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Abstract. We consider the following generalization of
the familiar ‘15-puzzle’ which arises from issues in memory
management in distributed systems: Let G be o graph
with n vertices with k < n pebbles numbered 1,...,k
ou distinct vertices. A move consisis of translerring
a pebble to an adjacent unoccupied vertex. Is
onc arrangement of the pebbles reachable from
another?. We present o P-time decision algorithm, and
prove watching O(n) upper and lower bounds on the
number of moves required. These results extend those of
Wilson (1974), who considered G biconnected and k=n-1,
with no analysis of number of moves.

‘We also consider the question of permutation group
diameter. Driscoll and Furst (1983) obtained a polyno-
mial upper bound on the diameter of groups generated
by bounded length cycles. We have the following subex-
ponential bound for certain unbounded cycles: G
(on n letters) is generated by cycles, one of which
has prime length p < 21/3, and G is primitive, tlien
C = A, or S, and hos diameler < 26vPHn8,

1. Introduction

The management of memory in totally distributed
computing systems is an important issue in hardware
and software design. On an existing hardware network
of devices, there is the problem of how to coordinate
the transfer of one or more indivisible packets of data
from device to deviee without ever exceeding the memory
capacity of a device. Depending on the severity of the
memory capacily, a considerable number of intermediate
translers may be necessary to clear a “path” for the
movement of a data packet along a network. A combination
of almost filled devices and a network configuration with
few paths can, in fact, make impossible the transfer of
the data packels intact.

Suppose we consider a simplified version of the above
problera, where each device has unit capacity and cach
packet occupics one unit of memory. Then at any moment
in time, any given device is ¢ither empty or is totally filled.
Suppose also that at any lime cach data packet resides in
some device. It is also assumed that only one packet may
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be moved at a time, from its current device to any emply
imumediately adjacent device. Under thesc assumptions,

_ it is interesting to know whether il is possible to start

from one given distribution of the packets in the network,
and end with another given rearrangement, and to know

. how many moves are required when the rearrangement is

possible.

This version of -the network problem immediately
translates into the lollowing movers’ problem on graphs:

Let G he a graph with n vertices with k <
n pebbles numbered 1,...,k on distinct vertices.
A move consists of transferring a pebble to an
adjacent unoccupied vertex. The problem is to
decide whether one arrangement of the pebbles is
reachable from another, and to find the shortest

. aequence of moves Lo find the rearrangement when

it is possible.

It is scen that this latter problem is a generalization
of Sam Loyd’s fminous “I15-puzzle”. In this puzzle, 15
sumbered unil squares are free Lo movz in a x4 arca with
onc unit square ‘biank. The problem is to move from one
arrangentent of Lthe squares to another. One can casily
show Lhat this puzzle is equivalent o the graph puzzle on

the square grid in Figure 1, with 15 numbered pebbles on
the vertices and one blank vertex.

Figure l.._ 15-Puzzle Graph

In the case that G is biconnected and k = n ~
1, Wilson (1974) gave an efficient decision procedure,
[owever, he did not consider the number of nioves required
for solution; a naive implemenation of his proof yields
solutions requiring exponentially many moves. We provide
a simplified proof of the decision procedure, and in this
way, an O(n*) upper bound is obtained for the number of
moves required in the Wilson case.

Then we gencralize the decision procedure to all




graphs and any number of pebbles, and we show that again
at most O(n®) moves are needed and can be cfficiently
planned. VFinally, we find an infinite, family of graph
puzzles for which it is proved that O(n®) moves are
necded for solutions. Thus the upper and lower bounds
match to within a constant factor. )

~ Atopic of related interest is the subject of permutation
groups and their diamecter with respect to a sct of
generators. Briefly, the diameter of a permutation group
G with respect to.a set S of gencrators for G is defined to
be the sinallest positive integer k such that all clements of
@ are expressible as products of the generators of length
at most k. : -

