
APPROXIMATION ALGORITHMS FOR PATH TSP

GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

1. Introduction

The Traveling Salesman Problem (TSP), one of the best-studied NP-hard problems, asks
for the minimum-length Hamiltonian cycle in a weighted graph, i.e. the shortest cycle
on the graph that traverses every vertex once. Particular study has been devoted to the
relaxation of Metric TSP, in which visiting vertices multiple times is allowed.1 Metric
TSP encapsulates the intuitive notion of a traveling salesman, and has applications towards
routing and scheduling. Like the general TSP, Metric TSP is NP-complete. Because of this,
much work has gone into finding efficient approximation algorithms to Metric TSP.

A generalization to the Metric TSP problem, called Metric Path TSP (or often just Path
TSP), asks for the shortest path between two fixed vertices which visits every vertex at
least once. There have recently been a flurry of gradual improvements to polynomial-time
approximation algorithms to Path TSP. This paper will focus on the following two recent
breakthroughs in Path TSP.

Theorem 1 ([Zen19, Thm. 4]). There exists a polynomial time 3/2-approximation to Path
TSP.

Theorem 2 ([TVZ20, Cor. 2]). Given a polynomial time α-approximation to Metric TSP,
there exists a polynomial time (α+ ε)-approximation to Path TSP for every ε > 0.

In Section 2, we will provide some intuition for the Path TSP problem and present the
Christofides algorithm, a classical 3/2-approximation algorithm to Metric TSP, along with
its natural analogue to Path TSP, which gives a 5/3-approximation. In Section 3, we will
investigate the interaction of cuts with the Path TSP problem, and introduce a dynamic
programming paradigm that is essential to the recent breakthroughs. In Section 4, we will
apply this paradigm to a toy example. Lastly, in Sections 5 to 7, we describe how these
innovations can be used to prove Theorems 1 and 2.

1.1. Notation. Throughout this document, the union operator ∪ of sets will denote a union
as multisets, and △ will denote the symmetric difference operator A△B = (A\B)∪ (B \A).
When we use the term path, we allow repetition of vertices. Given a Path TSP instance, we
will often implicitly assume that the start and end points are called s and t. Additionally,
when the vertex set is clear from context (for example, when discussing matchings or trees),
we will freely interchange a graph and its set of edges. Finally, we define an s-t cut as a
subset that contains s but not t.

Date: December 2021.
1Often, this condition is stated as edge lengths satisfying the triangle inequality, which explains the use
of the word “metric.” We adopt the “visiting vertices multiple times” approach here, since most of the

algorithms we present are most natural in that setting.

1

2 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

2. Background on Path TSP

To set the stage for our discussion of the recent breakthroughs in approximating Path
TSP, we make some elementary observations about the problem, and then present the classic
5/3-approximation algorithm for Path TSP, whose ideas underlie the proof of Theorem 1.

2.1. The Structure of Path TSP. We begin by considering some simple instances of
Path TSP, to offer some basic intuition on the problem.

(a) Nodes s and t are on op-
posite sides of a circle.

(b) Nodes s and t are adja-
cent on a circle of points.

(c) Nodes s and t are on op-
posite sides of a line.

Figure 1. Some simple instances of Path TSP between vertices s and t,
in graphs with unit edge weights. The Path TSP solution is solid and blue,
and the TSP solution is dashed and orange.

From these examples, we make some simple observations.

• The Path TSP solution can be shorter or longer than the TSP solution. In Fig. 1a,
the Path TSP solution requires an additional half-circle to reach t after circling
around. But in Fig. 1b and Fig. 1c, the Path TSP solution is shorter.

• In the case of small s-t distance, the Path TSP solution is of similar length to the
TSP solution. In Fig. 1b, s and t are adjacent, and only a single additional extra
edge is included in the TSP solution. Indeed, it turns out the Path TSP and TSP
solutions are essentially the same in the case of small s-t distance.

• The Path TSP solution can be structurally different from the TSP solution. In
Fig. 1a and Fig. 1c, where the s-t distance is large, the Path TSP solution signif-
icantly differs from the TSP solution. We will need to develop new ideas to get a
handle on the structure of Path TSP in these cases; s-t cuts of the graph will play
a starring role.

2.2. The Christofides algorithm for Path TSP. We now present and analyze the
Christofides algorithm [Chr76] for Metric TSP, and show how to adapt it to Path TSP.

Algorithm 1. Given an instance G = (V,E) of Metric TSP, do the following.

(i) Compute a minimum spanning tree T of G. Let S ⊂ V be the set of vertices of G
on which T has odd degree. Note that |S| is even.

(ii) Find a minimum-weight perfect matching2 U among the vertices in S (using edges
in G).

2In the perspective where we can visit vertices more than once, we match the vertices of T with paths, not
edges. This is a superficial change, as one can convert this is a standard perfect matching problem by

considering the all-pairs shortest path graph.

APPROXIMATION ALGORITHMS FOR PATH TSP 3

(iii) Compute an Eulerian cycle (a cycle containing every edge exactly once) of the edge
set T ∪U , which exists since every vertex is incident to an even number of edges of
T ∪ U . Return it.

Analysis of Algorithm 1. Given an edge set E′, let ℓ(E′) be the total length of all edges E′.
Let C∗ be the optimal solution to this TSP instance. Since some edges can be removed from
C∗ to form a spanning tree,

w(T) + w(U) < w(C∗) + w(U).

