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Abstract—Memory bandwidth is a major limiting factor in
the scalability of parallel algorithms. In this paper, we introduce
hierarchical diagonal blocking, a sparse matrix representation
which we believe captures most of optimization techniques in a
common representation. It can take advantage of symmetry while
still being easy to parallelize. It takes advantage of, or actually
requires, reordering. It also allows for simple compression of
column indices. As applications, we show how to use this high-
performance SpMV kernel, together with precision reduction
techniques, in a combinatorial multigrid solver to lower the band-
width consumption without sacrificing the final solution’s quality.
We provide extensive empirical evaluation of the effectiveness of
the approach on a variety of benchmark matrices, demonstrating
substantial speedups on all matrices considered.

I. INTRODUCTION

Specialized multigrid solvers have been developed to solve
large classes of symmetric positive definite matrices [14, 46].
In many cases these solvers run in nearly linear time, and they
are being applied to very large systems. Multigrid solvers are
quite often used as preconditioners in preconditioned iterative
methods that enhance their performance as stand-alone solvers.
The dominant work performed by these algorithms is sparse
matrix vector multiply (SpMV) where the SpMV is applied
on a sequence of matrices of different sizes and structure. The
dominant cost is typically on the larger matrices. As noted by
many, the performance of SpMV on large matrices is almost
always limited by memory bandwidth. This is even more so
on modern multicore hardware where the aggregate memory
bandwidth when all the cores are busy can be particularly
limiting [48]. We show how to achieve significant speed-ups
on SpMV, and we study the impact on multigrid iterations. Our
test vehicle is the Combinatorial Multigrid Solver, a variant of
multigrid which provides strong convergence guarantees for
symmetric diagonally dominate linear systems, based on recent
theoretical progress [28, 42, 29, 31, 32].

Many approaches have been suggested to reduce the memory
bandwidth requirements in SpMV, based on row/column
reordering [40, 39], register blocking [43], cache blocking [26,
48], symmetry [41], using single or mixed precision [16], and
compressing row or column indices [47], and reorganizing
ordering across multiple iterations in a solver [37], among
others. Some of these approaches are hard to parallelize
and other make it easier. For example the standard approach
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for representing symmetric matrices with the sparse skyline
format does not parallelize well and parallelizing while taking
advantage of symmetry is complicated.

In this paper we suggest an approach we refer to as hier-
archical diagonal blocking (HDB) which we believe captures
most of optimization techniques in a common representation.
It can take advantage of symmetry while still being easy
to parallelize. It takes advantage of, or actually requires,
reordering. It also allows for simple compression of column
indices. In conjunction with reducing the precision of matrix
values from double to single this can half the overall bandwidth
requirements. It is particularly well suited for the sort of
problems that appear in multigrid solvers—symmetric matrices
for which the corresponding graphs have reasonably small
graph separators, and for which single precision arithmetic
is sufficient. Our approach does not use register blocking,
although this could be added.

We prove various theoretical bounds on the approach for
matrices for which the adjacency structure has edge separators
of size O(nα),α < 1. It has been shown that the graph structure
of wide variety of sparse matrices have good separators [8]. For
caching we consider the cache-oblivious model [19]. In this
model algorithms are analyzed assuming a two level memory
hierarchy with an unbounded main memory and a cache of size
M and line-size B. However as long as the algorithm does
not take advantage of any cache parameters, the bounds are
simultaneously valid across all cache levels in a hierarchical
cache. For an n × n matrix with m nonzeros we bound the
number of misses in the the cache oblivious model to m/B +
O(1 + n/(Bw) + n/Mα) where w is the number of bits in a
word.

We also study the approach experimentally. We look both
at times of SpMV and also as used in the context of a
combinatorial multigrid solver. We show that by reducing
bandwidth we not only significantly speed up, but are able
to scale much better on multiple cores where the bandwidth
become more limiting. On an 8-core Nehalem machine, we are
able to achieve 12Gflops, which is better than previous reported
numbers we know about on a fully sparse representation (one
in which no register blocking is used).

Approaches to reducing main-memory bandwidth. Many
approaches have been suggested for reducing the memory
bandwidth of SpMV. One recent approach is to reorganize a



sequence of SpMV operations on the same matrix structure
across iterations [37] so that the same part of the vector can be
reused. Although this works well when using the same matrix
over multiple iterations, it does not directly help in algorithms
such as multigrid, where only a single iteration on a matrix
is applied before moving to another matrix of quite different
form. Other approaches are based on register blocking [43],
which represents the matrix as a set of dense blocks. This can
reduce the index information needed, but for very sparse or
unstructured matrices can cause significant fill due to inserting
zero entries to fill the dense blocks.

Another method is to reorder the rows and columns of
the matrix to help reduce the cache misses on the input and
output vector x and y by bringing references to these vectors
closer to each other in time [39]. Heuristically many reordering
approaches have been used including graph separators such as
Chaco [24] or Metis [27], Cuthill-McKee reordering [20] or the
Dulmage-Mendelsohn permutation [40]. These techniques tend
to work well in practice since most real-world matrices have a
lot of locality. This is especially true with meshes that come
from embeddings in 2 and 3 dimensions. Recent results have
proved various bounds for meshes with good separators [6,
10, 11]. It has been shown that the graph structure of wide
variety of sparse matrices have good separators, including
graphs such as the Google link graph. Such reorderings can be
used in conjunction with cache blocking [26] which blocks the
matrix into sparse rectangular blocks and processes each block
separately so that the same rows and columns are reused.

