiding, for
example, a commitment to a particular proposition C in the ¬L rule.

Γ, A −→ ·
¬R

Γ −→ ¬A
Γ −→ A

¬L
Γ,¬A −→ ·

Interestingly, we do not need a second right rule for negation as for implication
(see Exercise ??).

Falsehood. Falsehood can similarly benefit from avoiding commitment. Note
that previously the rule stated ⊥ −→ C, although there are many possible
choices for C. Now we just replace this by

⊥L
⊥ −→ ·

There still is no right rule.

Initial Sequents. They do not change.

init
A −→ A

Conjunction. The right rule requires no change.

Γ1 −→ A Γ2 −→ B
∧R

Γ1 ∪ Γ2 −→ A ∧B

On the left rules simply need to allow for an empty right-hand side.

Γ, A −→ γ
∧L1

Γ, A∧B −→ γ

Γ, B −→ γ
∧L2

Γ, A ∧B −→ γ

Draft of November 12, 1999

5.2 Negation and Empty Succedents 87

Truth. Does not change.
>R

· −→ >

Implication. The possibility of empty right-hand sides requires a third right
rule for implication. Again, in an implementation the three rules might be
combined into a more efficient one.

Γ, A −→ B
⊃R1

Γ −→ A⊃ B
Γ −→ B ⊃R2

Γ −→ A⊃ B
Γ, A −→ ·

⊃R3
Γ −→ A⊃ B

Γ1 −→ A Γ2, B −→ γ
⊃L

Γ1 ∪ Γ2, A⊃B −→ γ

Disjunction. The rule for disjunction on the right remains the same, but the
left rule now has to account for several possibilities, depending on whether the
right-hand sides of the premises are empty. Essentially, we take the union of the
right-hand sides of the two premises, except that the result must be a singleton
or empty for the sequent to be well-formed.

Γ −→ A ∨R1
Γ −→ A ∨B

Γ −→ B ∨R2
Γ −→ A ∨B

Γ1, A −→ γ1 Γ2, B −→ γ2
∨L

Γ1 ∪ Γ2, A ∨B −→ γ1 ∪ γ2

In detail, either γ1 or γ2 is empty, or γ1 = γ2 = C = γ1 ∪ γ2. The rule does not
apply otherwise.

The statement of the soundness theorem does not change much with empty
succedents.

Theorem 5.3 (Soundness of Forward Sequent Calculus)

1. If Γ −→ C then Γ =⇒ C, and

2. if Γ −→ · then Γ =⇒ C for all C.

Proof: By induction on the derivation F of Γ −→ γ. 2

In the completeness theorem, we now need to allow possible weakening on
the left or on the right.

Theorem 5.4 (Completeness of Forward Sequent Calculus)

1. If Γ =⇒ C then Γ′ −→ C or Γ′ −→ · for some Γ′ ⊆ Γ.

Proof: By induction on the derivation S of Γ =⇒ C. 2

Draft of November 12, 1999

88 The Inverse Method

5.3 The Subformula Property

It is a general property of cut-free sequent calculi that all propositions occurring
in a derivation are subformulas of the endsequent. In the forward direction we
can therefore restrict the application of a rule to the case where the principal
formula in the conclusion is a subformula of the goal sequent. We refine this
property further by tracking positive and negative subformula occurrences. We
then restrict left rule to introduce only negative subformulas of the goal sequent
and right rules to positive subformulas of the goal sequent. To this end we
introduce signed formulas.

Positive A+ ::= P+ | A+
1 ∧A+

2 | A−1 ⊃A+
2 | A+

1 ∨A+
2 | >+ | ⊥+ | ¬A−

Negative A− ::= P− | A−1 ∧A−2 | A+
1 ⊃A−2 | A−1 ∨A−2 | >− | ⊥− | ¬A+

It is obvious that every proposition can be annotated both positively and
negatively, and that such an annotation is unique. We write Γ− for a context
A−1 , . . . , A

−
n and γ+ for an empty succedent or C+. All inference rules for

the sequent calculus can be annotated so that for a goal sequent Γ− −→ γ+,
each sequent arising in the derivation has the same form, with only negative
propositions on the left and positive propositions on the right (see Exercise 5.1).
We say that A is a subformula of Γ or γ if A is a subformula of an element of
Γ or γ, respectively, and similarly for signed propositions.

Theorem 5.5 (Signed Subformula Property)
Given a derivation S of Γ− −→ γ+. Then each sequent in S has the form
A−1 , . . . , A

−
n −→ B+ or A−1 , . . . , A

−
n −→ · where all A−i and B+ are signed

subformulas of Γ− or γ+.

Proof: By straightforward induction on the structure of S. 2

Note that this is a very strong theorem, since it asserts not only that every
provable goal sequent has a derivation consisting of subformulas, but that all
derivations of a provable sequent consist only of subformulas. A sequent not
consisting of subformulas cannot contribute to a derivation of a goal sequent in
the (cut-free) forward sequent calculus.

The subformula property immediately gives rise to a procedure for forward
theorem proving. We start with all initial sequents of the form A− −→ A+

where both A− and A+ are signed subformulas of the goal sequent. We also
have to add · −→ >+ and ⊥− −→ · if >+ or ⊥− are subformulas of the goal
sequent, respectively.

Then we apply all possible inference rules where the principal proposition
in the conclusion is a subformula of the goal sequent. We stop with success
when we have generated the goal sequent, or if the goal sequent can be obtained
from a generated sequent by weakening. We fail if any possible way of applying
inference rules yields only sequents already in the database. In that case the goal
sequent cannot be derivable if we have not encountered it (or a strengthened
form of it) already.

Draft of November 12, 1999

5.4 Naming Subformulas 89

We now show an example derivation in a linearized format. The goal sequent
is A⊃ (B ⊃C) −→ ((A ∧B) ⊃ C). After signing each subformula we obtain

(A+ ⊃ (B+ ⊃C−)−)− −→ (((A− ∧B−)−)⊃ C+)+

If show only the top-level sign, this leads to the following list of signed subfor-
mulas.

A+, B+, C−, A−, B−, C+,
(B ⊃ C)−, (A ∧B)−,
(A ⊃ (B ⊃ C))−, ((A ∧B) ⊃ C)+

This means we have both positive and negative occurrences of A, B, and C and
we have to consider three initial sequents.

1 A− −→ A+ init

2 B− −→ B+ init

3 C− −→ C+ init

4 (A ∧B)− −→ A+ ∧L1 1

5 (A ∧B)− −→ B+ ∧L1 2

6 (A ∧B)−, (B ⊃C)− −→ C+ ⊃L 5 3

7 (A ∧B)−, (A⊃ (B ⊃C))− −→ C+ ⊃L 4 6

8 (A ⊃ (B ⊃ C))− −→ ((A ∧B) ⊃ C)+ ⊃R1 7

We use the horizontal lines to indicate iterations of an algorithm which
derives all possible new consequences from the sequents already established. We
have elided those sequents that do not contribute to the final derivation. For
example, in the first step we can use ⊃R2 to conclude C− −→ ((A ∧B)⊃C)+,
from C− −→ C+, since the succedent is a positive subformula of the goal
sequent.

Note that the inference of line 7 contains an implicit contraction, since (A∧
B)− is an assumption in both premises (4 and 6).

5.4 Naming Subformulas

Without any further optimizations, the check if a given inference rule should be
used in the forward direction is complicated, since we have to repeatedly scan
the goal sequent for subformula occurrences. An integral part of the inverse
method is to avoid this scan by introducing names for non-atomic subformulas
and then specialize the inference rules to work only the names. We will not be
formal about this optimization, since we view it as an implementation technique,
but not an improvement of a logical nature. By expanding all newly defined
names we obtain a derivation as in the previous section.

