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Abstract

Both human collaboration and software agent collaboration have been thor-
oughly studied, but there is relatively little research on hybrid human-agent team-
work. Some research has identified the roles that agents could play in hybrid
teams: supporting individual team members, being a teammate, or supporting the
team as a whole [99]. Some other work [57] has investigated trust concepts as
the fundamental building block for effective human-agent teamwork or posited
the types of shared knowledge that promote mutual understanding between co-
operating humans and agents [9, 68]. However, many of the facets of human
agent teamwork models, such as communication protocols for forming mutual in-
telligibility, performing team monitoring to assess progress, forming joint goals,
addressing task interdependencies in hybrid teamwork are still unexplored. In this
report, we address the following questions:

1. what factors affect human team task performance and cognition?

2. how can agent coordination mechanisms be adapted for human-agent teams?

3. with current technologies, what roles can agents successfully fill in hybrid
human-agent teams?
4. what are the barriers to human-agent interaction?
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1 Introduction

In this report, we give an overview of the literature on teamwork: human-only,
agent-only, and human-agent teamwork models. Cohen et al. [23] defined agent
teamwork as‘a set of agents having a shared objective and a shared mental
state”, whereas Salas et al. [85] characterizes human tearts distinguish-

able set of two or more people who interact dynamically, interdependently, and
adaptively towards a common and valued goal/objective/missiGt€searchers
desire to make agents an integral part of teams [20]; however, this desire has not
yet been fully realized because current software agents lack the dynamism and
adaptiveness in Salas’s description of human teams. The next section gives an
overview of human teamwork models and team cognition.

2 Human Teamwork

2.1 Representative Theories

Human team processes have been studied by psychologists since the 1950s. Paris
et al. [71] group the representative theories influencing our understanding of hu-
man teamwork into the following eight categories:
1. social psychological approaches: how team members’ relate and interact
with each other
2. sociotechnical approaches: work-related implications of team members’ re-
lationships and interactions
3. ecological approaches: how organizational or working environments affect
teamwork
4. human resource approaches: how teams utilize the members’ capabilities
and talents
technological approaches: relating to technological progress
6. lifecycle approach: how team performance changes during the lifecycle of
existence
7. task-oriented approach: team roles, functions, and tasking
8. integrative approach: a fusion of multiple different approaches
Cannon-Bowers et al. [17] divide human teamwork into three dimensions: cog-
nitions, skills, and attitudes. The cognition or knowledge category includes in-
formation about the task such as as team mission, objectives, norms, problem
models, and resources. Teamwork skills include behaviors such as adaptability,
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performance monitoring, leadership, communication patterns, and interpersonal
coordination. Attitudes measure the participants’ feelings about the team: team
cohesion, mutual trust, and importance of teamwork.

2.2 Team Cognition

Research in human team performance suggests that experienced teams develop a
shared understanding shared mental modeitilized to coordinate behaviors by
anticipating and predicting each others needs and adapting to task demands [39].
Further, for such teams, both tacit and explicit coordination strategies are im-
portant in facilitating teamwork processes. Explicit coordination occurs through
externalized verbal and non-verbal communications, whereas tacit coordination is
thought to occur through the meta-cognitive activities of team members who have
shared mental models of what should be done, when, and by whom [31, 37, 52]. A
teams shared mental models thus allow the team members to coordinate their be-
havior and better communicate depending upon situational demands. Team train-
ing researchers have most clearly articulated theories involving shared cognition
in general, and definitions of shared mental models in specific. Initial theoriz-
ing on training shared mental models suggested that, for teams to successfully
coordinate their actions, they must possess commonly held knowledge structures
that allow them to predict team behavior based upon shared performance expec-
tations [16]. Generally, this includes knowledge of team objectives and goals but
more specifically, it encompasses knowledge of teammates roles and responsibil-
ities along with the team tasks and procedures and the timing/sequencing of the
task.

Two important elements of successful communication between humans in-
clude the ability for each of the communicators to generally understand what
the other person is thinking, and to determine what his/her intentions (or goals)
are [30]. For non-living entities, Dennett proposed that humans have three options
when interpreting an object’s actions: (a) a physical stance, (b) a design stance,
or (c) an intentional stance. A physical stance is the application of the laws of na-
ture in predicting what an object will do. A design stance involves one’s attempt
to make predictions about an object based on their beliefs about the designer’s
intentions. Finally, an intentional stance is derived from a person’s perceptions
about the beliefs or desires that they suspect drive the object in question. This
last stance, intentional stance, is what people use to read each others minds and
predict behaviors.