For symmetric matrices once can store the lower triangular
entries and use them twice. When stored in sparse skyline
format [41] (the compressed sparse row format with only
elements strictly below the diagonal stored) a simple loop of
the following form can then be used:

// loop over rows.
for (i = 0;i < n;i++) {
float sum = diagonal[i]*x[i];
// loop over nonzeros below diagonal in row
for (j=start[i];j<start[i+1];j++) {
sum += x[cols[j]] * vals[j]; // as row
y[cols[j]] += x[i] * vals[j]; // as column

}
y[i] += sum;

}

Fig. 1: Simple sequential code for sparse matrix vector multiply
(SpMV).

Unfortunately this loop does not parallelize well because
of the unstructured addition to an element in the result vector
in the statement y[cols[j]] += x[i] * vals[j];.
Buluç et. al. studied how to parallelize this by recursively
blocking the matrix [15]. This however does not take advantage
of any locality in the matrix.

Another approach to reducing bandwidth is to reduce the
number of bits used by the nonzero entries. Buttari et al. [16]

study how reducing from double precision to single precision
affects results and in particular suggest using mixed precision,
where single precision is used for most of the computation
and double for certain critical parts. Yet another method of
reducing bandwidth requirements is to compress the column or
row numbers. These would normally be represented as integers,
but there are various ways to reduce the size of the indices.
Willcok and Lumsdaine [47] use graph compression techniques
to reduce the size. They show speed ups of up to 33%, although
much more modest numbers of average. William’s et al. point
out that by using cache blocking it is easy to reduce the number
of bits for the column indices since the number of columns in
the block is typically small [48].

Background on Solvers. Absent any special properties of the
input system Ax = b, polynomial acceleration-based methods,
like CG and GMRES, are often the method of choice.

Polynomial acceleration methods are typically based on the
computation of kernels [x0, x1, . . . , xk], where xk is formed by
taking a linear combination of x0, . . . , xk−1 and multiplying by
A. A “communication avoiding” CA-GMRES method described
in [37] demonstrated that significant speed-ups are possible
over plain GMRES. The algorithm exploits the fact that an
entry of xj depends only on a small subset of the entries of x0

and of A, when the graph of A exhibits (as often is the case)
mostly ‘local’ connectivity; this is used to avoid fetching the
whole matrix A for the computation of each xj , thus reducing
the cost of communication.

The speed of the SpMV core of an iterative solver is
obviously an important factor in its performance, but the
crucial factor is its convergence rate, captured by the number of
iterations required for the computation of a satisfactory solution.
The convergence rate is typically poor for matrices whose graph
has large diameter, or more generally low connectivity. The
intuition behind this phenomenon is that information does not
travel fast within the graph via the SpMV operations and even
after a large number of iterations the approximate solution is
a function of only a part of the first iterate, when every entry
of A−1b is obviously a function of every entry of b.

A very common approach to deal with the problem of slow
convergence, is the transformation of the system Ax = b into
a preconditioned system B−1Ax = B−1b, where B is a linear
operator, the preconditioner, which can be thought of as an
approximate version of A which is somehow easier to solve.
Any good preconditioner has to be designed in a way that
addresses the low connectivity of A. In effect, that means that
the new matrix B−1A should be highly connected, rendering
useless the approach of [37], provided of course that a good
preconditioner is indeed available.

Multigrid (MG) solvers, is a widely studied and successful
in practice class of iterative linear system solvers. There are
literally thousands of articles on many different flavors of MG
[14, 46], a fact indicative of its success. Despite the multitude
of MG algorithms, several of them share principles and
structure, attempting to remedy the low-connectivity problem
in the following interesting way. The original matrix A is
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progressively coarsened in order to construct a hierarchy of
progressively smaller matrices {A = A0, A1, . . . , Ad}, along
with restriction and prolongation operators that are used to
map fine-space to coarse-space vectors and vice-versa. The
actual solver moves through the hierarchy of matrices; each
time it enters level i it performs usually one SpMV operation
with Ai, a few vector-vector operations and then a restriction
to the coarser level, or a prolongation to the finer level. So,
if at some point during the course of algorithm the product
Aix is computed, the next time a product Aiy is computed,
the vector y is a very complicated non-local function of x,
and though each Ai inherits the low-connectivity of A, it’s
not possible to exploit it. In this setting one has to be able to
speed-up the atomic SpMV operation.

In most cases, when the matrix A is symmetric, all matrices
in the multigrid hierarchy are symmetric, and the MG solver
is itself a symmetric operator. In such a case its performance
as a stand-alone solver can be enhanced if it is used as a
preconditioner. Going back to preconditioning, it has been
observed that, since the preconditioner is only an approximation
of the input matrix, performance gains are possible without
sacrificing the double-precision accuracy if the preconditioner
is implemented in lower precision [16]. This makes MG a case
where the combined effects of index compression, precision
reduction, and exploiting symmetry in (multicore) SpMV,
can yield significant speed-ups, over the single-processor
double-precision implementation. We demonstrate speed-ups
for Combinatorial Multigrid (CMG), a recently proposed
multigrid method that we discuss in Section IV. We also discuss
some details pertinent to its parallel implementation, along with
some applications.