We return to the previous example to illustrate the technique. The goal
sequent is A ⊃ (B ⊃ C) −→ (A ∧ B) ⊃ C). After naming each subformula we
obtain the signed atomic propositions

A+, B+, C−, A−, B−, C+,

Draft of November 12, 1999

90 The Inverse Method

and the new names
L−1 = B+ ⊃ C−
L−2 = A− ∧B−
L−3 = A+ ⊃ L−1
L+

4 = L−2 ⊃C+

We can now write out the general sequent calculus inference rules, specialized
to the above labels. Since the goal sequent contains no negative occurrence of
negation or falsehood, we may restrict the right-hand sides of all rules to be
non-empty. This means only two implication right rules are necessary instead
of three for L+

4 .

Γ1 −→ B+ Γ2, C
− −→ γ

⊃L (L−1)
Γ1 ∪ Γ2, L

−
1 −→ γ

Γ, A− −→ γ
∧L1 (L−2)

Γ, L−2 −→ γ

Γ, B− −→ γ
∧L2 (L−2)

Γ, L−2 −→ γ

Γ1 −→ A+ Γ2, L
−
1 −→ γ

⊃L (L−3)
Γ1 ∪ Γ2, L

−
3 −→ γ

Γ, L−2 −→ C+

⊃R1 (L+
4)

Γ −→ L+
4

Γ −→ C+

⊃R2 (L+
4)

Γ −→ L+
4

In its labeled form, the derivation above looks as follows.

1 A− −→ A+ init

2 B− −→ B+ init

3 C− −→ C+ init

4 L−2 −→ A+ ∧L1 1

5 L−2 −→ B+ ∧L1 2

6 L−2 , L
−
1 −→ C+ ⊃L 5 3

7 L−2 , L
−
3 −→ C+ ⊃L 4 6

8 L−3 −→ L+
4 ⊃R1 7

In the algorithm for labeling subterms we can avoid some redundancy if
we give identical subterms the same label. However, this is not required for
soundness and completeness, it only trims the search space.

Another choice arises for initial sequents. As in backwards search, we may re-
strict ourselves to atomic initial sequents or we may allow arbitrary labeled sub-
formulas as long as they occur both negatively and positively. Tammet [Tam96]
reports that allowing non-atomic initial sequents led to significant speed-up on a
certain class of test problems. Of course, in their named form, even non-atomic
sequents have the simple form L− −→ L+ for a label L.

Draft of November 12, 1999

5.5 Forward Subsumption 91

5.5 Forward Subsumption

For the propositional case, we can obtain a decision procedure from the inverse
method. We stop with success if we have reached the goal sequent (or a strength-
ened form of it) and with failure if any possible application of an inference rule
leads to a sequent that is already present. This means we should devise a data
structure or algorithm which allows us to check easily if the conclusion of an
inference rule application is already present in the database of derived sequents.
This check for equality should allow for permutations of hypotheses.

We can improve this further by not just checking equality modulo permu-
tations, but taking weakening into account. For example, if we have derived
L−1 , L

−
2 −→ L+

4 then the sequent L−1 , L
−
2 , L

−
3 −→ L+

4 is redundant and could
simply be obtained from the previous sequent by weakening. Similarly,L−1 −→ ·
has more information than L−1 −→ L+

2 , so the latter clause does not need to
be kept if we have the former clause. Note that we already need this form of
weakening to determine success if the goal sequent has assumptions. We say
the a sequent S subsumes a sequent S′ (written as S ≤ S′) if S′ can be obtains
from S by weakening on the right and left.

In the propositional case, there is a relatively simple way to implement sub-
sumption. We introduce a total ordering among all atomic propositions and
also the new literals introduced during the naming process. Then we keep the
antecedents of each sequent as an ordered list of atoms and literals. The union
operation required in the implementation of inference rules with two premises,
and the subset test required for subsumption can now both be implemented
efficiently.

The reverse, called backward subsumption discards a previously derived se-
quent S if the new sequent S′ subsumes S. Generally, backward subsumption is
considered less fundamentally important. For example, it is not necessary to ob-
tain a decision procedure for the propositional case. Implementations generally
appear to be optimized for efficient forward subsumption.

[the remainder of this section is speculative]

However, it seems possible to exploit backward subsumption in a stronger
way. Instead of simply deleting the subsumed sequent, we could strengthen its
consequences, essentially by replaying the rules applied to it on the stronger
sequent.

5.6 Proof Terms for the Inverse Method

The simplicity of the proof for the completeness theorem (Theorem 5.4) indicates
that a proof term assignment should be relatively straightforward. The implicit
contraction necessary when taking the union of two sets of antecedents presents
the only complication. A straightforward solution seems to be to label each
antecedent not with just a single variable, but with a set of variables. When
taking the union of two sets of antecedents, we also need to take the union of

Draft of November 12, 1999

92 The Inverse Method

the corresponding label sets. But this would require globally different variables
for labeling antecedents in order to avoid interference between the premises of
two-premise rules. Another possibility would be to assign a unique label to each
negative subformula of the goal sequent and simply use this label in the proof
term. This strategy will have to be reexamined in the first-order case, since a
given literal may appear with different arguments.

Note that proof term assignment in the forward sequent calculus can be
done on-line or off-line. In the on-line method we construct an appropriate
proof term for each sequent at each inference step in a partial derivation. In
the off-line method we keep track of the minimal information so we can recover
the actual sequence of inference steps to arrive a the final conclusion. From this
we reconstruct a proof term only once a complete sequent derivation has been
found.

The on-line method would be preferable if we could use the proof term
information to guide further inferences or subsumption; otherwise the off-line
method is preferable since the overhead is reduced to a a validation phase once
a proof has been found.

5.7 Inverse Focusing

In the system presented so far the non-determinism in forward reasoning is still
unacceptable, despite the use of subsumption. We can now analyze the rules in
a way that is analogous to Chapter 4, taking advantage of inversion and focus-
ing properties. This eliminates many derivations, significantly improving overall
efficiency at a high level of abstraction. Similar optimizations have been pro-
posed by Tammet [Tam96] and Mints [Min94], although the exact relationship
between these system and the one presented below have yet to be investigated.

In focused derivations, we reason from the goal sequent upward, first apply-
ing invertible rules. This means that in the inverse method, invertible rules will
be applied last, since we reason from the initial to the goal sequent. Conversely,
in focused derivations we finish proofs in the focusing phase, which is therefore
the first phase to be applied in the forward direction.

We first show the rules for focus sequents. These rules roughly correspond
to the Tammet’s reduction strategy.

∆; · > A; · Right focus on A
∆;A > ·;R Left focus on A

We apply the following restrictions.

Left passive L ::= P | A ∧B | > | A ⊃B | ∀x. A
Passive context ∆ ::= · | ∆, L
Right passive R ::= P | A ∨B | ⊥ | ∃x. A

These are slightly different from the previous definitions since conjunction and
truth is treated in a different manner.

Draft of November 12, 1999

5.7 Inverse Focusing 93

Left Focus Rules. As mentioned at the end of Section 5.4, we can restrict
initial sequents to be atomic or literals which name compound formulas which
appear both positively and negatively. As given below, however, the literals
would have to stand for R-formulas for this rule to be applicable.

init
∆;P > ·;P

∆;A > ·;R
∧L1

∆;A∧B > ·;R
∆;B > ·;R

∧L2
∆;A ∧B > ·;R

∆1;B > ·;R ∆2; · −→ A; ·
⊃L

∆1 ∪∆2;A⊃ B > ·;R no rule >L

∆; [t/x]A> ·;R
∀L

∆; ∀x. A > ·;R

Right Focus Rules.

