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Abstract

We give a deterministic linear time algorithm for find-
ing a small cost sphere separator of a k-ply neighbor-
hood system @ in any. fixed dimension, where a k-ply
neighborhood system in IR? is a collection of n balls
such that no points in the space is covered by more
than k balls. The sphere separator intersects at most
(0] (k*n‘—?) balls of ® and it divides the remaining of
¢ into two parts: those in the interior and those in the
exterior of the sphere, respectively, so that the larger
part contains at most §n balls (:‘% < 6 < 1). This
result improves the O(n?) time deterministic algorithm
of Miller and Teng [29] and answers a major algorith-
mic open question posed by Miller, Teng, Thurston and
Vavasis [23, 25)].

The deterministic algorithm hinges on the use of
a new method for deriving the separator property of
neighborhood systems. Using this algorithm, we de-
vise an O(kn + nlogn) time deterministic algorithm
for computing the intersection graph of a k-ply neigh-
borhood system. We give an O(n logn) time algorithm
for constructing a linear space, O(logn) query time
search structure for a geometric query problem associ-
ated with k-ply neighborhood systems, and we use this
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data structure in an algorithm for approximating the
value of k within a constant factor in time O(nlogn).
We also develop a deterministic linear time algorithm

for finding an O (kin‘_i">-separator for a k-nearest
neighborhood graph in d dimensions.

1 Introduction

Many problems in scientific computing (e.g., sparse
Cholesky factorization) and computational geometry
(such as space partition) require efficiently computing
a small separator of the underlying graph [6, 7, 8, 9, 11,
18, 20, 27, 28, 29]. By small separator we mean a rela-
tively small subset of vertices the removal of which di-
vides the rest of the graph into two disconnected pieces
of approximately equal size [19].

In a series of papers (32, 24, 26, 22, 25, 23, 29],
Miller, Teng, Thurston and Vavasis have developed
a geometric characterization of graphs (embedded in
some fixed dimension) that have a small separator.
Their characterization is based on a notion of a k-ply
neighborhood system, which is a collection of n balls
such that no points in the space is covered by more than
k balls. Using this characterization, they gave random-
ized linear time and processor-efficient randomized NC
algorithms for finding a good sphere separator — a sphere
that has intersection number at most O (kfn!il) and
has a constant splitting ratio.

Unfortunately, these previous results require the
use of randomization—they are not deterministic. As
part of his doctoral dissertation, Teng [29] devised an
O(n?) time deterministic algorithm for finding a good
sphere separator. But for many applications in scien-
tific computing and computational geometry, an O(n?)
time algorithm is too slow to be used. The result has
been that the randomized linear time algorithm is used,
and in general this is the only part in the application
program that uses randomness [29]. For various appli-



cations such as sparse matrix solving in physical sim-
ulation and many of other problems in scientific com-
puting, it is desirable to use a repeatable program, i.e.,
each run of the program on the same input produces
the same output. To this end, it is important to have
an efficient deterministic sphere separator algorithm.

In this paper, we give the first known determinis-
tic linear time algorithm for finding a small cost sphere
separator of a k-ply neighborhood system. Our algo-
rithm works in any fixed dimension, and solves a ma-
jor algorithmic open question posed by Miller, Teng,
Thurston and Vavasis [25, 23]. We first provide a de-
terministic linear time reduction from the problem of
finding sphere separators to an interesting geometric
problem, of finding a point covered by a small subset
of a system of annuli. We then develop a determinis-
tic linear time algorithm for the second problem using
e-cuttings [21] as the basis for a novel geometric prune-
and-search technique.