So, to show that Algorithm 1 forms a 3/2-approximation, we need only show that w(U) ≤
w(C∗)/2. Indeed, label the vertices of S as v1, . . . , v2m in their order in C∗, and consider
the matchings

M1 = {(v1, v2), (v3, v4), . . . , (v2m−1, v2m)} and M2 = {(v2, v3), (v4, v5), . . . , (v2m, v1)}.
Since the contiguous paths of M1 and M2 in C∗ together comprise C∗, we have

w(U) ≤ min(w(M1), w(M2)) ≤
w(M1) + w(M2)

2
=

w(C∗)

2
,

as desired. □

We now present a variant of this algorithm for Path TSP, first due to Hoogeveen [Hoo91].
The algorithm is nearly identical; the main difference (and the source of the discrepancy in
approximation ratio) is in the analysis. We present this algorithm in full, as it is the basis
for the 1.5-approximation for Path TSP in [Zen19].

Algorithm 2. Given a weighted graph G = (V,E), and fixed vertices s and t of G:

(i) Compute a minimum spanning tree T of G. Let S ⊂ V be the set of vertices in G
on which T ∪ {st} has odd degree, i.e. the set of vertices whose degree parity we
must change to transform T into a Hamiltonian (s, t)-path. Note that |S| is even.

(ii) Find a minimum weight perfect matching3 U among the vertices in S.
(iii) Compute an Eulerian path (a path containing every edge exactly once) from s to t

of the edge set T ∪ U , which exists since every vertex besides s and t is incident to
an even number of edges in T ∪ U . Return it.

This algorithm, although its approximation ratio differs significantly from the 3/2 for
Metric TSP, was the best known polynomial time approximation from its description in 1991

until 2012, when An, Kleinberg, and Shmoys found a 1+
√
5

2 -approximation [AKS12, AKS15].
Moreover, almost all of the recent improvements in Path TSP approximation are heavily
based on the rough outline of Algorithm 2. For example, the 3/2-approximation [Zen19],
which we present in Section 7 as Algorithm 5, essentially gives a very clever way to select
the tree T in step (i).

Analysis of Algorithm 2. As before, let C∗ be the optimal solution to this Path TSP in-
stance. Since C∗ is a tree, w(T) ≤ w(C∗), so it suffices to show that w(U) ≤ 2w(C∗)/3.
We will show that 3w(U) ≤ w(C∗) + w(T) by showing that the edge set C∗ ∪ T can be
partitioned into three sets (E1, E2, E3) of edges each of which gives a matching on S.

Label S = {u1, u2, . . . , u2m} so that, in traveling C∗ from s to t, one first reaches u1, then
u2, et cetera. Let E1 be the set of edges in C∗ between u2i−1 and u2i for any 1 ≤ i ≤ m; it
is clear that E1 forms a matching on S. Now, consider (T ∪ C∗) \ E1. By the definition of

3As before, match with paths rather than edges; to compute this, use the all-pairs shortest path graph.

4 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

S, this set of edges forms a subgraph of G in which every vertex has even degree; it is also
connected, since it contains T . So, it has an Eulerian cycle, which we may split up into E2

and E3, each of which is a matching on S. This gives

3w(U) ≤ w(E1) + w(E2) + w(E3) = w(T) + w(C∗) ≤ 2w(C∗),

as desired. □

Hoogeveen also shows that this algorithm fails to give a (5/3− ε)-approximation for any
ε > 0; that is, this analysis is essentially optimal. A different algorithm is needed to beat a
5/3-approximation.

3. Leveraging the power of cuts

Underlying the breakthroughs in Path TSP are some key structural properties concerning
the interaction of a Path TSP solution with a family of cuts. Let OPT be the optimal s-t
Path TSP solution in a graph G = (V,E). We begin with the following observation.

Lemma 1. For any s-t cut B, an odd number of edges of OPT cross between B and V \B.

Proof. OPT is an s-t path, starting at s ∈ B and ending at t ∈ V \ B. Each crossing edge
represents going from B and V \B or vice versa, so there must be an odd number of crossing
edges. □

This has the following simple corollary.

Corollary 1. For any s-t cut B, the number of edges of OPT that cross between B and
V \B is either 1 or at least 3.

Following the notation of Traub, Vygen, and Zenklusen [TVZ20], we call the cuts with a
single crossing edge of OPT 1-cuts of OPT.4

Although the above observations are elementary, they lie at the heart of the recent break-
throughs in Path TSP approximation. The following lemma is a key reason for the power
of considering cuts when solving Path TSP, and is at the heart of the initial breakthrough
[AKS12, AKS15].

Lemma 2. Consider a family B of s-t cuts in G. Suppose B1, B2, . . . , Bk ∈ B are the 1-cuts
of OPT in B. Then, these cuts form a chain, meaning that for any two cuts Bi and Bj we
either have Bi ⊆ Bj or Bj ⊆ Bi. Moreover, the set of edges of OPT that lie in Bj△Bi form
a path.