∆; · > A; ·
∨R1

∆; · > A ∨B; ·
∆; · > B; ·

∨R2
∆; · > A ∨B; ·

∆; · > [t/x]A; ·
∃R

∆; · > ∃x. A; · no rule ⊥R

Transition Rules.

∆;L > ·;R
(∆, L); · −→ ·;R

∆; · > R+; ·

∆; · −→ ·;R+

Here, R+ is an non-atomic R-formula.

In the backwards directed focusing calculus we can choose between the active
right rules in a don’t-care non-deterministic manner. This means the calculus
admits many derivations; choosing any one of them is complete. For the forward
directions we should eliminate this so that exactly one of the derivations will
be generated. While the forward active rules below cut down some on the non-
determinism, they do not yet have this stronger property. For this will need to
add some ordering properties2 (see Section ??). This roughly corresponds to
Tammet’s inversion strategy.

Our partial solution is to force the right active rules to be applied first (in
the downward direction) and the left active rules second. Moreover, we restrict
ourselves to at most one active proposition on the left and right. Therefore we
have the following three judgments (the first being an auxiliary one).

2[I speculate]

Draft of November 12, 1999

94 The Inverse Method

∆; · −→ ·;R Neutral sequent
∆; · −→ A; · Right active A
∆;A −→ B; · Left active A and right active B

Right Active Rules.

∆; · −→ ·;R

∆; · −→ R; ·

∆1; · −→ A; · ∆2; · −→ B; ·
∧R

∆1 ∪∆2; · −→ A ∧B; ·
>R

·; · −→ >; ·

∆; · −→ B; ·
⊃R2

∆; · −→ A⊃ B; ·

∆; · −→ [a/x]A; ·
∀Ra

∆; · −→ ∀x. A; ·

Left Active Rules.

(∆, L); · −→ C; ·

∆;L −→ C; ·

∆;A −→ B; ·
⊃R1

∆; · −→ A⊃ B; ·

∆1;A −→ C; · ∆2;B −→ C; ·
∨L

∆1 ∪∆2;A ∨B −→ C; ·
⊥L

·;⊥ −→ C; ·

∆; [a/x]A−→ C; ·
∃La

∆; ∃x. A −→ C; ·
Note that the left rule for ⊥ is not satisfactory because of the unconstrained
proposition C on the right. A satisfactory treatment can be given using empty
right-hand sides (see Section 5.8) or by replacing C by a propositional parameter
p. However, this latter solution has further consequences (see Exercise ??).

Transitions Rules.

∆;L+ −→ R; ·

∆;L+ > ·;R

∆; · −→ R; ·

∆; · > R; ·
We restrict these rules to

L+ ::= A ∨B | ⊥ | ∃x. A
R ::= P | A⊃B | A ∧B | > | ∀x. A

Draft of November 12, 1999

5.8 Inverse Focusing with Negation 95

Soudness of inverse focused derivations is relatively easy to see, since the rules
are just specializations of the usual forward sequent rules. Completeness is more
difficult to show, especially since it does not hold for arbitrary active sequents
∆; Γ =⇒ A; · or ∆; Γ =⇒ ·;A. This means that we have to take advantage
of the don’t care non-determinism and choose (in the bottom-up direction) to
always work on the left-hand side of the sequent first and then the right-hand
side. One might proceed by first proving the completeness of this strategy with
respect to the bottom-up focusing calculus, and then prove the completeness of
the inverse focusing rules with respect to this intermediate calculus.

In practice, one might want to apply backwards rules in a don’t-care non-
deterministic fashion if a given goal sequent does not have the form ∆; · =⇒ A; ·
and solve the remaining subgoals with the inverse method. Alternatively, one
can “hide” left invertible connectives, for example, by discharging them and
proving ·; · −→ A1 ⊃ . . .⊃An ⊃ A; · for Γ = A1, . . . , An.

[Fill in appropriate soundness and completeness theorem here.]

5.8 Inverse Focusing with Negation

As in Section 5.2, negation is handled by allowing empty succedents. We apply
the following restrictions.

Left passive L ::= P | A ∧B | > | A ⊃B | ∀x. A | ¬A
Passive context ∆ ::= · | ∆, L
Right passive R ::= P | A ∨B | ⊥ | ∃x. A

We have the following judgments, where ρ is either empty or a singleton R
and γ is either empty or a singleton A.

∆; · > A; · Right focus on A
∆;A > ·; ρ Left focus on A
∆; · −→ ·; ρ Neutral sequent
∆; · −→ A; · Right active A
∆;A −→ γ; · Left active A, possible right active γ

Left Focus Rules.

init
∆;P > ·;P

∆;A > ·; ρ
∧L1

∆;A ∧B > ·; ρ
∆;B > ·; ρ

∧L2
∆;A ∧B > ·; ρ

∆1;B > ·; ρ ∆2; · −→ A; ·
⊃L

∆1 ∪∆2;A⊃ B > ·; ρ no rule >L

∆; · −→ A; ·
¬L

∆;¬A > ·; ·

∆; [t/x]A> ·; ρ
∀L

∆; ∀x. A > ·; ρ

Draft of November 12, 1999

96 The Inverse Method

Right Focus Rules.

∆; · > A; ·
∨R1

∆; · > A ∨B; ·
∆; · > B; ·

∨R2
∆; · > A ∨B; ·

∆; · > [t/x]A; ·
∃R

∆; · > ∃x. A; · no rule ⊥R

Transition Rules.

∆;L > ·; ρ
(∆, L); · −→ ·; ρ

∆; · > R+; ·

∆; · −→ ·;R+

Here, R+ is a non-atomic R-formula.

Right Active Rules.

∆; · −→ ·;R
∆; · −→ R; ·

∆1; · −→ A; · ∆2; · −→ B; ·
∧R

∆1 ∪∆2; · −→ A ∧B; ·
>R

·; · −→ >; ·

∆; · −→ B; ·
⊃R2

∆; · −→ A⊃ B; ·

∆; · −→ [a/x]A; ·
∀Ra

∆; · −→ ∀x. A; ·

Left Active Rules.

(∆, L); · −→ γ; ·

∆;L −→ γ; ·

∆;A −→ B; ·
⊃R1

∆; · −→ A⊃ B; ·
∆;A −→ ·; ·

⊃R3
∆; · −→ A ⊃B; ·

∆;A −→ ·; ·
¬R

∆; · −→ ¬A; ·

∆1;A −→ γ1; · ∆2;B −→ γ2; ·
∨L

∆1 ∪∆2;A∨B −→ γ1 ∪ γ2; ·
⊥L

·;⊥ −→ ·; ·

∆; [a/x]A−→ γ; ·
∃La

∆; ∃x. A −→ C; ·

Draft of November 12, 1999

5.9 Exercises 97

Note that ∨L requires γ1 ∪ γ2 either to be a singleton C or empty.

Transitions Rules.

∆;L+ −→ ρ; ·

∆;L+ > ·; ρ

∆; · −→ R; ·

∆; · > R; ·

We restrict these rules to

L+ ::= A ∨B | ⊥ | ∃x. A
R ::= P | A ⊃B | A ∧B | > | ∀x. A | ¬A

[Fill in appropriate soundness and completeness theorems here. The
same remarks as in the previous sections apply.]

5.9 Exercises

Exercise 5.1 Show the forward sequent calculus on signed propositions and
prove that if Γ −→ A then Γ− −→ A+.

Exercise 5.2 In the exercise we explore add the connective A ≡ B as a primi-
tive to inverse method.