Our algorithm can be applied to several problems
in computational geometry. The new algorithm re-
moves the necessity of randomness from the (sphere
separator based) divide and conquer paradigm de-
veloped in [29, 7]. More specifically, we devise an
O(kn + nlogn) time deterministic algorithm for con-
structing the intersection graph of a k-ply neighbor-
hood system, improving and greatly simplifying the
{quad-tree based) deterministic O(knlogn) time con-
struction of [29]. We give a deterministic O(nlogn)
time algorithm for constructing a linear space, O(logn)
query time search structure for a geometric query prob-
lem associated with k-ply neighborhood systems. We
use this data structure in an algorithm for approximat-
ing the value of k within a constant factor in time
O(nlogn); the best known algorithm for computing
the exact value of k involves constructing a sphere ar-
rangement, and takes time O(nlogn). We also de-
velop a deterministic linear time algorithm for finding

an O (lcfn!':'l)-separator for the k-nearest neighbor-
hood graph in d dimensions.

The outline of this paper is as follows. In Section
2, we introduce the basic concepts and notation. We
then review the techniques and results of [25, 23] that
will be used later in the paper. In Section 3, we present
a new approach for deriving the separator property of
neighborhood systems and reduce the problem of find-
ing ‘good’ sphere separator to a problem of finding a
point in few annuli. In Section 4, we give a determin-
istic linear time algorithm for this problem. Some ap-

plications of the new result in computational geometry
are presented in Section 5 and an open question is given
in Section 6.

2 The Background

A d-dimensional neighborhood
system ® = {B,,...,B,} is a finite collection of balls
in IR?. Let p; be the center of B; (1 <i < n) and call
P ={p1,...,pn} centers of ®. For each point p € RS,
let the ply of p, denoted by plyg(p), be the number of
balls from & that contains p. ® is a k-ply neighborhood
system if for all p, plys(p) < k.

Each (d—1)-dimensional sphere S in IR? partitions
& into three subsets: ®1(S), ®(S), and $o(S), those
balls that are in the interior of S, in the exterior of S,
and that intersect S, respectively. The cardinality of
®o(S) is called the intersection number of S, denoted
by a(S5).

Notice that the removal of ®¢(S) splits ® into two
subsets: ®7(S) and ®g(S), such that no ball in ®;(S)
intersects any ball in ®g(S) and vice versa. In analogy
to separators in graph theory, $o(S) can be viewed as
a separator of ®.

Definition 2.1 (Sphere Separators) A (d — 1)-
sphere S is an f(n)-separator that 6-splits a neigh-
borhood system ® if 15(S) < f(n) and |®[(S)|,
|®e(S)] < 6n, where f is a positive funclion aend
0<bo<l.

Figure 1: A sphere separator

With these definitions, the following theorem is
proved in {23, 25]:

Theorem 2.2 (Sphere Separator Theorem)

Suppose ® = {By,..., B} ts a k-ply neighborhood sys-
tem in IR, Thenthereisa (d—1)-sphere S intersecting
at most O(k¥n*7*) balls from ® such that both |®1(S)|



and |BE(S)| are at most < $Xin, where ®1(S) and
®E(S) are those balls that are in the interior and in

the exterior of S, respectively.

We now reviews some of the basic concepts and
lemmas used in [25, 24, 29, 23, 26] for proving Theo-
rem 2.2.

A density function in R is a real valued nonneg-
ative function f(z) defined on R? such that f* is in-
tegrable for all £ = 1,2,3,.... The surface area of a
(d — 1)-dimensional sphere S is given by

Areay(5) = / o !

The total volume of the function f, denoted by
Total-Volume(f), is given by

Total-Volume{ f) = / (@) (d0)?
veR

Density functions can also be defined on the sur-
face of a sphere. To be consistent with the discussion
of subsequent sections, we focus on the unit d-sphere.
Suppose Uy is a unit d-sphere in IR%*! and f is a real
valued nonnegative function defined on the surface of
Uq such that f* is integrable for all k = 1,2,3,.... We
call f a density function of Uy. The total volume of f
is defined to be

Total-Volume(f) = /

vE

(f(v))%(dv)°
Uy

A great sphere of Uy is the intersection of U4 with
a hyperplane passing through the center of U;. The
weighted area of a great sphere G of Uy is given by

Areas @) < [ O @)

Let avg(f) be the average area over all great
spheres of Uy. The following lemma follows from
Holder’s inequality [13] [24, 26, 29, 25]. By Aq4 we de-
note the surface area of Uy.