Another important key to team performance is congruence of team cognition.
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Common cognition among team members is associated with higher team effec-
tiveness and is an important element of training human military teams [96, 97].
Commonality of cognition can be measured by rating team member schema sim-
ilarity (TMSS) [78]. A schema is defined as a set of structured knowledge that
humans use to understand incoming stimuli. There are two components of team
member schema similarity: team member schema congruence and team member
schema accuracy. Congruence is the degree of matching between team members’
schema; accuracy is a comparison between team members’ schema and the “true
score” (quantified by an external observer). Metacognition, “what group mem-
bers know about the way groups process information” [50], is another important
element governing human team performance. If all team members have similar
beliefs about the operation and functioning of the group, team performance is
improved.

The RETSINA agents (see Section 3) use the ATOM model of teamwork pro-
posed by Smith-Jentsch et al. [96]. The ATOM model postulates that, besides their
individual competence in domain specific tasks, team members in high perfor-
mance teams must have domain independent team expertise, that is comprised of
four different categories: information exchange, communication, supporting be-
havior, team initiative/leadership. The performance of teams, especially in tightly
coupled tasks, is believed to be highly dependent on these interpersonal skills.

2.3 Dimensions

Team cognition at the macro level involves many characteristics that affect the
collaborative process, the cognitive skills required, and ultimately the quality of
the outcome. Understanding the impact of these dimensions is critical to modeling
dynamic teamwork and human-agent collaborative processes. Below, we describe
the most important dimensions as suggested by Warner et al. [118, 117]:

2.3.1 Collaboration system characteristics

1. Synchronous versus asynchronous collaboration: Is the collaborative process
conducted in a same-time manner or are participants collaborating at differ-
ent times?

2. Proximity of collaborators: Are the participants located proximally or are
individuals geographically distributed?



2.3.2 Team characteristics

1. Command structure: Are the participants organized in a hierarchical or flat
structure?

2. Homogeneity of knowledge: Do all participants possess the same knowl-
edge or is there information asymmetry?

3. Team size: How many individuals are required to collaborate on a team?

2.3.3 Task dimensions

=

. Collaborative output: Is the goal of the team to deliberate and process in-
formation or to determine a course of action (COA)?

Time stress: Is the team subject to time pressure?

Task complexity: How large and complex is the task?

Task familiarity: Is the task a one-time or a recurring event?

Nature of constituent subtasks: e.g. whether subtasks involve planning,
decision making, cognitive conflict, creative and intellective subtasks etc.

apr@ON

3 Agent Teamwork

3.1 Theories

Theoretical work on agent teamwork [110, 46] characterizes team behavior as
having the following features: First, the agents need to share the goals they want
to achieve, share an overall plan that they follow together and to some degree
share knowledge of the environment (situation awareness) in which they are op-
erating. Second, the agents need to share the intention to execute the plan to
reach the common goal. Third, team members must be aware of their capabilities
and how they can fulfill roles required by the team high level plan. Fourth, team
members should be able to monitor their own progress towards the team goal and
monitor team mates activities and team joint intentions [22]. Using these basic
teamwork ideas, many systems have been successfully implemented, including
teams supporting human collaboration [18], teams for disaster response [66], and
for manufacturing [108].



3.2 Frameworks

In addition to identifying suitable roles for agents to play in human teams, to
implement a software system, we must also select coordination and communica-
tion mechanisms that the agents can use. For some domains, simple pre-arranged
coordination schemes like the locker-room agreement [100] in which the teams
execute pre-selected plans after observing an environmental trigger are adequate.
Although this coordination model has been successful in the Robocup domain, the
locker-room agreement breaks down when there is ambiguity about what has been
observed; what happens when one agent believes that the trigger has occurred but
another agent missed seeing it? The TEAMCORE framework [110, 111] was
designed to address this problem; the agents explicitly reason about goal commit-
ment, information sharing, and selective communication. This framework incor-
porates prior work by Cohen and Levesque [21] on logical reasoning about agent
intention and goal abandonment. Having agents capable of reasoning about fellow
agents’ intentions makes the coordination process more reliable, since the agents
are able to reason about sensor and coordination failures. By giving all team mem-
bers proxies imbued with this reasoning capability, it is possible to include agents,
robots, and humans in a single team [87].

Similarly other formalisms such as SharedPlans [46] have been successfully
used by collaborative interface agents used to reason about human intentions.
The RETSINA software framework [107] uses reasoning mechanisms based on
SharedPlans to:

1. identify relevant recipients of critical information and forward information
to them
track task interdependencies among different team members
recognize and report conflicts and constraint violations
propose solutions to resolve conflicts
. monitor team performance

To be an effective team member, besides doing its own task well, an agent must
be able to receive tasks and goals from other team members, be able to commu-
nicate the results of its own problem solving activities to appropriate participants,
monitor team activity, and delegate tasks to other team members. A prerequisite
for an agent to perform effective task delegation is (a) to know which tasks and
actions it can perform itself (b) which of its goals entail actions that can be per-
formed by others and (c) who can perform a given task. The RETSINA agent
architecture [103] includes a communication module that allows agents to send
messages, declarative representation of agent goals and planning mechanisms for
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fulfilling these goals. Therefore, an agent is aware of the objectives it can plan for
and the tasks it can perform. In addition, the planning mechanism allows an agent
to reason about actions that it cannot perform itself but which should be delegated
to other agents.