1. Following Exercise 2.6, introduce appropriate left and right rules to the
backward sequent calculus.

2. Transform the rules to be appropriate for the forward sequent calculus.

3. Extend the notion of positive and negative subformula.

4. Extend the technique of subformula naming and inference rule specializa-
tion.

5. Show inverse derivations for each of the following.

(a) Reflexivity: −→ A ≡ A.

(b) Symmetry: A ≡ B −→ B ≡ A.

(c) Transitivity: A ≡ B,B ≡ C −→ A ≡ C.

6. Compare your technique with thinking of A ≡ B as a syntactic abbre-
viation for (A ⊃ B) ∧ (B ⊃ A). Do you see significant advantages or
disadvantages of your method?

Draft of November 12, 1999

98 The Inverse Method

Draft of November 12, 1999

Chapter 6

Resolution

Generalizing the basic ideas of the inverse method as introduced in the preceding
chapter requires unification (see Section 4.3), although it is employed in a differ-
ent way than in backward search. The underlying method can be traced directly
to Robinson’s original work on resolution [Rob65], and precise connections to
classical resolution have been established in the literature [Tam97].

Following the blue-print of the propositional inverse method, this chapter
develops resolution for first-order intuitionistic logic.

6.1 Forward Sequent Calculus

The extension of the forward sequent calculus to the first-order case is straight-
forward.

Γ, [t/x]A−→ γ
∀L

Γ, ∀x. A −→ γ

Γ −→ [a/x]A
∀Ra

Γ −→ ∀x. A

Γ, [a/x]A−→ γ
∃La

Γ, ∃x. A −→ γ

Γ −→ [t/x]A
∃R

Γ −→ ∃x. A

Recall the restriction on the ∀R and ∃L rules: the derivation of premise
must be parametric in a. That is, a may not occur in Γ or A. Soundness
and completeness of this calculus with respect to the backward sequent calculus
extends in a straightforward way.

These rules suggest an extension of the subformula property. We write A <
B for A is an immediate subformula of B, ± for an arbitrary sign (+ or −) and

Draft of November 12, 1999

100 Resolution

∓ for its complement.

A± < (A ∧B)± B± < (A ∧B)±

A± < (A ∨B)± B± < (A ∨B)±

A∓ < (A⊃ B)± B± < (A⊃ B)±

[a/x]A+ < (∀x. A)+ for all parameters a
[t/x]A− < (∀x. A)− for all terms t
[t/x]A+ < (∃x. A)+ for all terms t
[a/x]A− < (∃x. A)− for all parameters a

We write A <∗ B for the reflexive and transitive closure of the immediate
subformula relation. Also, we write A <∗ Γ if there is a formula B in Γ such
that A <∗ B, and ∆ <∗ Γ if for every A in ∆, A <∗ Γ.

The signed subformula property (Theorem 5.5) directly extends to the first-
order case, using the definitions above:

For all sequents ∆− −→ A+ or ∆− −→ · in a derivation of Γ− −→
C+ or Γ− −→ · we have ∆−, A+ <∗ Γ−, C+.

Before formalizing resolution, we now go through several examples which
show how to take advantage of this extended subformula property in order to
construct a search algorithm.

The first example is

(∀x. P (x)⊃ P (g(x))) −→ P (c)⊃ P (g(g(c)))

for a unary predicate P , function f and constant c. We begin by enumerating
and naming subformulas. First, the atomic subformulas, from left to right.

(i) P (t)+ for all terms t
(ii) P (g(s))− for all terms s
(iii) P (c)−

(iv) P (g(g(c)))+

Now, we have to consider all initial sequents Q −→ Q where Q is a subformula
of the goal sequent above. To this end we unify positive and negative atomic
propositions, treating t and s as variables, since they stand for arbitrary terms.
We obtain:

1. P (g(s))− −→ P (g(s))+ for all term s, from (ii) and (i)
2. P (g(g(c)))− −→ P (g(g(c)))+ from (ii) and (iv)
3. P (c)− −→ P (c)+ from (iii) and (i)

Note that the sequent (1) above represents a schematic judgment in the same
way that inferences rules are schematic, where s is a schematic variable ranging
over arbitrary terms. This will be true not only of the initial sequents, but
of the sequents we derive. This is one of the major generalizations from the
propositional case of the inverse method to resolution.

Draft of November 12, 1999

6.1 Forward Sequent Calculus 101

We can see that the initial sequents described in line (1) includes those in
line (2), since we can use g(c) for s. This is an extended form of subsumption:
not only do we check is one sequent can be weakened to another, but we also
have to allow for instantiation of variables (s, in this case).

Next, we introduce names for compound subformulas.

L1(t)− = P (t)+ ⊃ P (g(t))− for terms t
L−2 = ∀x. L1(x)−

L+
3 = P (c)− ⊃ P (g(g(c)))+

From the general forward sequent rules, we can now construct versions of
the inference rules specialized to subformulas of the goal sequent.

Γ1 −→ P (t)+ Γ2, P (g(t))− −→ γ
⊃L

Γ1 ∪ Γ2, L1(t)− −→ γ

Γ, L1(t)− −→ γ
∀L

Γ, L−2 −→ γ

Γ, P (c)− −→ P (g(g(c)))+

⊃R1

Γ −→ L+
3

Γ −→ P (g(g(c)))+

⊃R2
Γ −→ L+

3

Γ, P (c)− −→ ·
⊃R3

Γ −→ L+
3

The notation distinguishes the cases where an arbitrary term t is involved
in the rule because of the principal connective (in the ∀L rule) and where an
arbitrary term t is involved because of subformula considerations (in the ⊃L
rule).

We can now use these rules, starting from the remaining two initial sequents
to derive the goal sequent L−2 −→ L+

3 . We omit some, but not all sequents that
could be generated, but do not contribute to the final derivation.

1. P (g(s))− −→ P (g(s))+ init, for all terms s
3. P (c)− −→ P (c)+ init
4. P (c)−, L1(c)− −→ P (g(c))+ ⊃L 3 1[c/s]
5. P (g(t))−, L1(g(t))− −→ P (g(g(t)))− ⊃L 1[t/s] 1[g(t)/s], for all t
6. P (g(g(c)))− −→ L+

3 ⊃R2 1[g(c)/s]
7. P (g(t))−, L−2 −→ P (g(g(t)))+ ∀L 5, for all t
8. P (c)−, L−2 , L1(c)− −→ P (g(g(c)))+ ⊃L 3 7[c/t]

9. P (c)−, L−2 −→ P (g(g(c)))+ ∀L 8,with contraction
10. L−2 −→ L+

3 ⊃R1 9

Inference previously involved matching a sequents against the premises of an
inference rule. As this example shows, we now have to unify derived sequents

Draft of November 12, 1999

102 Resolution

with the premises of the inference rules. The schematic variables in the sequent
as well as in the inference rule may be instantiated in this process, thereby
determining the most general conclusion. It is important in this process to note
that the scope of each schematic variable includes only a particular sequent or
inference rule. Schematic variables called t in different sequents are different—
usually this is accounted for by systematically renaming variables before starting
unification.

The example above does not involve any parameters, only schematic vari-
ables. We now consider another example involving parameters,

∃y. ∀x. P (x, y) −→ ∀x. ∃y. P (x, y)

for a binary predicate P . Clearly, this judgment should be derivable. Again, we
first generate positive and negative atomic subformulas.

(i) P (t, a)− for all terms t and parameters a
(ii) P (b, s)+ for all parameters b and terms s

Because of the negative existential and positive universal quantification the
allowed instances of the atomic subformulas are restricted to parameters in
certain places. However, it should be understood that a in line (i) is only a
schematic variable ranging over parameters and may be instantiated to different
parameters for different uses of a negative formula P (,)−.