Lemma 2.3 Let f be a density function on Ug. Then

avg(f) < Aa-1 ((Total-Volume( f))‘+‘) .

To use lemma 2.3 to find a small cost sphere separa-
tor, points of R® are mapped onto the unit d-sphere
Us in R centered at the origin o. Notice that the
density function f is mapped to a new density func-
tion f' on Uy in order to ensure Total-Volume(f) =

Total-Volume(f'), after changing variables!. To pre-
serve the density function in every dimeénsion simulta-
neously, the map is required to be conformal in the
sense that it preserves angles [15, 5, 30]. Rigid mo-
tions and dilations are examples of conformal maps.
Another conformal map is the stereographic projection
which maps IR? together with a point at infinity onto
Ua [15, 24). The composition of any two conformal
maps is also conformal, so we can apply a sequence of
conformal maps to obtain a desirable conformal map.

Conformal maps have another nice property: the
pre-image of each great sphere G of Uy itself is a (d—1)-
sphere in IRY. Moreover, the interior and the exterior
of the pre-image sphere are mapped to the two hemi-
spheres of Uy defined by G, respectively. It simply fol-
lows from Lemma 2.3 {24, 25, 29] that,

Lemma 2.4 Suppose f is ¢ density function of R¢ and
7 is a conformal map from R to Uy. Let

S(x) = {S:Sisapreimage of some great sphere G,

i.e., G = n(S)},

and avgy(f) be the average area with respect to all pro-
jected great spheres in S(x). Then

avg, (f) < Aay ((Total-Volume( i) Li}') .

Suppose P = {py,...,pn} is a set of points in R?
and 7 is a conformal map from R® to Uy. Let x(P) =
{n(p1), ..., 7(pn)}. It follows from the above discussion
of conformal mapping that for each great sphere G of
Ug, if S is the pre-image of G then S §-splits P iff G
S-splits 7 (P).

Therefore, to ensure that each sphere of S(r) 8-
splits P for some constant 0 < § < 1, the conformal
map 7 needs to satisfy the condition that all hyper-
planes containing o §-split Q. We use a conformal map
such that o is a é-center point of x(P), where a point
c € R? is a 8-center point of a set of points Q if ev-
ery hyperplane containing ¢ §-splits Q. It follows from
[29, 21, 31] that a é-center point (0 < 6§ < 3%1-) can be
computed in deterministic linear time. Incorporating
with a result of [23], we have:

1Technically speaking, there is a Jacobian factor in the inte-
gration for changing of variables from R? to Uy. Fortunately,
because the map is conformal, and the cost function has proper
power, in the end, the “effect” of the Jacobian factor is cancelled
out. For the simplicity of presentation, we will use the equa-
tions Total-Volume(f} = Total-Volume(f’) and Area;/(S) =
Areay(¢), for each great sphere § of Uy, where S is the pre-
image of ¢ in R? of a comformal map.



Lemma 2.5 A conformal map 7 such that o is a (d+
1)-dimensgonal §-center point of m(P) can be computed
in deterministic linear time.

Suppose ® = {By,..., B} is a k-ply neighbor-

hood system in RY. let r; be the radius of B; and let

¥; = 2r;, define
filz) = { (1)/7i

Miller, Teng, and Vavasis [25] introduced the den-
sity function below and proved the following two im-
portant lemmas:

f(z)

if |lz - pill < 7
otherwise

La-1(f1(2), -, fa(2))
n 1/(d-1)
(z: If(z)l"“) .

Lemma 2.6 ([25]) Suppose ® = {By,...,Ba} isak-
ply neighborhood system in IR®. There are constant c;
and ¢y depending only on d such that for each (d - 1)
-sphere S, 1(S) < c1k + caAreay(S).