Proof. A 1-cut B with crossing edge (u, v) partitions OPT into two parts: the part of the
path appearing before the edge (u, v), which must visit every node in Bi, and the part
appearing after, which must visit every node in V \Bi. Hence, given two 1-cuts Bi and Bj

with crossing edges (ui, vi) and (uj , vj) respectively, the edges of OPT that lie in Bj△Bi

will be the edges in between (ui, vi) and (uj , vj) in OPT. If (ui, vi) appears after (uj , vj) in
OPT, then Bi will contain Bj . If (uj , vj) appears after (ui, vi), then Bj will contain Bi. □

By Lemma 2, without loss of generality, we may assume that the 1-cuts B1, B2, . . . , Bk ∈
B of OPT satisfy B1 ⊊ B2 ⊊ · · · ⊊ Bk. Intuitively, 1-cuts break down the original Path
TSP problem into sub-problems that are isolated from each other. Thus, given an oracle
that deals with these sub-problems, one can formulate a dynamic programming approach
that finds the correct chain B1, B2, . . . , Bk ∈ B of 1-cuts by making calls to this oracle.

4We will occasionally simply call these 1-cuts. However, it is important to remember that this property is

defined relative to a Path TSP solution.

APPROXIMATION ALGORITHMS FOR PATH TSP 5

Figure 2. A simple example of 1-cuts. The dotted edges represent edges
crossing 1-cuts, and the dotted lines represent the three s-t cuts, L1, L2, L3.
Note that L1 and L2 are 1-cuts, whereas L2 is not, since there are 3 edges
crossing it.

In the following three sections, we will apply and adapt this dynamic programming ap-
proach in three situations of increasing complexity. In doing so, we will build towards the
key structural results of [Zen19] and [TVZ20]. In all three situations, we will follow the
same rough paradigm. Namely, we will try to ascertain the crossing edges of a chain of cuts
from a family B, with the aid of an oracle that can solve (or approximate) the resultant
sub-problems, and thereby piece together a solution to the original problem.

4. Boosting method for large s-t distance

In this section, we introduce the idea of boosting, which lets us efficiently approximate
Path TSP instances in which the distance between s and t is large. We will assume that
we have a black-boxed β-approximation algorithm A to Path TSP, and we wish to “boost”
the approximation factor to something strictly less than β. To illustrate the key idea of the
dynamic programming, we will fully develop it in the special case where G has unit edge
weights and the s-t distance, the length of the shortest path between s and t, is sufficiently
large. Our treatment here has been developed from simplifying the dynamic approaches
that underline the two recent breakthroughs ([TVZ20] and [Zen19]) to this special case, and
its ideas originate in [BCK+07]. Specifically, we will show the following.

Lemma 3. Let G be a graph with unit edge weights. Suppose that the s-t distance d
satisfies

(1) d ≥
(
1

3
+ ε

)
· |OPT|.

Then, given a polynomial-time β-approximation algorithm A to Path TSP, we can solve
Path TSP on G in polynomial time with an approximation factor of β − 3

2ε(β − 1).

To begin the proof, we define the set Bi = {v ∈ V : d(s, v) ≤ i} to be the set of vertices
of distance at most i from s, and define the family of cuts

B = {B0, B1, . . . , Bd}.
These are the “frontiers” of a breadth-first-search starting at s, and thus B already consti-
tutes a chain, with B0 ⊊ B1 ⊊ B2 ⊊ · · · ⊊ Bd. Following the paradigm outlined earlier,

6 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

we will guess which of these cuts have a single crossing edge of OPT. We will then run
algorithm A on the Path TSP subproblems that occur in between these cuts. The boosting
will come from the fact that our dynamic program will exactly compute the best possible
set of 1-cuts, given the solutions produced by A.

Clearly, if there are more 1-cuts to find, the boosting effect will be stronger. With this
in mind, we prove the following.

Lemma 4. Let G be a graph with unit weights5 and s-t distance d satisfying Eq. (1). Then,
the number m of 1-cuts of OPT in B is at least 3ε|OPT|/2.

Proof. By Corollary 1, we can lower bound the number of crossing edges across all cuts of
B by

m · 1 + (d−m) · 3.
But the total number of crossing edges is at most |OPT|, so

|OPT| ≥ m · 1 + (d−m) · 3

=⇒ m ≥ 1

2
(3d− |OPT|)

=⇒ m ≥ 3

2
ε|OPT|,

where we use Eq. (1) in the final step. □

We now describe the dynamic program for choosing the 1-cuts. We will work outwards
through the chain of cuts B1 ⊊ B2 ⊊ · · · ⊊ Bd, constructing an s-t path edge by edge. The
sub-problem of our dynamic program (not to be confused with the sub-problems solved by
A) is defined by a cut Bi ∈ B and a vertex v. It asks: if we use A to solve the smaller path
TSP instances between 1-cuts, what is the shortest path from s to v that visits every node
in Bi? In other words, a state (Bi, v) represents a path starting at s that visits every vertex
in Bi and terminates at v.

We will define our dynamic program through the transitions between states. Each transi-
tion will have a cost. Our dynamic program can then be interpreted as finding the shortest
(lowest-cost) path between the initial state (B0, s) and the final state (Bd, t), with two types
of directed edges (state transitions):

• 1-cut transitions. For each Bi and edge uv leaving Bi, there is a transition from
state (Bi, u) to (Bi, v) of cost 1, corresponding to traversing the (length 1) edge.

• Covering transitions. For each Bi, Bj with i < j, and u and v such that u, v ∈
Bj \ Bi, there is a transition from state (Bi, u) to (Bj , v). This transition has cost
equal to the length of the u-v path found by A which covers the vertex set Bj \Bi.