II. PRELIMINARIES

Separators. Informally, a graph has nα,α < 1 edge separators
if it is possible to find a cut that partitions the graph into
two almost equal sized parts, such that the number of edges
between the two parts is no more than nα, within a constant. To
properly deal with asymptotics and what it means to be “within
a constant,” separators are typically defined with respect to a
infinite class of graphs. Formally, let S be a class of graphs
that is closed under the subgraph relation (i.e., for G ∈ S,
every subgraph of G is also in S). We say that S satisfies
a f(n)-edge separator theorem if there are constants α < 1
and β > 0 such that every graph G = (V,E) in S with n
vertices can be partitioned into two sets of vertices Va, Vb

such that cut-size(Va, Vb) :
def
= |{(u, v) ∈ E : (u ∈ Va ∧ v ∈

Vb)}| ≤ βf(n), and |Va|, |Vb| ≤ αn [33]. It is well-known that
bounded-degree planar graphs and graphs with bounded genus
satisfy an n1/2 edge separator theorem. It is also known that
certain well-shaped meshes in d dimensions satisfy a n(d−1)/d

edge separator theorem [36]. We note that such meshes allow
for features that vary in size by large factors (e.g. small near a
singularity and large where nothing is happening), but require
a smooth transition from small features to large features.

In this work, we will also refer to vertex separators in
which removing a small set of vertices partitions the remaining

vertices into two disconnected and almost balanced compo-
nents [33]. Separators are often applied recursively to generate
a separator tree. For edge separators, all the vertices are at
the leaves, and for vertex separators, some of the vertices are
internal. In either case, the separator tree can be used to reorder
the vertices based on an in- or post- order traversal of the tree.

Separators have been used for many applications. The
seminal work of Lipton and Tarjan showed how separators
can be used in nested dissection to generate efficient direct
solvers [33]. Another common application is to partition data
structures across parallel machines to minimize communication.
A special case of this is when it is applied to sparse matrices.
It has also been used to compress graphs [7] down to a linear
number of bits. The idea is that if the graph is reordered using
separators, then most of the edges are “short” and can thus be
encoded using fewer bits than other edges. In this paper, we
extend this to show that the hierarchical diagonal block (HDB)
structure we suggest also compresses down to a linear number
of bits.

Cache Oblivious Algorithms. The goal of the cache oblivious
approach for analyzing algorithms is to analyze the cache cost
on a simple single-level cache and then use the results to
imply good performance bounds on a variety of hierarchical
caches [19]. The ideal-cache model is used for analyzing
cache costs. It is a two-level model of computation comprised
of an unbounded memory and a cache of size M . Data are
transferred between the two levels using cache lines of size B;
all computation occurs on data in the cache. The model can
run any standard computation designed for a random access
machine on words of memory, and the cost is measured in
terms of the number of misses incurred by the computation.
This cost is referred to as the cache complexity and denoted
by the notation Q(C;B,M) for a computation C.

An algorithm is cache oblivious in the ideal-cache model if it
does not take into account the size of the M or B (or any other
features of the cache). One can show that if a cache oblivious
algorithm has cache complexity Q(A;B,M) on a machine
with block-size B and cache size M , then on a hierarchical
cache with cache parameters (Mi, Bi), at each level i, the
algorithm will suffer at most Q(A;Mi, Bi) misses at each
level i. Therefore, if Q(A;M,B) is asymptotically optimal for
B and M , it is optimal for all levels of the cache.

Parallel Cache Oblivious Algorithms. The cache oblivious
model was designed for analyzing sequential algorithms, but it
has recently been extended to analyze parallel algorithms [11].
In particular, for nested parallel computations (ones with nested
parallel loops and fork joins), one can analyze the algorithm
using a sequential ordering and then use general results to
bound cache misses on parallel machines with either shared or
private hierarchical caches. In particular, for a shared-memory
parallel machine with private caches (each processor has its
own cache) using a work-stealing scheduler, Qp(n;M,B) <
Q(n;M,B) + O(pMD/B) with probability 1 − δ [3],1 and
for a shared cache using a parallel-depth-first (PDF) scheduler,

1In this paper, δ is an arbitrarily small positive constant.
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Qp(n;M+pBD,B) ≤ Q(n;M,B) [9], where D is the depth
of the computation and p is the number of processors. In a
nested parallel computation, the depth (also known as critical
path, or span) is defined inductively by taking the maximum
over the depth of parallel calls and summing across sequential
calls.

Therefore the overall paradigm is to design nested parallel
algorithms with reasonably low depth and for which the cache
complexity is low under the cache oblivious analysis. The
depth is important since it shows up in the bounds. For
example recursive matrix multiplication, FFT, Barnes-Hut n-
body code, merging, mergesort, quicksort, k-nearest neighbors,
direct solvers using nested dissection, are all highly parallel and
all are reasonably efficient under the cache oblivious model.

In the context of sparse-matrix vector matrix multiply the
following has been shown for the Compressed Sparse Row
(CSR) SpMV algorithm.

Theorem 1. [10] Let M be a class of matrices for which the
adjacency graphs satisfy an nα-edge separator theorem with
α < 1. Any n× n matrix A ∈ M with m ≥ n non-zeros can
be reordered so the CSR SpMV algorithms has O(log n) depth
and O('m/B + n/Mα() sequential cache complexity.