Lemma 2.7 Suppose & = {B),...,Bn} is a k-ply
neighborhood system tn IR®. There is a constant c3 de-
pending only on d such that

Total-Volume( f) < c3kTTn.

3 Great Belts and Sphere Sepa-
rators

As shown in Section 2, each d-dimensional neigh-
borhood system ® = {B,...,Bn} can be confor-
mally mapped to a unit d-sphere Uy so that each d-
dimensional hyperplane containing the center of Ug 6-
splits ® (%% < § < 0). Notice that each B; is mapped
to a patch D; on U4, whose boundary C; has the shape
of a (d-1)-sphere (see Figure 3). The radius of D; is
defined to be the radius of C;. Clearly, the ply of
{Di : 1 < i< n}is k iff the ply of ® is k. Since
the number of patches with surface area greater than a
half of the surface area of Uy is bounded by O(k), with-
out loss of generality, we assume that each patch has
a surface area no more than a half of the surface area
of Us. Let r; be the radius of C;. The volume of the
d-dimensional ball with boundary C; is then equal to
V4(rs)?, which is a lower bound on the surface area of
the patch D;. In the remaining of this section, we will
identify B; with D;, and assume that ® = {B, ..., Ba}
is given on the unit d-sphere.

3.1 Great belts

Each great sphere G can be identified with the pair of
points pg and gg on U that lie on the normal to G (see
Figure 2 for an example in 2 dimensions). There is
a dual relation between points on Uy and their great
spheres:

Figure 2: GC and its pg, ¢

Proposition 3.1 (Duality) For each pair of greal
spheres G and G' of Us, G contains pg: (and hence g
as well) if and only if G' contains pg (and hence 9 )-

Define a great belt? be the set of points of Ug that
lie between a pair of parallel hyperplanes symmetric to
the center of Us. The width of a great belt is then the
distance between its two hyperplanes. Notice that a
great sphere is a great belt with width 0. Clearly, the
surface area of a great belt of width r is bounded by
Ag4_1r. It simply follows from Proposition 3.1 that

Lemma 3.2 Suppose ® = {By,..., Bn} is a neighbor-
hood system on Ug. Then for each 1 < i < n, thereis
a great belt R; such that a greal sphere G intersects B;
iff pg and qg is conlained in Ri. Moreover, the undih
of R; is equal to 2r;, where r; is the radius of B; (see
Figure 3).

Figure 3: The great belt induced by B;

21n [29], a great belt is called a great ring.



For each point z on Uy, let t3(z) be the number
of balls in ® that intersect the great sphere G(z) asso-
ciated with z. Let

w(@) = Ai., ( / i to(z)(dz)d) .

By Proposition 3.1, we have

Proposition 3.3 The above defined ¥(P) is equal to
the ezpecied intersection number of a random great
sphere of Ug.

Lemma 3.4 Suppose ® = {By,...,Bn} is a neighbor-
hood system on Uy. Let R; be the great belt defined by
B;. Then

¥(P) = A—l-d (Z Area(R‘-))
i=1

Proof: For each 1 < i < n, for each z € Uy, Let ®;(z)
be the function which takes value 1 if G(z) intersects
B; and 0 otherwise.

(] ta(a)(ds))

m
1
= +=(/ CHCRER] (dz)‘)
1
Yo

(i [/,e,,‘ “’-'(z)(dz)d])

i=1

(%)

n

1

= T (Z [Area(n.-)])
i=1

The first equality follows from the definition of

t(z); the second equality is obvious; and the third
equality follows from Lemma 3.2. a

3.2 The total area of great belts

Lemma 3.5 Suppose & = {Bi,...,Bn} is a k-ply
neighborhood system on Uy. Let R; be the great bell
defined by B;. Then

zn:Area.(R,-) =0 (kfn'd_;l) .

i=1

Proof: Let m be the stereographic projection which
maps IR? onto Uy. Let ¢’ be the pre-image of ¢ in IR,
ie., ® = {B{,..., B} such that n(B{) = B;. Clearly,

@’ is a neighborhood system in IR?, whose density is
also k. Let f! be the local density function defined on
B! as in Section 2 and let f' = Lg_1(f,..-,fa). It
follows from Lemma 2.7 that

Total-Volume(f') = O (k#*7n) .