Adjustable autonomy, the agent’s ability to dynamically vary its own auton-
omy according to the situation, is an important facet of developing agent systems
that interact with humans [88, 89]. Agents with adjustable autonomy reason about
transfer-of-control decisions, assuming control when the human is unwilling or
unable to do a task. In many domains, the human teammates possess greater
task expertise than the software agents but less time; with adjustable autonomy
the human’s time is reserved for the most important decisions while the agent
team members deal with the less essential tasks. Scerri et al. [88] demonstrated
the use of Markov decision processes to calculate an optimal multiple transfer-
of-control policy for calendar scheduling user interface agents. Having agents
with adjustable autonomy, is beneficial to agent teams. For example, a robot may
ask a software agent for help in disambiguating its position; a software agent may
relinquish control to a human to get advice concerning the choice between two de-
cision making alternatives; a human can relinquish control to a robot in searching
for victims. However there are many interesting research challenges that remain:
how control can be relinquished in ways that do not cause difficulties to the team,
how to maintain team commitments, how to support large-scale interactions with
many agents.

To coordinate distributed autonomous agents into effective teams in dynamic
environments, we embrace the following principles: (1) the environment is open
and the team constitution could vary dynamically through addition, substitution or
deletion of teammates; (2) team members are heterogeneous (having different or
partially overlapping capabilities); (3) team members share domain independent
teamwork models; (4) individual and team replanning is necessary while support-
ing team goals and commitments; (5) every team member can initiate team goals.
In forming a team to execute a mission team members with different capabilities
will be required. The location and availability of potential teammates is not known
at any given point in time. Moreover, during a mission, teams may have to be re-
configured, due to loss, total or partial, of team member capabilities (e.g. a robot
loses one of its sensors) or necessity of adding team members to the team. Au-
tomated support for addition, substitution or deletion of team members requires
extensions to current teamwork models: (1) development of robust schemes for
agents to find others with required capabilities, i.e. agent discovery; (2) develop-
ment of robust algorithms for briefing new team members so as to make them
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aware of the mission and current plans of the team; and (3) individual role adjust-

ment and (re)negotiation of already existing plans due to the presence of the new
(substitutable) team mate. We collectively call these three parts capability-based
coordination.

After a team has been formed (or reconfigured) through capability based coor-
dination, team members must monitor teammates activities in order to pursue and
maintain coherent team activity, team goals and commitments. Once team goals
have been formulated, team members perform domain specific planning, informa-
tion gathering and execution according to their expertise while maintaining team
goals. An agent’s planning must take into consideration temporal constraints and
deadlines, as well as resource constraints and decision tradeoffs.

3.3 Plan Execution for Agent Teams

Theoretical work on team behavior [22, 45] stresses that the agents need to share
the goals they want to achieve, a plan that they follow together and knowledge of
the environment in which they are operating. In addition they need to share the
commitment to execute the plan to reach the common goal. Furthermore, team
members must be aware of their capabilities and how they can fulfill roles re-
quired by the team high level plan, should be able to monitor their own progress
towards the team goal and monitor team mates activities and team joint intentions.
The theoretical work and the operationalization of these representational and in-
ferential abilities constitute a generic model of teamwork. System implementation
of team coordination [110] has resulted in the creation of an agent wrapper [74]
that implements a generic model of teamwork. An instance of such a wrapper
can be associated with any agent in the multiagent system and used to coordinate
the agents activity with team activity. Teamwork wrappers can be used to wrap
non-social agents to enable them to become team oriented.

Besides capability-based coordination, discussed above, for open agent so-
cieties, and domain-specific multiagent planning information gathering and ex-
ecution that is discussed in the next section, several enhancements to the agent
teamwork models that have been reported thus far are necessary to adapt these
models to human-agent teams.

3.3.1 Goal Creation

Any agent can generate a team goal, thus becoming a team initiator. To become
a team initiator requires the ability to perceive and assess events as meriting ini-



tiation of team formation activities. The team initiator must be able to generate
a skeletal team plan, determine roles for himself (by matching his capability to
plan requirements) and find additional teammates through capability-based coor-
dination . The team initiator is also responsible for checking that the collective
capabilities of the newly formed team cover all requirements of the team goal.