Next we generate all possible atomic initial sequents. This means we have to
look for common instances of the positive and negative atomic formulas schemas
listed above. The only possible instances have the form

1. P (b, a)− −→ P (b, a)+ for all parameters b and terms s

Now we list the possible compound subformulas.

L1(a)− = ∀x. P (x, a)− for parameters a
L−2 = ∃y. L1(y)−

L3(b)+ = ∃y. P (b, y)+ for parameters b
L+

4 = ∀x. L3(x)+

The specialized inference rules read:

Γ, P (t, a)− −→ γ
∀L

Γ, L1(a)− −→ γ

Γ, L1(a)− −→ γ
∃La

Γ, L−2 −→ γ

Γ −→ P (b, s)+

∃R
Γ −→ L3(b)+

Γ −→ L3(b)+

∀Rb

Γ −→ L+
4

Note that the ∃L and ∀R rules have parametric premises, which means we
have to enforce the side condition that parameter a or b do not occur elsewhere in
the premises of these two rules, respectively. The derivation takes the following

Draft of November 12, 1999

6.1 Forward Sequent Calculus 103

simple form. We omit signs for brevity, and it should be understood that b and
a are quantified locally in each sequent.

1. P (b, a) −→ P (b, a) init
2. L1(a) −→ P (b, a) ∀L 1
3. P (b, a) −→ L3(b) ∃R 1
4. L1(a) −→ L3(b) ∃R 2
5. L1(a) −→ L3(b) ∀L 3 (subsumed by 4)
6. L2 −→ L3(b) ∃La 4
7. L1(a) −→ L4 ∀Rb 4
8. L2 −→ L4 ∀Rb 6 or ∃La 7

Note that the ∃L and ∀R rule are not applicable to sequents (2) or (3),
because the side conditions on the parameters would be violated.

Next we consider the converse, which should not be derivable.

∀x. ∃y. P (x, y) −→ ∃y. ∀x. P (x, y)

Again, we first generate the atomic subformulas.

(i) P (t, a)− for all terms t and parameters a
(ii) P (b, s)+ for all parameters b and terms s

Then the possible initial sequents.

1. P (b, a)− −→ P (b, a)+ for all parameters b and terms a

Then, the compound subformulas.

L1(t)− = ∃y. P (t, y)− for terms t
L−2 = ∀x. L1(x)−

L3(s)+ = ∀x. P (x, s)+ for terms s
L+

4 = ∃y. L3(y)+

From this we derive the specialized rules of inference.

Γ, P (t, a)− −→ γ
∃La

Γ, L1(t)− −→ γ

Γ, L1(t)− −→ γ
∀L

Γ, L−2 −→ γ

Γ −→ P (b, s)+

∀R
Γ −→ L3(s)+

Γ −→ L3(s)+

∃R
Γ −→ L+

4

Given an initial sequent

1. P (b, a)− −→ P (b, a)+ for all parameters b and terms a

we see that no inference rules are applicable, because the side condition on
parameter occurrences would be violated. Therefore the goal sequent cannot be
derivable.

Draft of November 12, 1999

104 Resolution

6.2 Factoring

The examples in the previous section suggest the following algorithm:

1. Determine all signed schematic atomic subformulas of the given goal se-
quent.

2. Unify positive and negative atomic subformulas after renaming variables
so they have none in common. This yields a set of initial sequents from
which subsumed copies should be eliminated.

3. Name all signed compound subformulas as new predicates on their free
variables.

4. Specialize the inference rules to these subformulas.

5. Starting from the initial sequents, apply the specialized inference rules in
a fair way by unifying (freshly renamed) copies of sequents derived so far
with premises of the inference rules, generating most general conclusions
as a new schematic sequents.

6. Stop with success when the goal sequent has been derived.

Perhaps somewhat surprisingly, this method is incomplete using only the
rules given so far. As a counterexample, consider

· −→ ∃x. P (x)⊃ P (x) ∧ P (c)

for a unary predicate P and constant c. Initial sequents:

1. P (t) −→ P (t) for all terms t
2. P (c) −→ P (c) (subsumed by (1))

Signed subformulas:

L+
1 (s) = P (s)+ ∧ P (c)+

L+
2 (s) = P (s)− ⊃ L1(s)+

L+
3 = ∃x. L+

2 (x)

Specialized rules (omitting polarities and the irrelevant ⊃R3):

Γ1 −→ P (s) Γ2 −→ P (c)
∧I

Γ1 ∪ Γ2 −→ L1

Γ, P (s) −→ L1(s)
⊃R1

Γ −→ L2(s)

Γ −→ L1(s)
⊃R2

Γ −→ L2(s)

Γ −→ L2(t)
∃R

Γ −→ L3

Draft of November 12, 1999

6.2 Factoring 105

Initially, we can only apply ∧I, after renaming a copy of (1).

1. P (t) −→ P (t) init, for all terms t
3. P (t), P (c) −→ L1(t) ∧R 1[t/t] 1[c/t], for all terms t

Now there are two ways to apply the ⊃R1 rule, but either P (t) or P (c) is left
behind as an assumption, and the goal sequent cannot be derived.

The problem is that even though the sequent

P (c) −→ L1(c)

should be derivable, it is only the contraction of an instance of sequent (3).
We therefore extend the system with an explicit rule which permits contraction
after instantiation, called factoring. That is, after we derive a new sequent, we
consider possible most general unifiers among antecedents of the sequent and
add the results (while continuing to check for subsumption).

In the example above, we proceed as follows:

1. P (t) −→ P (t) init, for all terms t
3. P (t), P (c) −→ L1(t) ∧R 1[t/t] 1[c/t], for all terms t
4. P (c) −→ L1(c) factor 3[c/t]
5. · −→ L2(c) ⊃R1 4
6. · −→ L3 ∃R

Usually, this is done eagerly for each rule which unions assumptions and
therefore might allow new factors to be derived. It is also possible to delay
this until the rules which require factoring (such as ⊃R), but this might require
factoring to be done repeatedly and may prohibit some subsumption.

In our inference rule notation, where unification of sequents with premises
of rules is implicit, this factoring rule would simply look like a contraction.

Γ, A, A −→ C
contract

Γ, A −→ C

Previously, this was implicit, since we maintained assumptions as sets.

Draft of November 12, 1999

106 Resolution

Draft of November 12, 1999

Chapter 7

Equality

Reasoning with equality in first order logic can be accomplished axiomatically.
That is, we can simply add reflexivity, symmetry, transitivity, and congruence
rules for each predicate and function symbol and use the standard theorem
proving technology developed in the previous chapters. This approach, however,
does not take strong advantage of inherent properties of equality and leads to
a very large and inefficent search space.

While there has been a deep investigation of equality reasoning in classi-
cal logic, much less is known for intuitionistic logic. Some recent references
are [Vor96, DV99].

In this chapter we develop some of the techniques of equational reasoning,
starting again from first principles in the definition of logic. We therefore reca-
pitulate some of the material in earlier chapters, now adding equality as a new
primitive predicate symbol.

7.1 Natural Deduction

We characterize equality by its introduction rule, which simply states that s
.
= s

for any term s.
.
= I

` s .
= s

We have already seen this introduction rule in unification logic in Section 4.3.
In the context of unification logic, however, we did not consider hypothetical
judgments, so we did not need or specify elimination rules for equality.

If we know s
.
= t we can replace any number of occurrences of s in a true

proposition and obtain another true proposition.

` s .
= t ` [s/x]A .

= E1
` [t/x]A

Draft of November 12, 1999

108 Equality

Symmetrically, we can also replace occurrences of t by s.