The 1-cut transitions represent extending our path into “new territory”, having already
comprehensively explored Bi. Since G is a unit graph, these transitions have cost 1. The
covering transitions represent fully exploring the region Bj \ Bi, using the approximate
solution found by A. Our boosted approximation algorithm is thus the following.

Algorithm 3. Given an instance (G, s, t) of Path TSP,

(1) Create a weighted graph with node set B × V , and edge weights given by the tran-
sitions defined above (running A to find the weights of the covering transitions).

(2) Find the shortest path from (B0, s) to (Bd, t).

5Recall that we are taking the perspective of Path TSP where one can visit vertices multiple times, so G

need not be complete.

APPROXIMATION ALGORITHMS FOR PATH TSP 7

To finish, we demonstrate the boosting effect in this special case.

Proof of Lemma 3. Algorithm 3 chooses an optimal set of 1-cuts given the solutions provided
by A. Hence, if it were to instead choose exactly the 1-cuts of OPT, the length of the
produced Path TSP solution would only increase — it would be using a suboptimal set of
1-cuts given the solutions computed by A. So, let us consider the solution in this case.

By Lemma 4, the solution would agree with OPT on the ≥ 3
2ε|OPT| edges crossing the

1-cuts. The remainder of the solution is produced by running A on the sub-problems in
between 1-cuts, and hence would be a β-approximation to the remainder of OPT. Thus, the
value of the produced s-t path is at most

(2)
3

2
ε|OPT|+ β

(
|OPT| − 3

2
ε|OPT|

)
= |OPT|

(
β − 3

2
ε(β − 1)

)
,

which yields the desired approximation factor. □

Thus, we have demonstrated the dynamic programming approach and the key idea of the
boosting method by examining this special case. However, the assumption of large s-t path
distance is prohibitive; even if were to hold for G, it may not hold for the sub-problems,
preventing us from repeatedly boosting. In Section 6, we will tackle the issue by generalizing
the concept of 1-cuts to larger k-cuts. For now, however, we turn out attention to a different
way to adapt the dynamic program, which will allow us to prove a key result of [Zen19].

5. Cuts and the Held-Karp Polytope

The result of [Zen19] revolves around a linear-programming relaxation of Metric TSP
called the Held-Karp relaxation. The relaxation plays a pivotal role in many of the recent
Path TSP algorithms. It is defined as follows.

Definition 1. The Held-Karp polytope PHK of a Path TSP instance (G, s, t) is defined as
the set of x ∈ RE

≥0 for which

x(δ(B)) ≥ 2 for all nontrivial cuts B which are not s-t cuts

x(δ({v})) = 2 for all v ∈ V \ {s, t}
x(δ(B)) ≥ 1 for all s-t cuts B

x(δ({v})) = 1 for all v ∈ {s, t},

where RE
≥0 denotes the set of all “weight”-functions assigning nonnegative weight to each

edge of G, and x(δ(B)) denotes the total weight x assigns to the edges which cross the cut
B ⊔ (V \B). The polytope PHK is outfitted with an objective function, called “length” and
defined

ℓ(x) =
∑
e∈E

x(e)ℓ(e),

which the optimal point x∗ ∈ PHK minimizes. Below we see an example of a feasible solution
to a PHK polytope.

To see why this is a relaxation of Path TSP, we explain why any feasible solution to Path
TSP will also be in PHK. Let the capacity on an edge be the value of x at that edge, so that
a solution x to Path TSP assigns integer capacity to an edge equal to the number of times
the path traverses that edge.

8 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

Figure 3. An example of a feasible solution in PHK for a 6-node graph.

• For any nontrivial cut B which is not an s-t cut, x must start on the side containing
s, cross B to reach the nodes on the other side, and cross it again to return to t.
So, the total capacity assigned to edges crossing B must be at least 2.

• If such a cut contains exactly one vertex v on one side, x must cross it exactly twice,
as it must visit v, leave, and then never return. So, x assigns capacity exactly 2 to
the edges crossing {v}.6

• For any s-t cut B, x must cross the cut at least once, so it assigns capacity at least
1 to the edges crossing B.

• If B is {s} or {t}, there must be exactly one edge from s and exactly one edge to t,
so x assigns capacity exactly 1 to the edges crossing the corresponding cuts.

Crucially, the definition of the polytope in terms of cuts allows it to play nicely with the
ideas of Section 3, even though those ideas were developed in the context of integral Path
TSP solutions. We are now ready to introduce the main theorem of [Zen19]:

Theorem 3. Let B be a family of s-t cuts.7 There exists an algorithm to determine, in
polynomial time in the size of B and the size of the Path TSP instance, a point y ∈ PHK of
minimum length ℓ(y) such that for every cut B ∈ B, either

y(δ(B)) ≥ 3, or

y(δ(B)) = 1, and y is integral on the edges of δ(B)

We will refer to this constraint as y being B-good.8 Corollary 1 helps us understand why
this is a natural condition of y: it essentially asks y ∈ PHK to behave a little bit more
like a true Path TSP solution, by enforcing the same discrete separation between the small
cuts (with a single crossing edge), and the large cuts (with an edge “load” of at least 3).

6This argument uses the “triangle inequality” perspective of Metric TSP; in this section, it’s most convenient

to just assume one starts with the all-pairs shortest path graph, so that the optimal paths are the same
regardless of perspective.