3.3.2 Proactive (Reactive) Mutual Assistance and Altruism

Current models of teamwork are agnostic with respect to agent attitudes but im-
plicitly assume a general cooperative attitude on the part of individuals that make
them willing to engage in teamwork. Experimental work on human high per-
formance teams [73], with numerous human military subjects in time-stressed
and dangerous scenarios, has demonstrated that attitudes of team help are im-
portant factors in achieving high performance. Currently, there is no theoretical
framework that specifies how such agent attitudes can be expressed; whether it
is possible to incorporate such attitudes into current teamwork theories (e.g. joint
intentions or SharedPlans); what additional activities such attitudes entail during
teamwork. In prior work, we have explored such agent attitudes in the context
of software agent assistance provided to human teams [43]. Agents unobtrusively
eavesdropped on human conversations to determine proactively what kind of as-
sistance humans could use (e.g. finding flight schedules in the context of a non
combatant evacuation scenario), and engaged in capability-based coordination to
find agents that could supply the needed information.

3.3.3 Monitoring Individual and Team Activity

One consequence of agents attitude of proactive assistance is a clearly increased
need for team monitoring. In prior work, monitoring teammates activities was
done so as to maintain joint intentions during plan execution. Therefore, mon-
itoring was done [110] to ascertain (a) team role non-performance, (e.g. a team
member no longer performs a team role) or (b) whether some new event neces-
sitates team goal dissolution (e.g. realizing that the team goal has already been
achieved). When developing schemes for tracking intentions of heterogeneous
human-agent teams and dealing with the issue of appropriate levels of informa-
tion granularity for such communications, additional monitoring must be done as
a consequence of the proactive assistance agent attitude. Agents should volun-
teer to get information that is perceived to be useful to a teammate or the team
as a whole. Moreover, agents should send warnings, if it perceives a teammate



to be in danger (e.g. Agent A warns Robot B of impending ceiling collapse in
Bs vicinity). Additional monitoring mechanisms, such as timeouts and temporal-
and location-based checkpoints that are established during briefing, may also be
useful. Timeouts are used to infer failure of an agent to continue performing its
role (e.qg. if it has not responded to some warning message for example). In large
dynamic environments, monitoring individual and team activity via plan recog-
nition is not possible since the agents activities are not directly perceivable by
others most of the time. Moreover plan recognition is computationally expensive.
Hence, we assume that communication (via Agent Communication Languages
such as FIPA or KQML) is the main means by which agents monitor one anothers
activities. The content of the communication can be expressed in a declarative
language (e.g. XML, or DAML). Agents communicate significant events, e.g. a
new victim may have been heard; events pertaining to their own ability to con-
tinue performing their role, e.g. | lost my vision sensor; requests for help, e.g. can
someone who is nearby come help me lift this rubble? These types of commu-
nication potentially generate new team subgoals (e.g. establish a team subgoal to
from subteam to get the newly heard victim to safety) and possibly the formation
of subteams. The new team subgoal can be initiated by the sender or the receiver
of the message.

4 Human-Agent Teamwork

The Webster dictionary defines teamwork“a®rk done by several associates
with each doing a part but all subordinating personal prominence to the efficiency
of the whole” How well do agent-human teams fit this definition of teamwork?
By the strict dictionary definition, interacting with your web browser might qual-
ify as teamwork since the web browser is working while subordinating personal
prominence. For the purpose of this survey, we limit our discussion of agents to
pieces of software that 1) are autonomous, capable of functioning independently
for a significant length of time 2) proactively act in anticipation of future events
3) are capable of self-reflection about their and their teammates’ abilities. When a
group of actors coordinates via teamwork, they can flexibly and robustly achieve
joint goals in a distributed, dynamic and potentially hostile environment.



4.1 Agent Roles within Human Teams

Researchers desire to make agents an integral part of teams [20]; however, this
desire has not yet been fully realized. Researchers must identify how to best
incorporate agents into human teams and what roles they should assume. Sycara
and Lewis [106] identified three primary roles played by agents interacting with
humans:

agents supporting individual team members in completion of their own tasks
These agents often function as personal assistant agents and are assigned to
specific team members [18]. Task-specific agents utilized by multiple team
members (e.g. [19]) also belong in this category.

agents supporting the team as a wholdrather than focusing on task-completion
activities, these agents directly facilitate teamwork by aiding communica-
tion, coordination among human agents, and focus of attention. The exper-
imental results summarized in [106] indicate that this might be the the most
effective aiding strategy for agents in hybrid teams.

agents assuming the role of an equal team membeFhese agents are expected
to function as “virtual humans” within the organization, capable of the same
reasoning and tasks as their human teammates [114]. This is the hardestrole
for a software agent to assume, since it is difficult to create a software agent
that is as effective as a human at both task performance and teamwork skills.