` s .
= t ` [t/x]A .

= E2
` [s/x]A

It might seem that this second rule is redundant, and in some sense it is. In
particular, it is a derivable rule of the calculus with only

.
= E1:

` s .
= t

.
= I

` s .
= s .

= E1
` t .= s ` [t/x]A .

= E1
` [s/x]A

However, this deduction is not normal (as defined below), and without the sec-
ond elimination rule the normalization theorem would not hold and cut elim-
ination in the sequent calculus would fail. We continue this discussion below,
after introducing normal derivations.

Next, we check the local soundness and completeness of the rules. First,
local soundness:

.
= I

` s .
= s

D
` [s/x]A .

= E1
` [s/x]A

=⇒R
D

` [s/x]A

and the reduction for
.
= E2 is identical.

Second, we have to verify local completeness. There are two symmetric
expansions

D
` s .

= t
=⇒E

D
` s .

= t

.
= I

` s .
= s

.
= E1

` s .
= t

and

D
` s .

= t
=⇒E

D
` s .

= t

.
= I

` t .= t
.
= E2

` s .
= t

witnessing local completeness.

Note that the second is redundant in the sense that for local completeness
we only need to show that there is some way to apply elimination rules so that
we can reconstitute the connective by introduction rules. This is an interesting
example where local completeness (in the absence of the

.
= E2 rule) does not

imply global completeness.

Draft of November 12, 1999

7.1 Natural Deduction 109

Next we define normal and extraction derivations. These properties are given
by the inherent role of introduction and elimination rules.

.
= I

` s .
= s ⇑

` s .
= t ↓ ` [s/x]A ⇑ .

= E1
` [t/x]A ⇑

` s .
= t ↓ ` [t/x]A ⇑ .

= E2
` [s/x]A ⇑

The elimination rule is similar to the rules for disjunction in the sense that there
is a side derivation whose conclusion is copied from the premise to the conclusion
of the elimination rule. In the case of disjunction, the copy is identical; here,
some copies of s are replaced by t or vice versa.

Now we can see, why the derivation of
.
= E2 is not normal:

` s .
= t ↓

.
= I

` s .
= s ⇑ .

= E1
` t .= s? ` [t/x]A ⇑ .

= E1
` [s/x]A ⇑

The judgment marked with ? should be t
.
= s ⇑ considering it is the conclusion

of an equality elimination inference, and it should be t
.
= s ↓ considering it is

the left premise of an equality elimination. Since no coercion from ⇑ to ↓ is
available for normal derivations the deduction above cannot be annotated.

We assign proof terms only in their compact form (see Section 3.2). This
means we have to analyse how much information is needed in the proof term
to allow bi-directional type checking. Recall that we have introduction terms
I and elimination terms E and that introduction terms are checked against a
given type, while elimination term must carry enough information so that their
type is unique. Following these considerations leads to the following new terms.

Intro Terms I ::= . . . | refl for
.
= I

Elim Terms E ::= . . . | substλx.A1 E I for
.
= E1

| substλx.A2 E I for
.
= E2

The typing rules are straightforward. Recall that we localize the hypothesize
to make the rules more explicit.

.
= I

Γ↓ ` refl : s
.
= s ⇑

Γ↓ ` E : s
.
= t ↓ Γ↓ ` I : [s/x]A ⇑ .

= E1

Γ↓ ` substλx.A1 E I : [t/x]A ⇑

Γ↓ ` E : s
.
= t ↓ Γ↓ ` I : [t/x]A ⇑ .

= E2

Γ↓ ` substλx.A2 E I : [s/x]A ⇑

Draft of November 12, 1999

110 Equality

We record the proposition A and an indication of the bound variable x in order
to provide enough information for bi-direction type checking. Recall the desired
property (Theorem 3.4):

1. Given Γ↓, I, and A. Then either Γ↓ ` I : A ⇑ or not.

2. Given Γ↓ and E. Then either there is a unique A such that
Γ↓ ` E : A ↓ or there is no such A.

First, it is clear that the constant refl for equality introduction does not need
to carry any terms, since s

.
= s is given.

Second, to check substλx.A1 E I against A′ we first synthesize the type of E
obtaining s

.
= t and thereby s and t. Knowing t and A′ does not determine A

(consider, for example, [t/x]A = q(t, t) which allows A = q(x, x), A = q(x, t),
A = q(t, x) and A = q(t, t)). However, A is recorded explicitly in the proof term,
together with the variable x. Therefore we can now check whether the given
type [t/x]A is equal to A′. If that succeeds we have to check the introduction
term I against [s/x]A to verify the correctness of the whole term.

7.2 Sequent Calculus

The rules for the sequent calculus are determined by the definition of normal
deduction as in Chapter 3. Introduction rules are turned into right rules; elim-
ination rules into left rules.

.
= R

Γ =⇒ s
.
= s

Γ, s
.
= t =⇒ [s/x]A .

= L1
Γ, s

.
= t =⇒ [t/x]A

Γ, s
.
= t =⇒ [t/x]A .

= L2
Γ, s

.
= t =⇒ [s/x]A

The proof for admissibility of cut in this calculus runs into difficulties when
the cut formula was changed in the application of the

.
= L1 or

.
= L2 rules.

Consider, for example, the cut between

D =

D1

Γ, s
.
= t =⇒ [s/x]A

.
= L1

Γ, s
.
= t =⇒ [t/x]A

and
E

Γ, s
.
= t, [t/x]A =⇒ C

If [t/x]A is the principal formula of the last inference in E , we would normally
apply the induction hypothesis to D1 and E , in effect pushing the cut past the
last inference in D. We cannot do this here, since [s/x]A and [t/x]A do not
match. None of the rules in the sequent calculus without equality changed the
conclusion in a left rule, so this situation did not arise before.

The simplest remedy seems to be to restrict the equality rules so they must be
applied last in the bottom-up construction of a proof, and only to atomic formu-
las or other equalities. In this way, they cannot interfere with other inferences—
they have been pushed up to the leaves of the derivation. This restriction is

Draft of November 12, 1999

7.2 Sequent Calculus 111

interesting for other purposes as well, since it allows us to separate equality
reasoning from logical reasoning during the proof search process.

We introduce one new syntactice category and two new judgments. E stands
for a basic proposition, which is either an atomic proposition P or an equation
s
.
= t.

Γ
E

=⇒ E E has an equational derivation from Γ

Γ
−

=⇒ A A has a regular derivation from Γ

Equational derivations are defined as follows.

init
Γ, P

E
=⇒ P

.
= R

Γ
E

=⇒ s
.
= s

Γ, s
.
= t

E
=⇒ [s/x]E .

= L1

Γ, s
.
= t

E
=⇒ [t/x]E

Γ, s
.
= t

E
=⇒ [s/x]E .

= L1

Γ, s
.
= t

E
=⇒ [t/x]E

Regular derivations have all the inference rules of sequent derivations without
equality (except for initial sequents) plus the following coercion.

Γ
E

=⇒ E
eq

Γ
−

=⇒ E

Regular derivations are sound and complete with respect to the unrestricted
calculus. Soundness is direct.

Theorem 7.1 (Soudness of Regular Derivations)

1. If Γ
E

=⇒ E then Γ =⇒ E

2. If Γ
−

=⇒ A then Γ =⇒ A

Proof: By straightforward induction over the given derivations. 2

In order to prove completeness we need a lemma which states that the un-
restricted left equality rules are admissible in the restricted calculus. Because
new assumptions are made, the statment of the lemma must actually be slightly
more general by allowing substitution into hypotheses.