Let f be the density function on Uy obtained from
f' via the stereographic projection =, after changing of
variables. We have

Total-Volume(f) = Total-Volume(") = O (k¥ n).

It follows from Lemma 2.3, that avg(f) =
0 (kin‘i'l). Recall that avg(f) denotes the average
area of great spheres of Us. We now relate avg(f) with

¥(®).

For each great sphere G of Uy, let S be the pre-
image of G in RY, i.e., S is a (d — 1)-sphere IR? such
that 7(S) = G. By the definition of f and the fact that
= is conformal, Areay(S) = Areay(G). Furthermore,
the intersection number of G over ® is equal to the in-
tersection number of S’ over &'. It follows from Lemma
2.6 that tp(pg) < c1k+caAreay(G). In other words, for
each point z € Uy, ta(z) < crk+c2Areay(G(z)). There-

fore,
(] o)

1 (/;eud [c1k + coAreays (G(2))] (d:)d>

() =

Aq
1
- E (ClAdk + 62AdaV$(f))

= cik + czavg(f)
= O(kfn!%l')

The lemma then follows from Lemma 3.4. (m]

4 The e-cutting and the Linear
time Algorithm

From the last section, we have Y . _, Area(R;) <
O(kin!'i‘l). Hence, there is a point on Ug which
is contained in at most O(kfn‘_:l') great belts from
{Ri,...,Rn}. Let ply(p) denote the number of great
belts from {H),..., R} containing p € Us. Fora
given subset S of Uy, let ply(S) be the average value



of ply(p) over those points in S; that is, ply(S) =
", Area(R; N S)/Area(S).

Now the problem of computing a sphere separator
of small intersection number is reduced to the following
geometry problem:

o Given aset of great belts {R1, ..., Rn} on U4, com-
pute a point p on Ug such that ply(p) < ply(Ua)-

In [29), an O(n?) time deterministic algorithm is
given for this problem. We now show a deterministic
linear time algorithm. The basic idea is the follow-
ing. We reduce the portion of the sphere under con-
sideration, starting from the whole sphere, and pro-
ceeding through smaller and smaller “spherical” sim-
plices, maintaining the property that in each simplex
S the average covering number ply(S) is small (ie.,
ply(S) < ply(Us)). When we reach a small enough
simplex, there will be few enough belts with boundaries
crossing the simplex that we can solve the problem by
brute force.

We find the sequence of simplices using a construc-
tion known as an e-cutting [14, 21, 31). This is a par-
tition of space normally used for geometric divide-and-
conquer techniques in problems such as simplex range
searching [14, 21]. In our application, we instead use
e-cuttings as the basis of a prune-and-search technique,
in which we reduce the problem to smaller and smaller
simplices in which fewer and fewer great beits are in-
volved.

A cutting is a partition of R® into simplices. Given
a set of n hyperplanes in R¢, an e-cutting is a cut-
ting for which each simplex is crossed by at most en
hyperplanes. Matousek [21] showed that an e-cutting
involving O(e~%) simplices can be computed in time
O(ne~9-1). The number of simplices is within a con-
stant factor of optimal, and the time bound is tight if
one wants to enumerate the hyperplanes crossing each
simplex.