4.1.1 Research Challenges

Creating shared understanding between human and agent teammates is the biggest
challenge facing developers of mixed-initiative human/agent organizations. The
limiting factor in most human-agent interactions is the user’s ability and willing-
ness to spend time communicating with the agent in a manner that both humans
and agents understand, rather than the agent’s computational power and band-
width [106]. Horvitz [53] formulates the problem of mixed-initiative user inter-
action as a process of managing uncertainties: (1) managing uncertainties that
agents may have about user’s goals and focus of attention (2) uncertainty that
users’ have about agent plans and status. Regardless of the agents’ role, creating
agent understanding of user intent and making agents’ results intelligible to a hu-
man are problems that must be addressed by any mixed-initiative system, whether
the agents reduce uncertainty through communication, inference, or a mixture of
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the two. Also, protecting users from unauthorized agent interactions is always a
concern in any application of agent technology.

Additionally, there are additional research challenges, specific to the role as-
sumed by the agent. Agents that support individual human team members face
the following challenges: 1) modeling user preferences; 2) determining optimal
transfer-of-control policies [87]; 3) considering the status of user’s attention in
timing services [53]. Agents aiding teams [60, 59, 57, 56], face a additional set of
problems: 1) identifying information that needs to be passed to other team mem-
bers before being asked; 2) automatically prioritizing tasks for the human team
members; 3) maintaining shared task information in a way that is useful for the
human users. Agents assuming the role of equal team members [114, 34, 33] must
additionally be able to: 1) competently execute their role in the team 2) critique
team errors; 3) independently suggest alternate courses of action.

Human-agent teams have been used in a variety of applications from: com-
mand and control scenarios [13, 120], disaster rescue simulations [90], team train-
ing in virtual environments [114], and personal information management [18].
Also recently there has been increasing interest in the problem of creating effec-
tive human-robot interfaces [67, 49, 98, 4, 102, 116]. Since these applications
have widely different requirements, the generality of the models and results be-
tween domains is questionable. The following distinctions are instructive:

1. how many humans and agents are there in the team? Are the agents sup-

porting a team of humans or is it a team of agents supporting one user?

2. how much interdependency is there between agents and humans? Can the

humans perform the task without the agents?

3. are the agents capable of unsolicited activity or do they merely respond to

commands of the user?

4.1.2 Agents Supporting Team Members

In this class of applications, the software agents aid a single human in complet-
ing his/her tasks and do not directly interact with other human team members.
The two organizational structures most commonly found in these types of hu-
man/agent teams are: 1) each human is supported by a single agent proxy. Agent
proxies interact with other agents to accomplish the human’s tasks; 2) each hu-
man is supported by a team of agents that work to accomplish the single human’s
directives. Often there are no other humans involved in the task, and the only
“teamwork” involved is between the software agents. Examples of these type of
agent systems include: agents assisting humans in allocating disaster rescue re-
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sources [90] and multi-robot control systems in which teams of robot perform
tasks under the guidance of a human operator [98].

4.1.3 Agents Acting as Team Members

Instead of merely assisting humans team members, the software agents can as-
sume equal roles in the team, sometimes replacing missing human team mem-
bers. It can be challenging to develop software agents of comparable competency
with human performers unless the task is relatively simple. Agents often fulfill
this role in training simulation applications, acting as team members or tutors for
the human trainees. Rickel and Johnson [81] developed a training simulator to
teach human boat crews to correctly respond to nautical problems, using STEVE,
a SOAR based agent with a graphical embodiment. The Mission Rehearsal En-
vironment [114] is a command training simulation that contains multiple “virtual
humans” who serve as subordinates to the human commander trainee. The human
must negotiate with the agents to get them to agree to the correct course of ac-
tion. It is less common in human-robot applications to have robots acting as team
members, rather than supporters; however limited examples of human-robot team-
work are starting to emerge in the Segway Robocup division where each soccer
team is composed of a Segway-riding human paired with a robotically-controlled
Segway [3].

4.1.4 Agents Supporting Human Teams

In this class of applications, the agents facilitate teamwork between humans in-
volved in a group task by aiding communication, coordination, and focus of at-
tention. In certain applications, this has shown to be more effective than having
the agents directly aid in task completion. For the TANDEM target-identification
control and command task, Sycara and Lewis [106] examined different ways of
deploying agents to support multi-person teams. Different agent-aiding strategies
were experimentally evaluated within the context of a group target-identification
task : 1) supporting the individual by maintaining a common visual space; 2) sup-
porting communication among team members by automatically passing informa-
tion to the relevant team member; 3) supporting task prioritization and coordina-
tion by maintaining shared checklist. The two team-aiding strategies (supporting
communication and task prioritization) improved team performance significantly
more than supporting team members with their individual tasks. Aiding teamwork
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also requires less domain-knowledge than task-aiding which makes the agents po-
tentially reusable across domains.