A similar result has also been shown for vertex separators
although it requires a somewhat different algorithm [11].

III. HIERARCHICAL DIAGONAL BLOCKING SPMV
In this section we describe the hierarchical diagonal block

(HDB) representation for sparse square matrices and a SpMV
routine for the representation. The representation partitions
the matrix into a tree of matrices (see Figure 2). Each leaf
represents a row/column and all edges (non-zero elements
of the matrix) are stored in nodes of the tree. In particular
each edge is stored at the least common ancestor of its two
endpoints. We refer to the size of a tree as the number of
leaves (rows/columns) below it. We could use the separator
tree directly as the HDB tree, although this creates many
levels which do not help either theoretically or in practice.
Instead we coalesce the nodes of the separator tree so that sizes
square at each level: 2, 4, 16, 256, 216. Although we maintain
the separator ordering among the children of a node. This is
important for the cache analysis.

We can represent the submatrix at each node in various ways.
If the matrix is symmetric then we can keep just the lower
triangle (note the diagonal elements of the matrix are always
stored at the leaves) and store it in Compressed Sparse Row. We
can use skyline algorithm given in Figure 1 since there are no
diagonals. Note that the matrix might have many empty rows
so it is important to only store nonempty rows. This can easily
be done using an additional index vector of non-empty rows
as is often done in cache-blocked algorithms [48]. Also note
that using the skyline algorithm prevents parallelism within
the matrix. In both theory (see below) and in practice (see
Section V) this can be solved by using the skyline algorithm
for lower in the tree and the compressed sparse row algorithm
with duplicates stored higher in the tree.

Algorithm SparseMxV(x,y,T )
A = T.M
(b, t) = T.range
if |T | < k) then
y[b, t] = Ax[b, t]

else
for all t ∈ T .children (in parallel) do

SparseMxV(x,y,t)
end for
y[b, t] = y[b, t] +Ax[b, t]

end if
Fig. 3: The diagonal sparse block for Sparse-Matrix Vector
Multiply

For a diagonal block of size n × n all column identifiers
used in the CSR representation or integers to represent the
non-empty rows can be stored in log n bits. For separable
matrices the number of nonzeros is the submatrix are also
bounded linearly in n. Therefore all the start locations in the
CSR representation can also be represented in log n+ k bits.

The SpMV routine on the HDB representation then works
as shown in Figure 3. We assume the input output vectors x
and y are ordered in the same order as the left to right ordering
of the leafs. Each call to the algorithm recursively calls each
child which will multiply all entries that are within that subtree.
The pair (b, t) represents the range of x and y that the node is
responsible for. Since the row sets are disjoint for each subtree
these can all be done in parallel with no interaction. After the
children return the algorithm adds in the contribution from
the entries in the node itself (the matrix A). As mentioned
in the previous paragraph, this can be done either using the
skyline or CSR algorithm although it is important to only keep
nonempty rows. At the base case of the recursion we can
just do a standard sparse vector matrix multiply. If the k = 1
then this is simply adding in the contribution of the diagonal
element. In practice we stop earlier.

We now to bound space, cache complexity, and depth for
the HDB SpMV. In the analysis we keep track of the constant
for the highest order term so we need to be specific what we
mean. We assume that each non-zero value takes one word of
memory. Therefore B nonzeros fit in a cache line (this is just
the value and not any indices). We assume a word has w bits
in it.

Theorem 2. Let M be a class of matrices for which the
adjacency graphs satisfy an nα-edge separator theorem, α < 1,
and A ∈ M be an n× n matrix with m > n nonzero entries,
or m > n lower diagonal nonzero entries for a symmetric
matrix. If A is stored in the HDB representation then:

1) A uses m+O(n/w) bits.
2) Algorithm SparseMxV(x, y,A) runs with m/B +O(1 +

n/(Bw) + n/Mα) cache complexity.
3) Algorithm SparseMxV(x, y,A) runs in O(logk n) depth

for some constant k.
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Fig. 2: Hierarchical diagonal blocking: decomposing a matrix into a tree of submatrices.

Proof: (Outline) For the HDB representation we assume
that all nodes of size n < log1/α are stored in symmetric form
(only lower triangular elements if symmetric) and all other
nodes are stored in asymmetric form (including two copies
even if symmetric). The idea is that the number of entries in the
larger matrices is small enough that we can store them twice or
use a pointer to the second copy without significantly affecting
space or cache complexity. Based on this the third item is easy
to show since the depth is dominated by the matrices of size
n < log1/α since they have to run sequentially.

We now consider space. Note that we have to consider all
space beyond the values including any pointers within the
tree. Here we just outline the proof which will be included
in the full paper. We use the fact that a separable graph has
degree bounded by a constant (the constant can depend on
the separator parameters α and β, but not on the size n) [7].
We show that each level i needs a geometrically decreasing
number of bits going up the tree, and a linear number at the
leafs. Consider a tree of constant size k.