This fits our present application as follows. If we
imagine the sphere Uy as embedded in R4, the 2n
(d—1)-spheres forming the boundaries of great belts can
be extended to d-dimensional hyperplanes. A partition
of space into simplices will partition Uy into “spherical
polytopes” of complexity O(1); with a further trian-
gulation step these polytopes can be partitioned into
spherical simplices, without further increase in com-
plexity. At most 2en great belt boundaries will cross
any given spherical simplex.

For any given spherical simplex &, we can cornputs
the average number of great belts covering each point,

ply(S), by finding the spherical polytopes formed by
intersecting each great belt with the simplex, adding
the volumes of all such polytopes, and dividing by the
volume of the whole simplex. Each polytope has at
most d + 3 = O(1) facets, and there are O(e~9) sim-
plices for which we can compute this quantity, so this
computation takes O(ne~9) time.

If U, is partitioned into simplices S;, the average
number of belts covering points on the whole sphere,
ply(Us), can be computed as the weighted average
ply(Uq) = Z:Ll ply(Si)Area(S;)/Area(Us). The min-
imum is at most the average, so for some simplex S;,
ply(Si) < ply(Us). Thus if € is some fixed fraction, in
linear time we can reduce the problem of searching for
a point in Uy to that of searching for one in S;. All but
at most 2en great belts (referred as active beits) either
miss S; entirely, or entirely cover Sj; in either case we
need not account for them in future computation. Thus
we have reduced the problem to one in which there are
O(en) great belts.

Similarly, if we start with a simplex S with
ply(S) < ply(Ua), for which some number m of the
great belts remain neither completely covering S nor
completely avoiding S, we can in O(m) time reduce the
problem to a smaller simplex S’, for which ply(S’) <
ply(S) < ply(Ua), and for which O(em) belts remain
“active”. If we iterate this approach, we eventually
reach a final simplex F in which no belts are active.
Then ply(z) is a constant function for all points z € F,
and ply(z) = ply(F). Any such point from this sim-
plex gives the desired solution to our geometric prob-
lem, and hence (returning from dual points to their
primal great spheres) the geometric separator we are
seeking. The time for this whole series of reductions
will be 31°8" O(ne') = O(n). We have proved the fol-
lowing resulits.

Theorem 4.1 Suppose we are given a set R of n greal

belts on Uz. Then in time O(n) we can compule a point
z € Ug, with ply(z) < ply(Ua).

Theorem 4.2 Given a k-ply neiglzborhood system of n
balls in RY, we can find an O(k*n'i") sphere separator
that 6-splits the system for any %_% <6< 1in time
O(n).

5 Applications

The sphere separator theorem has many applications
[29], especially in scientific computing and computa-



tional geometry [18, 11, 27, 8, 9, 12]. In this section,
we focus on the application of the deterministic linear
time sphere separator algorithm in computational ge-
ometry.

5.1 Separators for geometric graphs

As shown in [25, 29], the sphere separator results
lead to vertex separators for various geometric graphs
including the intersection graph and the k-nearest-
neighborhood graph.

The intersection graph of a neighborhood system
® = {Bi,...,Bn} has vertics V = & and edges
E = {(Bi, Bj) : B:n\ B; # 0}. It simply follows from
the definition of the intersection graph [29] that if S
is a sphere that §-splits the centers of a neighborhood
system @, then {B; : BiNS # 0} isan to(S)-separator
that §-splits the intersection graph of . Therefore,

Theorem 5.1 Given a k-ply neighborhood system ® in
R?, an O(kin!:i'l)-separator of the intersection graph
of & can be computed in linear time deterministically.

Suppose P = {p1,...,Pn} is a set of n points in
RR®. For each p; € P, let N(p;) be a closest neighbor
of p; in P, where ties are broken arbitrarily. Similarly,
for any integer k, let Ni(p:i) be the set of k nearest
neighbors of p; in P; here too ties are broken arbitrarily.