4.2 Human-Agent Interaction

We suggest that three important facets of human-agent interaction are: (a) mutual
predictability of teammates [106] (b) team knowledge (shared understanding), and
(c) ability to redirect [20] and adapt to one another. Mutual predictability means
that parties must make their actions sufficiently predictable to the teammates to
make coordination effective and also try to form some estimate of many features
of the team activity (e.g., how long it will take a teammate to perform an action).
Team knowledge refers to the pertinent mutual knowledge, beliefs and assump-
tions that support the interdependent actions and the construction or following
of plans to fulfill the team goals. Team knowledge (shared understanding/shared
knowledge) could exist before the team is formed (through previous experiences)
or must be formed, maintained and repaired after the team has started its col-
laboration. Directability and mutual adaptation is a key component of teamwork
because it expresses the interdependencies of team activity. If the way a player
performs an activity has no effect on another, then the two players work in parallel
but do not coordinate.

4.2.1 Team Knowledge

Underpinning team knowledge, mutual predictability, directability and adaptation
is clear and effective knowledge transfer. Within the team context, knowledge
transfer usually occurs through communication between team members across
different channels (e.g., verbal, text, nonverbal). Clear and effective transfer of
knowledge between is essential in human teams [99]. Team knowledge is facil-
itated through effective communication of individual understanding. Knowledge
representation is affected by interaction among team members as they are engaged
in stages of the OODA loop: observing, orienting, deciding, and acting.

A number of theories developed in the communication discipline for human-
only interaction may be adapted for human-agent coordination and communica-
tion. Humans form norms about behaviors they expect from both humans and
agents. Expectancy Violations Theory (EVT) [11] explains reactions to behaviors
that violate norms and expectations for usual interaction. Another view, Inter-
action Adaptation Theory (IAT) [12], articulates how an actors goals, expecta-
tions, and requirements for an interaction and interaction partner generate either
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reciprocal or compensatory behavioral patterns in response to the partners com-
munication. Additionally, Adaptive Structuration Theory [44], helps to address
the joint evolution of technology and social systems. It emphasizes the social and
intrapersonal affects that the use of technology has on groups, as opposed to the
technology itself. These interactions often affect how the technology is used. In-
teractions create or adapt structures to maintain and manage information. This
theory has specifically has been used to examine new forms of interaction and
communication technologies.

Team knowledge is critical to understanding team performance because it ex-
plains how members of effective teams interact with one another [15]. Team
knowledge is also termed shared understanding, collective cognition, shared cog-
nition, team mental models, shared knowledge, transactive memory, shared men-
tal models, and so forth [55, 69]. Team knowledge does not refer to a unitary con-
cept; it refers to different types of knowledge that need to be shared in effective
teams. Teams build knowledge about specific tasks (both declarative and proce-
dural task-specific knowledge), items related to tasks (e.g. expectations of how
teams operate), characteristics of teammates (e.g. strengths, preference, weak-
nesses, tendencies or each individual), and attitudes and beliefs of teammates [16].
Knowledge of the strength and weaknesses of teammates and their attitudes and
beliefs is generalizable across a variety of tasks. Knowledge that is task-related
can be used across similar tasks.

Increased knowledge and understanding in any of these categories should lead
to increased task performance. Team knowledge has been hypothesized to explain
variance in team development, team performance, strategic problem definition,
strategic decision making, and organization performance [55]. Expert teams have
even been shown to operate without communication when the team exhibits high
team knowledge [16]. Research has shown that when team members share knowl-
edge, team knowledge enables them to interpret cues in a similar manner, make
compatible decisions, and take appropriate action [55, 65].

Team knowledge and shared understanding need to be formed between hu-
mans and agent despite the presence of multiple representations. As Cooke et
al. [24] point out members of human teams have both shared and unshared knowl-
edge of the teams task and state. Agents are likely to have varying levels of intel-
ligibility to other members of their team because their tasks and conditions they
are responding to will be known to different extents by other team members. One
of the ways to address this is through customization of the agent communica-
tion for each team member based on the agents estimation of what the human
teammate knows. Another way is to always give human team members the max-
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imum amount of information the agent considers relevant but without customiza-
tion. Team knowledge implies that the agents will have a clear idea of important
features of the team composition. For agents to perform as full fledged team
members, they must have a clear model of the teams goals, its members, their
capabilities, and their roles in procedurally defined tasks.

4.2.2 Mutual Predictability

Mutual predictability, as well as team knowledge, entails knowledge transfer be-
tween team members. It enables teammates to communicate and coordinate in a
meaningful manner. Humans represent most knowledge implicitly in their brains.
This knowledge needs to be represented in some explicit manner for other team-
mates to understand it. Some work explores representing knowledge within hu-
man teams using the concept of collective intelligence [95]. This work builds
on several Information Processing System (IPS) models and architectures of in-
dividual cognition to identify key components and functions within collaborative
groups.