Lemma 7.2 (Admissibility of Generalized Equality Rules)

1. If [s/x]Γ, s
.
= t

−
=⇒ [s/x]A then [t/x]Γ, s

.
= t

−
=⇒ [t/x]A.

2. If [t/x]Γ, s
.
= t

−
=⇒ [t/x]A then [s/x]Γ, s

.
= t

−
=⇒ [s/x]A.

3. If [s/x]Γ, s
.
= t

E
=⇒ [s/x]A then [t/x]Γ, s

.
= t

E
=⇒ [t/x]A.

4. If [s/x]Γ, s
.
= t

E
=⇒ [s/x]A then [t/x]Γ, s

.
= t

E
=⇒ [t/x]A.

Draft of November 12, 1999

112 Equality

Proof: By induction on the structure of the given derivations S or E , where the
second and fourth parts are completely symmetric to the first and third part.
In most cases this follows directly from the induction hypothesis. We show a
few characteristic cases.

Case:

S =

S1

[s/x]Γ, s
.
= t, [s/x]A1

−
=⇒ [s/x]A2

⊃R
[s/x]Γ, s

.
= t

−
=⇒ [s/x]A1 ⊃ [s/x]A2

[t/x]Γ, s
.
= t, [t/x]A1

−
=⇒ [t/x]A2 By i.h. on S1

[t/x]Γ, s
.
= t

−
=⇒ [t/x]A1⊃ [t/x]A2 By rule ⊃R

Case:

S =

E
[s/x]Γ, s

.
= t

E
=⇒ [s/x]E

eq

[s/x]Γ, s
.
= t

−
=⇒ [s/x]E

[t/x]Γ, s
.
= t

E
=⇒ [t/x]E By i.h. (3) on E

[t/x]Γ, s
.
= t

−
=⇒ [t/x]E By rule eq

Case:

E = init
[s/x]Γ′, [s/x]P1, s

.
= t

E
=⇒ [s/x]P2

We obtain the first equation below from the assumption that E is an initial
sequent.

[s/x]P1 = [s/x]P2 Given

[t/x]Γ′, [t/x]P1, s
.
= t

E
=⇒ [t/x]P1 By rule init

[t/x]Γ′, [t/x]P1, s
.
= t

E
=⇒ [s/x]P1 By rule

.
= L2

[t/x]Γ′, [t/x]P1, s
.
= t

E
=⇒ [s/x]P2 Same, by given equality

[t/x]Γ′, [t/x]P1, s
.
= t

E
=⇒ [t/x]P2 By rule

.
= L1

Case:

E =

E ′

[s/x]Γ′, [s/x]q
.
= [s/x]r, s

.
= t

E
=⇒ [[s/x]q/y]E′

.
= L1

[s/x]Γ′, [s/x]q
.
= [s/x]r, s

.
= t

E
=⇒ [s/x]E

Note that we wrote the premise so that E′ does contain an occurrence of
x. We obtain the first equation below from the form of the inference rule
.
= L1.

Draft of November 12, 1999

7.2 Sequent Calculus 113

[s/x]E = [[s/x]r/y]E′ Given

[s/x]Γ′, [s/x]q
.
= [s/x]r, s

.
= t

E
=⇒ [s/x][q/y]E′ Same as E ′ (x not in E′)

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [t/x][q/y]E′ By i.h. on E ′

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [[t/x]q/y]E′ Same, since x not in E′

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [[t/x]r/y]E′ By rule

.
= L1

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [t/x][r/y]E′ Same, since x not in E′

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [s/x][r/y]E′ By rule

.
= L2

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [[s/x]r/y]E′ Same, since x not in E′

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [s/x]E Same, by given equality

[t/x]Γ′, [t/x]q
.
= [t/x]r, s

.
= t

E
=⇒ [t/x]E By rule

.
= L1

Case:

E =

E ′

[s/x]Γ, s
.
= t

E
=⇒ [s/x]E′

.
= L1

[s/x]Γ, s
.
= t

E
=⇒ [s/x]E

Note that we wrote the premise so that E′ does contain an occurrence of
x. We obtain the first line below from the shape of the conclusion in the
inference rule

.
= L1 with the principal formula s

.
= t.

[s/x]E = [t/x]E′ Given

[t/x]Γ, s
.
= t

E
=⇒ [t/x]E′ By i.h. on E ′

[t/x]Γ, s
.
= t

E
=⇒ [s/x]E Same, by given equality

[t/x]Γ, s
.
= t

E
=⇒ [t/x]E By rule

.
= L1

2

A second lemma is helpful to streamline the completeness proof.

Lemma 7.3 (Atomic Initial Sequents) Γ, A
−

=⇒ A.

Proof: By induction on the structure of A. This is related to repeated local
expansion. We show a few of cases.

Case: A = P .

Γ, P
E

=⇒ P By rule init

Γ, P
−

=⇒ P By rule eq

Case: A = (s
.
= t).

Γ, s
.
= t

E
=⇒ s

.
= s By rule

.
= R

Γ, s
.
= t

E
=⇒ s

.
= t By rule

.
= L1

Draft of November 12, 1999

114 Equality

Case: A = A1 ∧A2.

Γ, A1
−

=⇒ A1 By i.h. on A1

Γ, A1 ∧A2
−

=⇒ A1 By rule ∧L1

Γ, A2
−

=⇒ A2 By i.h. on A2

Γ, A1 ∧A2
−

=⇒ A2 By rule ∧L2

Γ, A1 ∧A2
−

=⇒ A1 ∧A2 By rule ∧R

2

With these two lemmas, completeness is relatively simple.

Theorem 7.4 (Completeness of Regular Derivations)

If Γ =⇒ A then Γ
−

=⇒ A.

Proof: By induction on the structure of the given derivation S. We show some
cases; most are straightforward.

Case:

S =

S2

Γ, A1 =⇒ A2

⊃R
Γ =⇒ A1 ⊃A2

Γ, A1
−

=⇒ A2 By i.h. on S2

Γ
−

=⇒ A1 ⊃ A2 By rule ⊃R

Case:

S = init
Γ′, A =⇒ A

Γ′, A
−

=⇒ A By Lemma 7.3

Case:

S =

S1

Γ′, s
.
= t =⇒ [s/x]A

.
= L1

Γ′, s
.
= t =⇒ [t/x]A

Γ′, s
.
= t

−
=⇒ [s/x]A By i.h. on S1

Γ′, s
.
= t

−
=⇒ [t/x]A By Lemma 7.2

2

Draft of November 12, 1999

7.2 Sequent Calculus 115

Regular derivations are the basis for proof search procedures. Furthermore,
we can prove admissibility of cut, essentially following the same argument as in
the system without equality for regular derivations. On equality derivations, we
have to employ a new argument.

Theorem 7.5 (Admissibility of Cut with Equality)

1. If Γ
E

=⇒ E and Γ, E
E

=⇒ F then Γ
E

=⇒ F .

2. If Γ
E

=⇒ E and Γ, E
−

=⇒ C then Γ
−

=⇒ C.

3. If Γ
−

=⇒ A and Γ, A
E

=⇒ F then Γ
−

=⇒ F .

4. If Γ
−

=⇒ A and Γ, A
−

=⇒ C then Γ
−

=⇒ C.

Proof: We prove the properties in sequence, using earlier ones to in the proofs
of later ones.

Part (1): Given

E
Γ

E
=⇒ E

and
F

Γ, E
E

=⇒ F

we construct a derivation for Γ
E

=⇒ F by nested induction on the structure of
E and F . That is, in appeals to the induction hypothesis, E may be smaller (in
which case F may be arbitrary), or E stays the same and F gets smaller.