A k-nearest neighborhood graph of
P={p1,...,pn}in IRY, is a graph with vertices V = P,
and edges E{(pi, p;)Ipi € Ni(p;) or p; € Ne(pi)}-

For each i, let B; be the largest ball centered at
pi whose interior contains at most k — 1 points from
P. Then, {B1,...,Bn} is called the k-nearest neigh-
borhood system of P. It has been shown in (25, 29] that
the k-neighborhood system of P is T4k-ply, where 74 is
the kissing number in d dimensions, 1.e., the maximum
number of nonoverlapping unit balls in R¢ that can be
arranged so that they all touch a central unit ball [3].

By the definition of k-nearest neighborhood graph,
there is an edge between balls B; and B; only if either
pi isin Bj or p; is in B; and hence each k-nearest neigh-
borhood graph in IR? is a subgraph of a k-neighborhood
system in RY.

Corollary 5.2 Let P be a set of n points in RS
An O(k'}n!':l)-scparator of the k-nearest neighborhood
graph of P can be computed in O(kn) time if the k-
nearest neighborhood graph is given. Otherwise, it can
be computed in O(knlogk + nlogn) time.

The second part of the corollary follows from re-
sults of Vaidya [33] and Drysdale [4] that the k-nearest
neighborhood graph of a set of points can be computed
in O(knlogk + nlogn) time.

5.2 Separator Based Divide and Con-
quer

The sphere separator result for neighborhood systems
closed under the subset operation immediately leads to
divide and conquer recursive algorithms for a variety
of applications [29, 7). Frieze, Miller, and Teng [7] de-
veloped a sphere separator based divide and conquer
paradigm for solving problems in geometry. At a high
level, the separator based divide and conquer paradigm
is very simple and intuitive. Given a neighborhood sys-
tem & (explicitly or implicitly), it finds a sphere sep-
arator of a low intersection number and partitions the
balls into two subsets of roughly equal size, and then
recursively solves the problem associated with the two
sub-systems; the solutions for the two sub-systems are
then combined to a solution to the whole problem. Qur
new result removes the necessity of randomness from
the separator based divide and conquer paradigm. We
now illustrate some applications.

5.2.1 Neighborhood query problem

The neighborhood query problem is defined as: given
a neighborhood system & = {By,...,Bn} in d-space,
preprocess the input to organize it into a search struc-
ture so that queries of the form “output all neighbor-
hoods that contain a given point p” can be answered
efficiently.

Like other geometry query problems, there are
three costs associated with the neighborhood query
problem: the preprocessing time T'(n) required to build
the search structure, the guery time Q(n) required to
answer a query, and the space S(n) required to repre-
sent the search structure in memory.

The separator based divide and conquer construc-
tion for this problem is very simple [29, 7): Given a
k-ply neighborhood system @, a binary tree of height
O(logn) is built to guide the search in answering a
query. Associated with each leaf of the tree is a subset
of balls in &, and the search structure has the property
that for all p € IR?, the set of balls covering p can be
found in one of the leaves. The binary search tree is
constructed as follows:

ALGORITHM Neighborhood-Querying



1. Find a ‘good’ sphere separator S:

2. Let ® = ®1(S) U ®o(S) and &, =
@E(S)Uq’o(S);

3. Recursively construct the search struc-
ture Ty for ®¢ and Ty for ®,;

4. Construct a tree whose left subtree is T}
and whose right subtree is T3, and whose
root stores the information of S, i.e., its
center and its radius.

The recursive construction stops when the subsets
have cardinality smaller than max(logn, ck) for some
constant ¢ large enough that our sphere separator al-
gorithm can find a nontrivial separator.

To answer a query when given a point p € R?, we
first check p against S, the sphere separator associated
with the root of the search tree. There are three cases:
(1) If p is in the interior of S then recursively search on
the left subtree of S; (2) If p is in the exterior of S then
recursively search the right subtree of S; and (3) If p
is on S then recursively search on the left subtree of S.
When reaching a leaf, we then check p against all neigh-
borhoods associated with the leaf and output all those
that cover p. It has been shown in [29] that the above
search structure and searching procedure is correct, and
moreover, the query time is Q(n) = O(logn + k) and
the space requirement is S(n) = O(n).