Finally we consider the cache complexity. The argument is
similar to the argument for the CSR format [10]. We can assume
all non-zero values are stored in post-order with respect to the
tree traversal. Therefore the values are scanned in order and
each block only loaded once and hence will cause m/B misses.
Recall that we are analyzing the sequential cache complexity.
Similarly all other data other than the input and output vectors
x and y can be scanned in order with an appropriate layout.
This will cause O(n/(Bw)) misses. This leaves us to consider
the number of misses from accessing x and y. For the sake of
analysis we can partition the leaves into blocks that fit into the
cache, each such block is executed in order by the algorithm.
We therefore only have to consider edges that go between
blocks. By the same argument as in [10] the number of such
edges is bounded by O(n/Mα) each potentially causing a
miss.

IV. COMBINATORIAL MULTIGRID AND APPLICATIONS

The purpose of this Section is to discuss Combinatorial
Multigrid, the variant of Multigrid we used in our experiments.
A thorough discussion of Multigrid algorithms is out of scope.

There are many excellent survey papers and monographs on
various aspects of the topic, and among them [14, 46].

Multigrid was originally conceived as a method to solve
linear systems that are generated by the discretization of the
Laplace (Poisson) equation over relatively nice domains. The
underlying geometry of the domain leads to a hierarchy of grids
A = A0, . . . , Ad that look similar at different levels of detail;
the picture that the word multigrid often invokes to mind is that
of a tower of 2D grids, with sizes 2d−i×2d−i for i = 0, . . . , d.
Its provably asymptotically optimal behavior for certain classes
of problems soon lead to an effort -known as Algebraic
Multigrid (AMG)- to generalize its principles to arbitrary
matrices. In contrast to classical Geometric Multigrid (GMG)
where the hierarchy of grids is generated by the discretization
process, AMG constructs the hierarchy of grids/matrices based
only on the algebraic information contained in the matrix.
AMG has been proven successful in solving more problems
than GMG, though some times at the expense of robustness, a
by-product of the limited theoretical understanding.

Combinatorial Multigrid (CMG) [29, 30, 31] is a recently
proposed variant of Multigrid which, similarly to AMG, builds
a hierarchy of matrices/graphs. The essential difference from
AMG is that the hierarchy is constructed viewing the matrix
as a graph, and using the discrete geometry of the graph, for
example notions like graph separators and expansions. It is, in a
way, a hybrid of GMG and AMG, or a discrete-geometric MG.
The re-introduction of geometry into the problem allows us to
prove sufficient and necessary conditions for the construction of
a good hierarchy, and claim strong convergence guarantees for
symmetric diagonally dominant (SDD) matrices with negative
off-diagonals, based on recent progress on spectral graph theory
and combinatorial preconditioning (see for example [12], [28]).
The guarantees can be extended to more general classes of
matrices via light-weight transformations to SDD problems
with negative off-diagonals [13, 4]. For example, the general
SDD case can be reduced to the one with only non-positive
off-diagonals via a compact technique known as double cover
[23].
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As most variants of AMG, CMG uses the Galerkin condition
to construct the matrix Ai+1 from Ai. That amounts to the
computation of a restriction operator Ri ∈ Rdim(Ai)×dim(Ai+1),
and the construction of Ai+1 via the equality Ai+1 = RT

i AiR.
CMG constructs the restriction operator Ri by grouping

the variable/nodes of Ai into dim(Ai+1) disjoint clusters and
letting R(i, j) = 1 if node i is in cluster j, and R(i, j) = 0
otherwise. This simple approach is known as aggregate-based
coarsening, and it has recently attracted significant interest due
to its simplicity and advantages for parallel implementations
[22, 38]. Classic AMG constructs more complicated restriction
operators that can be viewed as (partially) overlapping clusters.
In any case, the performance gains we see for CMG are
expected to be similar in most variants of AMG, as the solve
phase is dominated by the SpMV operations.

A. Why CMG on Multicores is useful—Applications
While AMG is a multigrid method designed to deal with

arbitrary sparse matrices, it is probably fair to say that it has
been tested and fine-tuned on systems derived by applications in
engineering [25]. The graphs are regular and irregular meshes,
and the magnitudes of the entries vary greatly, but in some
sense regularly, reflecting the ‘anisotropy’ coefficient functions
in the underlying PDE.

Over the last decade a wave of new applications from
computed vision, machine learning, and data mining became
known. The matrices derived are quite different from those in
classical engineering applications. For example, in Machine
Learning and Data Mining the graph connectivity may reflect
a social network, or user preferences in a movie database [18].
Applications in computer vision produce 2D and 3D ‘affinity’
graphs, whose edges reflect the similarity between neighboring
pixels. Here the graphs are more regular, but the anisotropies
are far more rich in local and global scales, reflecting a wide
range of features in the photographed scene.

In the case of data mining graphs, a principled contraction
of the matrices/graphs in the hierarchy construction phase may
create dense graphs, which are very hard -or even impossible-
objects for AMG, requiring the use of additional ’sparsification’
routines. Such routines, based on recent theoretical progress
[32], are soon to be included in CMG. In this paper we focus
on computer vision problems which don’t suffer from the
sparsification problem. SDD solvers have several applications
to optimization problems in computer vision, used either as
stand-alone solvers [21], or as subroutines -called O(log2 n)
times where n is the matrix dimension- in eigenvector-based
segmentation algorithms [44], or even as subroutines in semi-
definite program solvers [31].