7In the final algorithm, B will be chosen to be a particular set of cuts, defined by the optimal solution x∗ to
the Held-Karp relaxation. The dynamic program, however, works for any B, so we present it in generality.

8The set of B-good points y ∈ PHK does not form a sub-polytope of PHK; it may fail to be convex.

APPROXIMATION ALGORITHMS FOR PATH TSP 9

Adapting the terminology of Section 3, we will also call the cuts with a single crossing edge
1-cuts, now with respect to a B-good Held-Karp solution.

(a) A feasible solution which is B-good
for a specific B

(b) A feasible solution which is B-good
for any B

Figure 4. Two PHK-feasible solutions which are B-good for different B.
The first is B-good only for B := {{1, 2, 3}}, since this is the only s-t cut
which satisfies the conditions as in Theorem 3. The second PHK solution
satisfies the conditions in Theorem 3 for any s-t cut, and this is B-good for
any B.

We now prove Theorem 3 using the dynamic programming paradigm outlined in Section 3,
by directly adapting the approach of Algorithm 3. We begin by stating the analogue of
Lemma 2 in this new context.

Lemma 5. Consider a family B of s-t cuts in G, and a B-good solution y. Suppose
B1, B2, . . . , Bk ∈ B are the 1-cuts of y in B. Then, these cuts form a chain, meaning
that for any two cuts Bi and Bj we either have Bi ⊆ Bj or Bj ⊆ Bi. Moreover, for
Bi ⊂ Bj , the set of edges of OPT that lie in Bj \Bi constitute a solution to the Held-Karp
relaxation of Path TSP on the nodes Bj \ Bi with the additional restriction that a total
weight of at least 3 must cross every cut B ∈ B satisfying Bi ⊂ B ⊂ Bj .

Recall that Lemma 2 told us two things: one, that the 1-cuts would have a chain struc-
ture, and two, that the “subproblem” between two chains is just another Path TSP problem.
Lemma 5 tells us that our chain structure property is still intact. However, our subprob-
lem has changed – it is no longer just another Path TSP instance, but rather a modified
Held-Karp linear program. However, our overall paradigm for dynamic programming does
not assume anything about the nature of the subproblems, other than that they can be
solved. Thus, this does not change the essential form of the DP, and will simply require a
modification of the transition costs.

A final modification to the DP is that the family B of cuts may no longer form a chain.
To handle this, it suffices to add transitions from a cut B− to a cut B+ whenever B− ⊆ B+.
We now present the adapted dynamic program.

Algorithm 4. Define B = B ∪ {∅, V }. Form the following transitions between the states
B × V :

• 1-cut transitions. For each B ∈ B and edge uv leaving B, there is a transition
from state (B, u) to (B, v) of cost ℓ(uv).

10 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

• Held-Karp transitions. For each B−, B+ ∈ B with B− ⊆ B+, and each u, v ∈
B+ \ B−, there is a transition from state (B−, u) to (B+, v). This transition has
weight equal to the optimum of the Held-Karp relaxation for a u-v path that visits
every node of B+ \B−, with the additional constraint that a total weight of at least
3 must cross every cut B ∈ B satisfying B− ⊂ B ⊂ B+.

9

Then, find the shortest path from (∅, s) to (V, t) in the graph given by these transitions.
Finally, piece together all of the 1-cuts on this path with the “high-load” Held-Karp solutions
found in between the cuts to form the minimal length B-good solution y.

Sketch of Proof of Theorem 3. The correctness of Algorithm 4 follows directly from the
structure described in Lemma 5. Namely, a B-good solution can be decomposed into its
1-cuts and a fractional Held-Karp solution in between the cuts with “high load”. Just as in
Algorithm 3, by finding the shortest path, Algorithm 4 finds the set of 1-cuts that minimizes
the total length. Thus, it finds the minimal length B-good solution. □

6. The reduction from Path TSP to TSP

In this section, we motivate and sketch the reduction from Path TSP to TSP from
[TVZ20]. Recall the boosting method we described in Section 4. By using dynamic pro-
gramming to choose the 1-cuts, we were able to improve our approximation factor. However,
that method was restricted to large s-t distance, preventing us from forming a scheme to
repeatedly boost our algorithm. At the heart of Traub, Vygen, and Zenklusen’s reduction is
a way to remove this restriction.

Why did Lemma 3 require large s-t distance? Recall that the boosting was due to the
number of 1-cuts that the dynamic program could guess optimally. When the s-t distance is
not so large, it may be the case that there is no 1-cut in our family of cuts B, with respect to
the optimal Path TSP solution. With this in mind, Traub, Vygen, and Zenklusen [TVZ20]
generalize the idea of 1-cuts to cuts with a larger number k of crossing edges, which we shall
call k-cuts. For some constant k, the dynamic program will now aim to choose the crossing
edges of all k-cuts. The hope is that the cumulative weight of all of these edges will be
enough to produce a large enough boosting effect.

There is an issue, however: the subproblems! Between 1-cuts, the subproblem is just
another Path TSP problem. With k-cuts, the subproblems now become significantly more
complicated. Essentially, they must keep track of any partial progress that has already been
made towards a path which visits all vertices. The way to do this is via interfaces Φ, which
hold information about (a) the vertices already visited, (b) the parity of the degrees (so far)
of each of these vertices, and (c) the connected components of the partial solution. The size
|Φ| of the interface is the number of vertices “already visited;” a Path TSP instance can be
written as a Φ-TSP instance with size 2.