We now analyze the time complexity of the above
algorithm when the deterministic linear time sphere
separator algorithm is used.

Clearly, Step (1) takes O(n) time. Step (2) is has
two recursive call. Let a = d%‘l-. We have |®ql, |®1] <
én + n®, and |®;| + |®2| < n + n*. Step (3) takes
constant time.

Let T(m) be the time to build a search structure
for a neighborhood system of m balls. We have T(m) <
1if m < logn, and T(6;m + k4m®) + T((1 - &)m) +
O(m) if m > logn, where 6; < 6. We can show that
T(n) = O(nlogn).

Theorem 5.3 A search structure for the neighborhood
query problem with Q(n) = O(k + logn) and S(n) =
O(n) can be computed in O(nlogn) time.

5.2.2 Computing the ply

The construction above assumes that the value of k is
known, but we can achieve the same bounds if we are
only given a neighborhood system but not told its ply.
In that case we cannot stop when m < ck. since we do

not know k, but we can instead find a good lower bound
for k by examining the cardinality of the sphere separa-
tors produced by our algorithm. Indeed, this technique
gives us a method for approximating the ply of the
neighborhood system:

Theorem 5.4 Given a neighborhood sysiem, we can
compule a number k' such that k' < k < ck' for some
absolute constant c, in time O(nlogn).

Proof: Algorithm Neighborhood-Querying constructs
a separator tree such that the spheres covering any sin-
gle point will be found at some leaf of the tree, so in
particular some leaf will contain at least k spheres. Fur-
ther, even using a lower bound estimate for k instead of
k itself, the algorithm will subdivide the problem until
all leaves contain at most ck spheres. Therefore we can
estimate k by examining the leaf containing the largest
number of spheres.

In contrast, the best known algorithm for finding
the exact ply of a neighborhood system works by con-
structing the corresponding sphere arrangement, and
takes time O(n?logn).

The approach above also reduces the problem of
computing exact ply of a neighborhood system of n
balls to O(n/k) problems, each with O(k) balls. There-
fore,

Theorem 5.5 We can compute the ply of a given
neighborhood system in O(nlogn + k%~'nlogk) time.

It worthwhile to mention that for variable dimen-
sion, computing the exact ply of a neighborhood system
is NP-complete (the special case of halfspaces through
the origin is equivalent to OPEN HEMISPHERE (16]).

5.2.3 Constructing intersection graphs

Again, we use the sphere separator based divide and
conquer paradigm. The algorithm can be described as:
ALGORITHM Intersection_Graph
1. Find a ‘good’ sphere separator S;

2. Let &g = @(S) U ®o(S) and &, =
P£(S) U Po(S);

3. Recursively construct the intersection
graphs Go for @ and G, for ®1;

4. Remove all parallel edges in G U G2 to
obtain the intersection graph G of ®;



It had been proved in [29] that the intersection
graph of a k-ply neighborhood system has at most
O(kn) edges; therefore the above algorithm takes time
O(knlogn). We can speed this up by eliminating the
generation of parallel edges: we generate all edges in
&, but only those edges in &, that do not have both
endpoints in S. We keep track of which separators each
vertex is contained in using an O(logn)-bit bit-vector;
at the bottom level of the recursion, an edge is gener-
ated only if the bitwise and of the vectors for its two
endpoints is zero. Thus we can show

Theorem 5.6 The intersection graph of a k-ply neigh-
borhood system ® in IR® can be computed in O(kn +
nlogn) time.

6 Open Questions

One interesting problem remains open is whether we
can find in O(n) time a point with the smallest ply when
given a set of great belts on U4. An affirmative answer
will enable us to find the optimal sphere separator of
a k-ply neighborhood system with respect to a given
map. Is that an efficient appromixation algorithm for
this problem?
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