An important new market for linear system solvers emerges
with the advent of solver-based algorithms for image manipula-
tion and analysis, especially in the context of medical imaging.
For example, Optical Coherence Tomography (OCT) scans,
that are widely used in Ophthalmology and quickly expanding
in other domains produce 6-connected 3D lattices with more
than 50 million nodes. The inevitably low-energy scanning,
induces noise artifacts which manifest as very irregular (locally

and globally) graph weights. The great potential of solver-
based approaches to OCT scan analysis has been demonstrated
recently in [45].

The medical imaging market is in many aspects different than
the engineering market. The users, physicians and technicians,
are not expected to have the background to deal with numerical
convergence issues, or choosing parameters for the solver.
Instead, what is needed is a truly high-performance “black-box”
solver, that is fast enough to be usable in a very quick-paced
or even interactive mode. The CMG solver is designed with
these goals in mind.

In addition, the cost of acquiring, storing, and maintaining
computing hardware is an important factor; today’s higher-
end multicore machines seem to be well suited for these
applications.

B. CMG performance
We use CMG as our vehicle to demonstrating how the

SpMV speed-ups extend to multigrid cycles. The purpose
of this brief subsection is to discuss its actual performance.
We report its performance only on one 2D and one 3D
medical image, of sizes 1000x1500 and 100x100x150, which
generated 4-connected and 6-connected lattices of 1.5M nodes.
The CMG performance on them is typical. We note that the
reported convergence rates are preliminary and not optimized.
Improvements may be possible as long as the hierarchy
construction abides by the sufficient and necessary conditions
reported in [30].

In both cases the multigrid iteration is used as a precondi-
tioner in a preconditioned CG iteration. The cost to construct
the hierarchies in both examples is less than 5 seconds on a
dual core P8600. the running time of one multigrid iteration
is roughly 5 times that of one call to SpMV. The norm of
the residual error ||Ax − b|| decreases by a factor between
0.6 and 0.67 per iteration, with an average of 0.62. Merely
10 iterations are needed to reduce the norm of the residual
error below 10−3, and around 40 iterations to go below 10−10.
The graphs in these examples are weighted, with a particularly
bad condition number; using CG without the preconditioning
requires hundreds of iterations to achieve a residual error of
10−3.

C. CMG parallel implementation details
As described above, the heart of CMG is the algorithm for

constructing the hierarchy of graphs/matrices. The algorithm is
very fast -in fact faster than most AMG coarsening schemes-
and easily parallelizable. Its running time is negligible compar-
ing to the actual MG iteration, so we do not further discuss it
in this paper. The reader can find more details in in [31]. The
pseudo-code for the CMG iteration is given in Figure 4.

When ti = 1 the algorithm is known in the MG literature
as the V-cycle, while when ti = 2 it’s known as the W-cycle.
It has been known that the aggregate-based hierarchy MG,
doesn’t exhibit good convergence for the V-cycle, and a solution
proposed in [38] is the substitution of steps 4-8, by a call to a
preconditioned (by MG) Conjugate Gradient algorithm every
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· function xi := CMG(Ai, bi)
1. D := diag(A)
2. ri := bi −Ai(D−1b)
3. bi+1 := Rri
4. z := CMG(Ai+1, bi+1)
5. for i = 1 to ti − 1
6. ri+1 := bi+1 −Ai+1z
7. z := z + CMG(Ai+1, ri+1)
8. endfor
9. x := RT z
10. x = ri −D−1(Aix− b)

Fig. 4: The CMG solve phase

two or three levels. While this is a reasonable approach, the
analysis of a recursive preconditioned CMG iteration is still an
open problem, when with CMG we pursue the implementation
of a solver with convergence guarantees. The theory in [28]
essentially proves that more complicated cycles are expected
to converge fast, without blowing-up the total work performed
by the algorithm. This is validated by our experiments with
CMG, where we pick

ti = max{' nnz(Ai)

nnz(Ai+1)
− 1(, 1}.

This choice for the number of recursive calls, combined with the
fast geometric decrease of the matrix sizes, targets a geometric
decrease in the total work per level.

In our parallel implementation, we optimized the CMG solve
phase by using different SpMV implementations for different
matrix sizes. When the matrix size is larger than 128K, we use
the blocked version of SpMV, and when it is smaller than that,
we resort to the plain parallel implementation, where the matrix
is stored in full and we compute each row in parallel. The
reason is that the blocked version of SpMV actually becomes
slower than the plain implementation for smaller matrices.

In our experiments we found that a choice of t′i = ti +
1 improves (in some examples) the sequential running time
required for convergence by as much as 5%. However, it re-
distributes work to lower levels of the hierarchy where as noted
above the SpMV speed-ups are smaller. As a result the overall
performance gains for CMG are less significant. The choice of
ti is therefore strongly preferred in the parallel setting. This
may be an indication that other MG cycles that are ‘heavier’
on the top levels may benefit more by the fast parallel SpMV
operations.

D. Single vs Double precision CMG

In the following discussion we ignore round-off errors. The
CMG solve phase is the implicit inverse of a symmetric positive
operator B. The condition number κ(A,B) can therefore be
defined, and it is well understood that it characterizes the rate
of convergence of the preconditioned CG iteration [5].