The problem Φ-TSP asks for the optimal way to complete the interface Φ into a full
path visiting every vertex. This is a very general problem, and the crux is that it is exactly
general enough; even when taking k-cuts, the sub-problems will now be of the same form as
the original problem. The main theorem in this vein is the following.

Theorem 4 ([TVZ20, Thm. 10]). Assume there exists a polynomial-time algorithm A which
gives an α-approximation to TSP. Further, assume there exists a polynomial-time algorithm
B which gives a β-approximation to Φ-TSP on instances of size at most some fixed constant

9The optimum of a Held-Karp polytope can be computed in polynomial time; see Section 7.

APPROXIMATION ALGORITHMS FOR PATH TSP 11

t. Then, there exists a polynomial-time

(3) max
(
(1 + ε)α,

(
1− ε

8

)
(β − 1) + 1

)
-approximation

algorithm to Φ-TSP on instances of size at most tε
9 .

Intuitively, the (1+ ε)α term corresponds to small s-t distance, and the second term cor-
responds to large s-t distance. The algorithm for small s-t distance, described in [TVZ20,
Sec. 4], also follows a dynamic programming framework. The main idea is that the dif-
ference between the optimal solution here and the optimal solution to the corresponding
TSP instance is small, so any long edges may be ignored. We will be more interested in
the case where the s-t length is large. However, before discussing this, we will explain how
Theorem 4 can be used to get a polynomial-time (α+ ε)-approximation to Path TSP.

Sketch of proof of Theorem 2. The first step is a 7-approximation to the completely general
Φ-TSP problem, which essentially comes from considering aspects (a), (b), and (c) of in-
terfaces as separate problems. Resolving (a) is tantamount to finding a spanning tree, (b)
is tantamount to finding a perfect matching, and (c) is tantamount to solving the Steiner
forest problem (to which a polynomial time 2-approximation is given in [AKR91]). For the
details, see [TVZ20, Sec. 3.2].

Now, given any fixed ε > 0, we can solve instances of Φ-TSP of size 2 (e.g. Path TSP
instances) in polynomial time by applying Theorem 4 Θ(1/ε) times, starting with this 7-
approximation, to attain successively better approximations, until the second term in (3)
becomes smaller than the first. Since this involves boosting Oε(1) times, the interface sizes
are bounded (in terms of ε), and so the algorithm runs in polynomial time. □

We now return to the case of large s-t distance. Fix the positive integer k = ⌈9/ε⌉. To
follow our dynamic programming paradigm, we first need a polynomial-size set of cuts. We
will use a particular set of cuts B called a laminar family, a family in which any two cuts
B1, B2 ∈ B are either disjoint or satisfy B1 ⊂ B2 or B2 ⊂ B1 (laminarity is essentially
a generalization of the property of being a chain). We will also need the following two
properties:

(1) Given any way to complete the interface Φ into a full Path TSP solution C, the set{
e ∈ C : e is in some k-cut B of C with B ∈ B

}
contains a high proportion (by total length) of the edges of C. This is an analogue
of Lemma 4.

(2) The width of B, i.e. the number of cuts B ∈ B which do not strictly contain any
other B′ ∈ B, is at most |Φ| − 1. This helps control the sizes of the subproblems.

These constraints, particularly (1), seem difficult to verify. However, they can be encap-
sulated in a relatively simple linear program (see [TVZ20, Sec. 5.1]), a solution to which
gives a laminar family B satisfying both properties. This family B is used as input to the
following theorem, which, using condition (1), implies Theorem 4.

Theorem 5 ([Zen19, Thm. 17], adapted). Assume there is a β-approximation algorithm A
for Φ-TSP for some β > 1. Let k be a positive integer. Assume B is a laminar family of
cuts with constant width W , and suppose the total length of OPT on the k-cuts of B is L.
Then, given an interface Φ and a positive integer k, there is a polynomial-time algorithm
which finds a way to complete Φ into a solution to Path TSP with length at most

(4) L+ β · (|OPT| − L).

12 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

Furthermore, the interfaces on which the algorithm calls A have size at most k(W +1)+ |Φ|.

Proof sketch. We first set up the states of our dynamic program. These will look somewhat
similar to those in Algorithm 4. There, we paired cuts with a vertices. The vertex essentially
encoded how we entered the cut B, which told us how to continue the Path TSP solution.
Since we are now guessing k-cuts, we instead encode our partial progress with an interface
Φ′.

The dynamic program “works its way up” the laminar family B by considering sets of
increasing size. We describe the key transition step. Since we are no longer constructing
the solution linearly, it is more natural to describe it in a top-down fashion than by finding
a shortest path as before.

Suppose that we want to fill in the answer to a state (B,ΦB). We consider each tuple of
disjoint cuts B1, . . . , Bp ⊂ B. For each such tuple, we will consider every p-tuple of valid
interfaces Φ1, . . . ,Φp associated with these cuts. Our dynamic program has already solved
each subproblem (Bi,Φi). Thus, to form a candidate solution for the interface ΦB , all that
remains is to solve a Φ-TSP instance on the vertices B \ (B1 ∪ · · · ∪Bp) with some interface
Φ0; this can be done by calling A. By taking the minimum over all tuples of cuts and tuples
of associated interfaces, we find the optimal solution for the state (B,ΦB).