The introduction of agents into teams creates impediments to mutual pre-
dictability. The greatest impediment to agents assisting human users lies in com-
municating their intent and making results intelligible to them [62]. To this end,
representation schemes that are declarative and intelligible both by humans and
agents are most useful. Research on knowledge representation within agents is
primarily based on logic-based formalisms [8]. High level messaging languages
such as KQML contain message types intelligible both to agents and humans (e.g.
inform, tell, ask) and have been used in systems such as RETSINA for successful
human agent collaboration. Different forms of communication (e.g. text, pic-
tures, menus) might vary in effectiveness as carriers of knowledge transfer be-
tween teammates, both human and agent.

Situation Theory [6] suggests that the meaning transferred between teammates
should be a function of shared knowledge, shared context, and the communica-
tion itself. While simple co-reference problems have been studied for reconnais-
sance and map reading it is likely that team problems involving the sharing of
hidden knowledge, convergence to a team mental model, and team pattern recog-
nition [117] may also be impeded by differences in external representation.
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4.2.3 Directability and Mutual Adaptation

Directability and mutual adaptation enable teams to be flexible and agile in dif-
ferent contexts and task requirements. Directability refers to assigning roles and
responsibilities to different team members. Mutual adaptation defines how team
members alter their roles to fulfill the requirements of the team. Researchers
acknowledge that the most effective agents will need to change their level of ini-
tiative, or exhibit adjustable autonomy, in response to the situation to be most
effective [53, 89]. For agents to appropriately exercise initiative, they must have

a clear model of the teams goals, member roles and team procedures. We suggest
that Expectancy Violation Theory is a basis for determining how agent members
of a team should adjust their autonomy. Agents can execute transfer-of-control
strategies [88] which specify a sequence of changes of autonomy level in the case
a human is occupied and cannot make timely decisions, but such strategies must be
designed to fit with human expectations, rather than violating them. An important
research question is whether teams perform better when agents have a constant,
but potentially sub-optimal level of autonomy, or when agents constantly adjust
to the teams context.

4.2.4 Communication

Underpinning team knowledge, mutual predictability, and directability and mutual
adaptation is clear and effective communication. These constructs are extremely
difficult to formalize and measure. Adding agents to human teams introduces
additional complexity. Cooke et al. [27] suggest that shared understanding and
team cognition might be measured by extracting the level and structure of knowl-
edge from each team member and then measuring the team process behaviors.
The level and structure of knowledge from each group member may be obtained
through existing, validated psychometric tests and questionnaires.

Measuring group process behaviors is much more difficult. Group process
behaviors are most evident in communication between group members. Thus
substantial knowledge and experience in human communication, computer-aided
collaboration, and human-agent interaction are required to analyze these behav-
iors. Since communication between team members underlies team knowledge,
mutual predictability, and shared directability and mutual adaptation, developing
and validating measures of group process behaviors is crucial.
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4.3 Military Applications

Although it is instructive to examine different applications of human-agent team-
work, we focus our discussion on applications of human-agent teamwork to mil-
itary planning. Joint military planning is a fruitful domain for software agent
technology because: 1) it is often done with teams of geographically-separated
individuals who are communicating over voice or electronic channels that can be
monitored by software agents; 2) it can be time-stressed, especially in a crisis sit-
uation; 3) even minor improvements in team performance can be important since
the cost of inadequate mission planning is high.

Cognitive activities abound in the network-centric battlefield. Teams plan,
make decisions, design, debrief, share knowledge, and execute actions as an inte-
grated unit. These are team-level cognitive activities that are the focus of work on
team cognition [86]. The processes and structures associated with team cognition
impact team performance and thus are central targets for assessment and remedi-
ation. One aspect of team cognition that is prominent in networked environments
is team coordination. We view team coordination as an essential component of
networked performance that can benefit from training.

The network-centric battlefield demands intense coordination among network
effectors (humans and automation) that are part of a larger interconnected social
organization. In this context we define coordination as the timely and adaptive dis-
tribution of information among network effectors. We think of team coordination
as analogous to cognitive processing at the individual level. Coordination is chal-
lenging in network-centric environments because entities are often geographically
dispersed and may be unfamiliar with other entities as well as the specific task or
mission. This situation leads to what has been called “team opacity” [38]. and has
been frequently associated with differences in process behaviors, poorer shared
understanding, and lean communication, relative to co-located teams [26]. In
fact, teams often adapt to these situations through spontaneous self-organization
of their coordination structure [25].