Recall that the CMG core works with the assumption that the
matrix is SDD. We form Â from A by writing A as A = D+L,

where L has zero (in double-precision) row sums and D is
a diagonal matrix with non-negative entries. We form D̃ by
casting the positive entries of D into single precision. We form
L̃ by casting the off-diagonal entries of L into single-precision,
and ensuring that L̃ has zero (in single precision) row sums.
Finally, we let L̃ = D̃+ L̃. This construction guarantees that Ã
is numerically diagonally dominant, and thus positive definite.

Substituting a double-precision hierarchy A0, . . . , Ad by
its single-precision counterpart Ã0, . . . , Ãd in effect changes
the symmetric operator B to a new operator B̂, which is also
symmetric. By an inductive (on the number of levels) argument
it can be shown that

κ(B, B̃) ≤ max
i

κ(Ai, Ãi).

Using the Splitting Lemma for condition numbers [12], it is
easy to show that

κ(A, Ã) ≤
(
max

i
{Di,i

D̃i,i

,
D̃i,i

Di,i
,max

j $=i
{Li,j

L̃i,j

,
L̃i,j

Li,j
}}
)2

.

Under reasonable assumptions for the range of numbers used
in A, we get κ(B, B̃) < 1 + 10−07. Using the transitivity of
condition numbers, we get

κ(A, B̃) ≤ κ(A,B)κ(B, B̃) ≤ κ(A,B)(1 + 10−7).

It is known that the condition number of a pair (A,B) is the
ratio of the largest to the smallest generalized eigenvalue of
(A,B). The above inequality can in fact be generalized to show
that each generalized eigenvalue of the pair (A,B) us within a
(1 + 10−7) factor of the corresponding generalized eigenvalue
of (A, B̃). Thus, the preconditioned CG is expected to have an
almost identical convergence independent to whether B or B̃
is the preconditioner. Indeed, in all our experiments, the two
preconditioned CG iterations are virtually indistinguishable
with respect to their convergence rates.

V. IMPLEMENTATION AND EVALUATION

This section describes an implementation of a hierarchical
diagonal blocking SpMV routine and a study of its performance
compared to other related variants. The arguments in previous
sections indicate that we can use single-precision numbers
in the inner-loop (preconditioner) of a CMG solver while
still producing the final solution with the same accuracy as
using double-precision numbers throughout. This motivates
an implementation of a high-performance SpMV routine for
single-precision numbers, a subroutine which we use to speedup
our CMG solver.

A. Implementation of SpMV
We implemented an SpMV routine for single-precision

symmetric matrices using the descriptions from Section III
with the following simplifications: Whereas the algorithmic
description stops the recursion when it reaches singleton
elements, the actual implementation stops it after two levels.
Furthermore, the diagonal blocks in the first level have size
approximately 32K. In this implementation, therefore, a matrix
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Machine Model Speed Layout
(Ghz) (#chips×#cores)

Intel Nehalem X5550 2.66 2× 4
Intel Harpertown E5440 2.83 2× 4
AMD Shanghai 2384 2.70 2× 4

TABLE I: Characteristics of the architectures used in our study.

is represented as on-diagonal entries, diagonal-block entries,
and off-block entries (in a manner similar Figure 2 with only
2 inner-node levels and a level of leaf nodes). This simplified
representation is well-suited for implementation and is shown
to deliver good performance in practice.

The two main ideas from previous sections are precision
reduction and diagonal blocking. To understand the benefits of
these ideas individually, we perform experiments on the fol-
lowing variants: the sequential program using double-precision
numbers “seq. (double)” is our baseline implementation (more
details below). The simple parallel program for double-
precision numbers “simple par. (double)” computes the rows in
parallel. There is a corresponding version for single-precision
numbers, denoted by “simple par. (single)” in the figures. We
have two variants of the hierarchical diagonal blocking routines,
one for double-precision numbers “blocked par. (double)” and
one for single-precision numbers “blocked par. (single)”. The
names inside quotation marks are abbreviated names used in
all the figures.

The baseline implementation is a simple sequential program
similar to what is shown in Figure 1. Note that although the
code is really simple, its performance matches, within 1%,
highly optimized kernels for SpMV, such as Intel Math Kernel
Library [2]. We decided to work with our own implementation
because of flexibility in changing and instrumenting the code
(e.g., for collecting statistics).

All versions of our parallel programs were written in Cilk++,
a language similar to C++ with keywords that allow users to
specify what should be run in parallel [1]. These programs
were then compiled with Intel Cilk++ build 8503 using the
optimization flag -O2. To avoid the overhead in Cilk++’s
runtime system, we compiled the baseline sequential programs
with GNU g++ version 4.4.1 using the optimization flag -O2.2

B. Experimental Setup

Testbed. We are interested in understanding the performance
characteristics of SpMV and CMG solvers on 3 recent machine
architectures: the Nehalem-based Xeon, the Intel Harpertown,
and the AMD Opteron Shanghai. A brief summary of our test
machines is presented in Table I.

Among these architectures, the Intel Nehalem is the current
flagship, which shows significant improvements in bandwidth
over prior architectures. For this reason, this work focuses on
our performance on the Nehalem machine; we include results
for other architectures for comparisons as our techniques benefit
other architectures as well.

2We have also experimented with the Intel compiler and found similar
results.

Matrix #rows/cols #non-zero

2d-A 999,999 4,995,995
3d-A 999,999 6,939,993
af shell10 1,508,065 52,672,325
audikw 1 943,695 77,651,847
bone010 986,703 71,666,325
ecology2 999,999 4,995,991
nd24k 72,000 28,715,634
nlpkkt120 3,542,400 96,845,792
pwtk 217,918 11,634,424

TABLE II: Summary of matrices used in the experiments.