In the above, we can see the importance of constant width: it controls the size of the
tuples of cuts which we iterate over, keeping the number of such tuples polynomial. The
value of only considering k-cuts for some constant k is also apparent, in that it controls
the complexity of the interface Φ0 of the sub-problem. To develop these ideas formally, one
needs to carefully consider which states (B,ΦB) need to be solved in order to build up to
the original Φ-TSP instance; see [TVZ20, Sec. 5.3] for details. Ultimately, one can show
(see [TVZ20, Sec. 5.4]) that the full algorithm runs in polynomial time and that Φ0 has size
at most k(W + 1) + |Φ|, as desired.

□

7. Finishing the 3/2-approximation algorithm

We now finish the 3/2-approximation algorithm for Path TSP, using Theorem 3, the
result of our dynamic programming, as a subroutine. The algorithm is based heavily off of
the Path TSP-analogue of Christofides’ algorithm (Algorithm 2), but performs the first step
differently.

Algorithm 5 ([Zen19, Alg. 1]). Given an instance (G, s, t) of path TSP,

(i) Compute an optimal solution x∗ to the Held-Karp relaxation (Definition 1) of the
instance.

(ii) Let B be the set of s-t cuts in G across which x∗ has value strictly less than 3.
Compute a point y in the Held-Karp polytope satisfying the conditions of Theorem 3
with respect to the cut family B (a minimal length B-good point).

(iii) Let supp(y) denote the set of edges which y assigns a nonzero value. Compute a
minimum spanning tree T of (V, supp(y)).

(iv) Apply Algorithm 2 to (G, s, t), using the spanning tree T instead a minimum span-
ning tree of G itself.

We now show that this gives a 3/2-approximation, and later provide some comments on
the runtime.

APPROXIMATION ALGORITHMS FOR PATH TSP 13

Approximation analysis of Algorithm 5. Let C∗ be the optimal Hamiltonian path. We first
bound the length of the tree T by ℓ(C∗), and then bound the length of the minimum
matching U by ℓ(C∗)/2. Both bounds will involve introducing a new polytope.

Recall that y ∈ PHK is B-good if and only if, for each B ∈ B, either y has exactly one
edge with weight 1 crossing B, or the total weight y assigns to edges crossing B is at least
3. Thus, Corollary 1 implies that any Hamiltonian path is B-good, and so

ℓ(y) ≤ ℓ(C∗).

The bound ℓ(T) ≤ ℓ(y) holds for any y ∈ PHK. This follows from introducing the spanning
tree polytope, a reasonable relaxation of the condition of being a spanning tree, and noting
that it contains PHK; we omit the details here, and refer the reader to [AKS15, Sec. 2-3].10

Let T ′ be T with edge st added. We now need to bound the length of the minimum-length
perfect matching U on the vertices

S =
{
v ∈ V : deg v in T ′ is odd

}
by ℓ(C∗)/2. Now, define the S-join polytope

P ↑
S-join :=

{
x ∈ RE

≥0 | x(δ(B)) ≥ 1 for all S-cuts B ⊆ V
}
,

where an S-cut is a set B ⊆ V with |B ∩ S| odd. The S-join polytope is a relaxation of
the definition of a perfect matching; in particular, the minimum-length perfect matching U

computed in step (ii) of Algorithm 2 is in P ↑
S-join. We claim that

z =
x∗

4
+

y

4
∈ P ↑

S-join.

Since the vertices of P ↑
S-join are exactly the matchings on S, this will imply that ℓ(U) ≤

ℓ(z) ≤ ℓ(C∗)/2, as desired. We’ll show this by showing z(δ(B)) ≥ 1 for every S-cut B.

• If B is not an s-t cut, then x∗(δ(B)) and y(δ(B)) are both at least 2, since x∗, y ∈
PHK. This gives that z(δ(B)) ≥ 1.

• If B is an s-t cut but is not in B, then x∗(δ(B)) ≥ 3. Since y ∈ PHK, y(δ(B)) ≥ 1.
• Correspondingly, if B ∈ B and y(δ(B)) ≥ 3, then x∗(δ(B)) ≥ 1 is enough.
• The remaining case is when B ∈ B, y(δ(B)) = 1, and y contains exactly one edge
in δ(B) with weight 1. We claim that no such cut may be an S-cut. Indeed, there
is only one edge e of supp(y) connecting B and V \B, and so, since T is a spanning
tree, T must contain e. This means that T ′ has exactly 2 edges crossing from B to
V \B. From this,∑

v∈B

deg v = 2 + 2(number of edges of T ′ between two vertices in B)

is even, and so B contains an even number of elements of S. So, B is not an S-cut.
An illustration of this is shown in Fig. 5.

10An, Kleinberg, and Shmoys show something more: the spanning tree polytope can be used, in a reasonably

straightforward capacity, to derive a spanning tree T from x∗ to use in Algorithm 2 which gives a 1+
√
5

2
-

approximation. In this sense, Algorithm 5 offers a more sophisticated way to select T based on x∗.

14 GAURAV ARYA, CARL SCHILDKRAUT, AND NICOLAS SUTER

Figure 5. A cut B, which fails to be an S-cut. Note that B ∩ S consists
of the vertices labelled 3 and 4, and is thus of even size. Exactly two edges,
one of which is st, cross the cut.

□

We finish by explaining why Algorithm 5 runs in polynomial time. Steps (iii) and (iv)
are classical; we need to discuss (i) and (ii). The runtime of (i) follows from the following
lemma.