It is important to note that we do not consider coordination in information the-
oretic terms [92] in which information is encoded, decoded and passively moved
from effector to effector with some degree of uncertainty based on channel ca-
pacity. Rather, coordination involves active communication or mediation among
effectors in a social network [41]. Consequently, our coordination metrics do not
measure amount of information passed or uncertainty, but instead extend social
network theory or coordination theory by quantifying the effectiveness of coordi-
nation patterns.

17



Team coordination in network-centric battlefield settings is predictive of the
performance of the team, and to some degree, the social system in which the
team is embedded. However, team coordination is not identical to team perfor-
mance. Sometimes poor coordination can result in fortuitously positive outcomes
and even the best coordination can sometimes fail to prevent a negative outcome.
Coordination is, however, a precursor of team performance, and in our view, a crit-
ical precursor for the network-centric battlefield, in that effector competencies, as
well as effectors themselves, are dispersed across the battlefield.

Based on our experimental data coordination improves with team experience
and training, but decays over long retention intervals [25]. The development of
coordination skill is a large part of the development of collective competence of
the social group. Coordination, therefore, is a team skill that can be trained. It is
also a skill that can be quantified and modeled. The measurement and modeling of
the development of coordination in networked command and control is challeng-
ing due to the nonlinearities associated with interactions in complex distributed
systems [26]. For instance, coupled effectors have capabilities for contributing
second-hand information to the information available in the local environments of
other, reciprocating effectors. This positive feedback mechanism entails nonlinear
changes in overall system state as information is adaptively dissipated through the
system.

Fan et al. [34, 33] have evaluated the use of cognitive agents with a collab-
orative Recognition-Primed Decision model (RPD) for supporting human teams
performing military decision tasks. In one task [34], the human teams had to max-
imize the amount of supplies delivered to the troops by successfully protecting an
airport. The RPD agents were able to participate in human teams and increase
the amount of supplies delivered when the humans were under time-stress. In a
second task, C2 teams had to react to incoming threats menacing a metropolis
from crowds, insurgents, and improvised explosive devices. The task is difficult
because it is 1) real-time and 2) involves context-switching. The human-agent C2
teams performed much better than the human-only teams at the same level of task
complexity; moreover the human-agent team performances are significantly more
stable than the human-only performances. These evaluations of human-agent
teams for military tasks are encouraging because they demonstrate that agents
can produce a measurable difference at task performance in this domain.

Using the RETSINA software architecture we were able to develop a set of
agents to aid a human-team during a simulation of Noncombatant Evacuation Op-
eration planning [106]. In the scenario, three human decision-makers (a U.S.
ambassador, Joint Forces Commander, and USTRANSCOM) must coordinate to
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evacuate civilians from a developing protest situation in Kabul Afghanistan.
The agent team consisted of three types of agents:

task agents capable of specialized taskExamples include the Weather Agent,
a weather information provider, the Visual Recognition agent, which inter-
prets visual surveillance information, and Route Planning agents that can
plot cost minimizing routes according to a set of constraints.

middle agents: agents that facilitate the discovery and matching of other agents

interface agents: agents that interact with human team members. Examples in-
clude the Voice Agent, an agent that receives voice input from human team
members, and Messenger Agents that infer the humans’ goals from conver-
sation transcripts.

The NEO system demonstration includes agents that fulfill all possible agent
roles.

1. Aiding an individual human team member in information gathering or plan-
ning tasks

2. Acting as team members themselves. In this capacity, RETSINA agents: (a)
provide proactive and reactive information and planning support, (b) per-
form information gathering and planning tasks to promote the team goals,
(c) perform task decomposition and task allocation to other members of the
agent team so as to efficiently contribute to the team goals.

3. Aiding the human team as a whole. In this capacity RETSINA agents (a)
provide situation assessment, (b) monitoring and alerting team members
to important situation changes, (c) communicating their results in unam-
biguous, multimodal and non-intrusive ways, (d) discover (through middle
agents) suitable additional team members and information sources that can
aid the team.

Unlike most examples of human teams where the team members are statically
knowna priori, RETSINA does not make any such closed world assumptions but
allows dropping, adding, and discovering new teammates dynamically. This func-
tionality reflects the requirements of real situations (especially military situations
where teammates may become incapacitated and others must be found to take up
their roles).
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5 Conclusion

Agent assistance will be particularly critical to military teams as their operations
become more agile and situation specific. As unfamiliar forces are brought to-
gether for one time missions the infosphere they establish between their networked
information systems will become a primary mechanism for coordination. In this
uncertain environment supporting teamwork becomes crucial. Our results suggest
that software agents are well suited for this task. Because the domain indepen-
dence of teamwork agents would allow them to be rapidly deployed across a broad
range of tasks and settings teamwork appears to be a particularly high payoff area
for future agents research.
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