Matrix Speedup Speedup
simple par. (double) blocked par. (single)

2d-A 3.9x 6.1x
3d-A 3.7x 6.7x
af shell10 4.3x 10.7x
audikw 1 4.0x 10.8x
bone010 3.7x 9.6x
ecology2 3.4x 5.4x
nd24k 3.9x 9.7x
nlpkkt120 3.8x 7.8x
pwtk 3.7x 9.4x

TABLE III: Speedup numbers of parallel SpMV on an 8-core
Nehalem machine as compared to the sequential baseline code.

Datasets. Our study involves a diverse collection of large
sparse matrices, gathered from the University of Florida Matrix
Collection [17] and a collection of mesh matrices generated
from vision-inspired applications. We present a summary of
these matrices in Table II.

Since the CMG solver works with the assumption that the
matrix is SDD, we made negative all off-diagonal entries of
the matrices, keeping their magnitude, and we adjusted the
diagonals to get zero row-sums. The purpose of this was to
test the performance of CMG on various sparse patterns.

C. Performance of SpMV

The first set of experiments concerns the performance of
SpMV, which constitutes a large fraction of the work spent
in solving a linear system as well as other high-performance
computing applications. In these experiments, we are especially
interested in understanding how the ideas outlined in previous
sections perform on a variety of sparse matrices.
Speedup. Figure 5 and Table III show the performance of
various SpMV routines (in GFlops) on the matrices in our
collection. Several things are clear from this figure. First, on
all these matrices, a simple parallel algorithm speeds up SpMV
by 3.4x–4.5x. As will be apparent from the study of memory
bandwidth below, we cannot improve the performance much
further without any data reduction.

Second, but more importantly, both diagonal blocking and
precision reduction can help enhance the speed of SpMV, but
neither idea alone yields as much performance improvement as
their combination. As the figure shows, in both cases, the speed
is enhanced as we reduce the data; however, the maximum
benefit is achieved through the combination of both ideas.
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Fig. 6: Performance of a CMG solve iteration (in GFlops) on different linear systems.

By replacing double-precision numbers with single-precision
numbers, we use 4 bytes per matrix entry instead of 8. Further,
by using the (simplified) hierarchical diagonal blocking with
the top-level block size ∼ 32K, we can represent the indicies
of the entries in the diagonal blocks using 16-bit words, a
saving from 32-bit words used to represent matrix indices in a
normal CSR format. Combining both ideas, we not only further
reduce the bandwidth but also improve the cache locality due
to blocking. This is reflected in the additional speedup of more
than a factor of 2 in the speedup of the single-precision blocked
parallel version when compared to the speedup of the simple
double-precision parallel code.

Memory Bandwidth. Presented in Figure 7 are bandwidth
numbers for different SpMV routines on the three machines
we consider. First and most importantly, blocked parallel single
precision scales the best on all three machines. In all cases,
the performance seems to be compute bound for a single core
but reach close to peak bandwidth on 8 cores. On the Nehalem,
it achieves a factor of 6.5 speedup, compared to a factor of
less than 4 for the simple double-precision parallel SpMV.

Second, all the algorithms almost reach the same bandwidth
limit on 8 processors. In fact, we have not been able to get
better bandwidth on the STREAM benchmarks [35, 34]. The
trend in bandwidth is similar between Nehalem and Shanghai,
which both have more memory channels and higher bandwidth
than the Harpertown. On the Harpertown, all the benchmarks
saturate at 4 cores due to the limited bandwidth.

D. Performance of CMG

The previous section shows substantial improvements in
SpMV performance and the results from Section IV-D indicates
that we can afford to reduce the precision from double to single
in the preconditioner without harming the accuracy of the
final solution. Thus, we should benefit from using our single-
precision SpMV implementation in a combinatorial multigrid
solver. We quantitatively investigate this in the following.

Figure 6 shows the performance of one call to the precon-
dition solve of two CMG solvers. The first CMG solver is a
sequential program which uses the baseline implementation of
SpMV and double-precision numbers throughout. The other
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solver is a parallel program that uses the SpMV routine and
single-precision as described in previous sections; vector-vector
operations in the CMG programs are also parallelized in a
straightforward manner.

From the figure, several things are clear. First, the speedup—
the ratio between the performance of the sequential program
and the parallel one—varies with the linear system being solved;
however, on all datasets we consider here, the speedup is more
than 2x, with the best case reaching beyond 4x. Second, the
speedup of the CMG solver seems to be proportional to the
speedup of SpMV, but not as big. This finding is consistent
with the fact that the largest fraction of the work is spent in
SpMV, while part of the work is spent on operations with lower
parallelization potential, for example vector-vector operators
and SpMV operations with smaller matrices.

VI. CONCLUSIONS

We have demonstrated substantial speedups with meth-
ods that do not require compression and decompression
code/hardware. It would be interesting to try more sophisticated
compression methods such as difference encoding on either the
matrix entries and/or the indices. At the present time memory
bandwidth seems to be substantially more precious than chip

real estate. Thus, special purpose hardware for compression
and decompression may make a big win in speed at relatively
modest cost.
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