Lemma 6. An optimal solution to the Held-Karp relaxation of Path-TSP can be computed
in polynomial time.

Proof sketch. Use the ellipsoid algorithm, which reports a solution to the linear program in
polynomial time assuming a violating constraint can be found in polynomial time (to deal
with the fact that we seek an optimal solution, instead of simply a feasible one, we can
add an extra constraint to bound the objective, and binary search for its value). Finding
a violating constraint of a point x ̸∈ PHK is tantamount to finding the minimum cut of the
the graph on V where edge st has weight 1 and every other edge e has weight x(e), which
can be done in polynomial time. □

For (ii), we need B to have polynomial size, and we need to be able to compute B in

polynomial time. Let G̃ be the graph on vertex set V where edge st has weight 1, and
every other edge e has weight x∗(e). Since x∗ is in the Held-Karp polytope, and edge st is

assigned weight 1, every cut of G̃ has weight at least 2. Furthermore, C is a subset of the
cuts with weight less than 4. So, it suffices to enumerate all cuts of G̃ of weight at most
twice the min-cut of G̃. To this end, we use a lemma of Karger.

Lemma 7 ([Kar93, Cor. 6.1]). Fix some positive integer t. Let c∗ be the value of the

minimum cut in a weighted graph G̃ on n vertices. Then, there are O(n2t) cuts of G̃ with
value at most tc∗. Furthermore, these cuts can be enumerated (with high probability) in
polynomial time.

Proof sketch. Successively contract edges of G̃, contracting an edge at each step with prob-
ability proportional to its weight. Once exactly two vertices v and w remain, the sets
{v′ : v′ is contracted into v} and {w′ : w′ is contracted into w} form a cut of G̃. Report this
cut.

After each contraction, the value of the minimum cut may not decrease, so it is at least c∗.
Once there are only k vertices, since the minimum cut is at least the average weight of the
edges incident to a vertex v, the total weight of the remaining edges is at least kc∗/2. Using

APPROXIMATION ALGORITHMS FOR PATH TSP 15

this, one can show that the probability that a given cut of value at most tc∗ is reported is
Ω(n−2t). This means that there are O(n2t) such cuts, and running this process Θ(n2t log2 n)
times will report them all with high probability. □

This finishes the proof of Theorem 1. Algorithm 5 gives a 3/2-approximation to Path
TSP, and it runs in polynomial time by Lemmas 6 and 7.

8. Conclusion

In this exposition, we have presented two key recent breakthroughs in the Path TSP
problem, with particular focus on the dynamic programming approach that underlies them.
We conclude with an interesting open problem: is it possible to shave off the extra ε in the
(α+ ε) approximation factor produced by the reduction from TSP [TVZ20]? This question
is particularly interesting in the context of this synthesis: the extra ε is precisely the reason
that the 3/2-approximation algorithm [Zen19] for Path TSP was not superseded by the
reduction result of [TVZ20]11. However, as is apparent in our synthesis, the techniques
used in proving the two results have a great degree of similarity. Thus, the authors wonder
whether a careful study of why the additive factor is avoided in [Zen19] could lead to a way
to modify the reduction of [TVZ20] to avoid the extra ε and answer this question in the
affirmative.

References

[AKR91] Ajit Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the

generalized Steiner problem on networks. In STOC ’91, 1991. doi:10.1145/103418.103437.
[AKS12] Hyung-Chan An, Robert Kleinberg, and David B. Shmoys. Improving Christofides’ algorithm for

the s-t Path TSP. In Proceedings of the forty-fourth annual ACM symposium on Theory of com-

puting, STOC ’12, pages 875–886, New York, NY, USA, May 2012. Association for Computing
Machinery. doi:10.1145/2213977.2214055.

[AKS15] Hyung-Chan An, Robert Kleinberg, and David B. Shmoys. Improving Christofides’ algorithm

for the s-t Path TSP. Journal of the ACM, 62(5):34:1–34:28, Nov. 2015. doi:10.1145/2818310.
[BCK+07] Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria

Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. SIAM J. Com-

put., 37(2):653–670, may 2007. doi:10.1137/050645464.
[Chr76] Nicos Christofides. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem.

Technical report, Carnegie-Mellon University Management Sciences Research Group, Feb. 1976.

URL https://apps.dtic.mil/sti/citations/ADA025602. Section: Technical Reports.
[Hoo91] J.A. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult than cycles.

Operations Research Letters, 10(5):291–295, July 1991. doi:10.1016/0167-6377(91)90016-I.
[Kar93] David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.

In Proceedings of the fourth annual ACM-SIAM symposium on Discrete algorithms, SODA ’93,

pages 21–30, USA, Jan. 1993. Society for Industrial and Applied Mathematics.
[KKOG21] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation

algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2021, page 32–45, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3406325.3451009.

[TVZ20] Vera Traub, Jens Vygen, and Rico Zenklusen. Reducing path TSP to TSP. In Proceedings of

the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 14–27,
New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384256.

[Zen19] Rico Zenklusen. A 1.5-approximation for path TSP. In Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 1539–1549, USA, 2019. Society
for Industrial and Applied Mathematics.

11In combination with the recent (1.5− 10−36)-approximation algorithm for TSP from [KKOG21], the 3/2-

approximation algorithm for Path TSP is indeed improved upon, but the algorithm is significantly more
complicated.