Cases: If E is a side formula of the last inference in F we appeal to the induc-
tion hypothesis on the premise and reapply the inference on the result. If
F is an initial sequent we can directly construct the desired derivation.
In the remaining cases, we assume E is the principal formula of the last
inference in F .

Case:

E =
.
= R

Γ
E

=⇒ s
.
= s

and F =

F1

Γ, s
.
= s

E
=⇒ [s/x]F1 .

= L1

Γ, s
.
= s

E
=⇒ [s/x]F1

Γ =⇒ [s/x]F1 By i.h. on E and F1

Case:

E =

E1
Γ′, q

.
= r

E
=⇒ [q/x]s′ = [q/x]t′

.
= L1

Γ′, q
.
= r

E
=⇒ [r/x]s′

.
= [r/x]t′

Γ′, q
.
= r, [r/x]s′

.
= [r/x]t′

E
=⇒ F F , in this case

Γ′, q
.
= r, [q/x]s′

.
= [q/x]t′

E
=⇒ F By Lemma 7.2

Γ′, q
.
= r

E
=⇒ F By i.h. on E1 and above

Draft of November 12, 1999

116 Equality

Part (2): Given

E
Γ

E
=⇒ E

and
S

Γ, E
−

=⇒ C

we construct a derivation for Γ
−

=⇒ C by induction over the structure of S.
Since E is either atomic or an equality, it cannot be the principal formula of an

inference in S. When we reach a coercion from
E

=⇒ to
−

=⇒ in S we appeal to
Part (1).

Part (3): Given

S
Γ
−

=⇒ A
and

F
Γ, A

E
=⇒ F

we construct a derivation for Γ
E

=⇒ F by nested induction on the structure of F
and S. If A is the principal formula of an inference in F then A must be atomic
or an equality. In the former case we can derive the desired conclusion directly;
in the latter case we proceed by induction over S. Since A is an equality, it
cannot be the principal formula of an inference in S. When we reach a coercion

for
E

=⇒ to
−

=⇒ in S we appeal to Part (1).

Part (4): Given

S
Γ
−

=⇒ A
and

T
Γ, A

−
=⇒ C

we construct a derivation for Γ
−

=⇒ C by nested induction on the structure of
A, and the derivations S and T as in the proof of admissibility of cut without
equality (Theorem 3.11). When we reach coercions from equality derivations
we appeal to Parts 3 or 2. 2

Draft of November 12, 1999

Bibliography

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):197–347, 1992.

[Byr99] John Byrnes. Proof Search and Normal Forms in Natural Deduction.
PhD thesis, Department of Philosophy, Carnegie Mellon University,
May 1999.

[Cur30] H.B. Curry. Grundlagen der kombinatorischen Logik. American Jour-
nal of Mathematics, 52:509–536, 789–834, 1930.

[DV99] Anatoli Degtyarev and Andrei Voronkov. Equality reasoning in
sequent-based calculi. In Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning. Elsevier Science Publishers,
1999. In preparation.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. Translated under
the title Investigations into Logical Deductions in [Sza69].

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et de Lettres de Varsovic, 33, 1930.

[Her95] Hugo Herbelin. Séquents qu’on calcule. PhD thesis, Universite Paris
7, January 1995.

[Hil22] David Hilbert. Neubegründung der Mathematik (erste Mitteilung). In
Abhandlungen aus dem mathematischen Seminar der Hamburgischen
Universität, pages 157–177, 1922. Reprinted in [Hil35].

[Hil35] David Hilbert. Gesammelte Abhandlungen, volume 3. Springer-Verlag,
Berlin, 1935.

[How69] W. A. Howard. The formulae-as-types notion of construction. Un-
published manuscript, 1969. Reprinted in To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, 1980.

[How98] Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics.
PhD thesis, University of St. Andrews, Scotland, 1998.

Draft of November 12, 1999

118 BIBLIOGRAPHY

[Hua94] Xiarong Huang. Human Oriented Proof Presentation: A Reconstruc-
tive Approach. PhD thesis, Universität des Saarlandes, 1994.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . . , ω. PhD thesis, Université Paris VII, September 1976.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North-
Holland, 1952.

[Kni89] Kevin Knight. Unification: A multi-disciplinary survey. ACM Com-
puting Surveys, 2(1):93–124, March 1989.

[LS86] Joachim Lambek and Philip J. Scott. Introduction to Higher Order
Categorical Logic. Cambridge University Press, Cambridge, England,
1986.

[Mas64] S. Maslov. The inverse method of establishing deducibility in the clas-
sical predicate calculus. Soviet Mathematical Doklady, 5:1420–1424,
1964.

[Min94] G. Mints. Resolution strategies for the intuitionistic logic. In Con-
straint Programming, pages 289–311. NATO ASI Series F, Springer-
Verlag, 1994.

[ML85a] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Technical Report 2, Scuola di Spe-
cializzazione in Logica Matematica, Dipartimento di Matematica, Uni-
versità di Siena, 1985.

[ML85b] Per Martin-Löf. Truth of a proposition, evidence of a judgement,
validity of a proof. Notes to a talk given at the workshop Theory of
Meaning, Centro Fiorentino di Storia e Filosofia della Scienza, June
1985.

[ML94] Per Martin-Löf. Analytic and synthetic judgements in type theory.
In Paolo Parrini, editor, Kant and Contemporary Epistemology, pages
87–99. Kluwer Academic Publishers, 1994.

[MM76] Alberto Martelli and Ugo Montanari. Unification in linear time and
space: A structured presentation. Internal Report B76-16, Ist. di
Elaborazione delle Informazione, Consiglio Nazionale delle Ricerche,
Pisa, Italy, July 1976.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical
natural deduction. In A. Voronkov, editor, Proceedings of the Inter-
national Conference on Logic Programming and Automated Reason-
ing, pages 190–201, St. Petersburg, Russia, July 1992. Springer-Verlag
LNCS 624.

Draft of November 12, 1999

BIBLIOGRAPHY 119

[Pfe95] Frank Pfenning. Structural cut elimination. In D. Kozen, editor,
Proceedings of the Tenth Annual Symposium on Logic in Computer
Science, pages 156–166, San Diego, California, June 1995. IEEE Com-
puter Society Press.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16(2):158–167, April 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[Rob71] J. A. Robinson. Computational logic: The unification computation.
Machine Intelligence, 6:63–72, 1971.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-
Holland Publishing Co., Amsterdam, 1969.

[Tam96] T. Tammet. A resolution theorem prover for intuitionistic logic. In
M. McRobbie and J. Slaney, editors, Proceedings of the 13th Interna-
tional Conference on Automated Deduction (CADE-13), pages 2–16,
New Brunswick, New Jersey, 1996. Springer-Verlag LNCS 1104.

[Tam97] T. Tammet. Resolution, inverse method and the sequent calculus.
In A. Leitsch G. Gottlog and D. Mundici, editors, Proceedings of the
5th Kurt Gödel Colloquium on Computational Logic and Proof Theory
(KGC’97), pages 65–83, Vienna, Austria, 1997. Springer-Verlag LNCS
1289.

[Vor92] Andrei Voronkov. Theorem proving in non-standard logics based on
the inverse method. In D. Kapur, editor, Proceedings of the 11th
International Conference on Automated Deduction, pages 648–662,
Saratoga Springs, New York, 1992. Springer-Verlag LNCS 607.

[Vor96] Andrei Voronkov. Proof-search in intuitionistic logic with equality,
or back to simultaneous rigid e-unification. In M.A. McRobbie and
J.K. Slaney, editors, Proceedings of the 13th International Conference
on Automated Deduction, pages 32–46, New Brunswick, New Jersey,
July/August 1996. Springer-Verlag LNAI 1104.

Draft of November 12, 1999