Consideration of the pebble coordination problem
leads naturally o questions about permutation groups.
Consider the graph in Figure 2, with vertex.z blank and
pebbles ay, ..., @i, €1y ey €7y b1, ooy bsy 2nd y on the other
verlices. It is seen that any scquence of moves from this
position will, upon the first rcturn of the blank to z,
nel one of the following permutations on the pebbles:
A = (c1c3...c,yay..030,) or B = (yc,-...c-_gclb{bz...b,) or
C = (b1ba...byyay...a3a;) or A7}, B, C7! or the identity
permutation. llence the set- of rearrangements of the
pebbles (with z blank) is the group of permutations
gencrated by S = {A,B,C,A™',B™',C"'}. Deciding
whether a rearrangement is solvable amounts to testing
membership of the corresponding permutation in the group
generated by S; minimum number of moves is clearly

related to the shortest product of generators yielding the

permutation. ‘_\_ Y bs
: Cr-
L
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Figure 2.

We view the introduction of algebraic methods as
uscful for the solution of ‘movers’ problems. Whereas
genera! geometric movers' problemns are PSPACE-hard
(Reif (1979); Hopcroft et. al. (1984)), it is hoped ‘that
the techniques introduced for the solution of the pebble
coordination problem may be applicable to special cases
of the general geometric problem.

We now bricfly discuss some results in permuta-
tion group membership and diameter questions. Furst,
Toperoft -and Luks [FHL} give a O(n®) analysis of Sims’
IS] ulgorithm for deciding whether a given permutation g
is in G(S), the group generated by S. Later Knuth (K] and
Jercum [J2] gave algorithms with successively better upper
bounds O(n®logn) and O(n®). Thus the analogue of the
graph decision problcni is in P. One also immediately has
a P-time eriterion for deciding solvability of the Rubik’s
Cube and the Hungarian Rings puzzles. The situation
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is not as fortunatc when one tries to find the length
of the shortest generalor sequence for a given permuta-
tion: Jerrum [J1] has recently shown this to be PSPACE-
complote! The difficulty may be related Lo the fact that '
some groups may have superpolynomial diameter. For ex-
ample, the group G- generated by the single permutation
(12)(345)(6789 10)...(...s) where 8 is the sum of the first n
prime numbers, can be shown to have diameter roughly
on the order of 22(V™), This contrasts with the analogous
question for the pebble coordination problem, where no
solution can ever require more than O(n®) moves. Thus
Ending the length of shortest move sequences is in NP (on
the other hand, Goldreich {G} hassecently shown that it is
NP-complete!). Therefore the group diameter question is
in some sense more general, and probably more difficult,
than the corresponding question for pebble motion.

There are nonetheless some interesting recent results
concerning upper bounds on group diameter, for special
generating sets. Driscoll and Furst [DF] have shown that
if all the generators are cycles of bounded length, then
the group has O(n?) diameter where n is the number of
letters that the group acts on. More recently, McKensie
[M] obtained the upper bound O(n*) on diamcter for
groups, each of whose generators moves at most k letters.
This is polynomial if k is bounded.

The foregoing results leave open the question of a
group’s diameter when' the generators are arbitrary (not
of bounded length) cycles. In chapter 3 we informally
discuss certain generalizations of the Ilungarian Rings
puzzle, and find sufficient conditions for the required
number of moves to be polynomial. Examples which do
not meet these suflicient conditions are offered as possible
candidates for groups with supcrpolynbmial diameter.
The rest of chapter 3 consists of a nuinber of new results
in permutation groups, which extend classical theorems
by providing upper bounds on diameter. We obtain the
following theorem as a corollary:

It G (on n lctters) is generaled by cycles, one
of which has prime length p < 2n/3, and G is

primitive, then G = A, or S, and has diamecter lcss
than 26vP+in8, .

This is 2 moderatcly exponential upper bound, but
is nonetheless superpolynomial. It remains of intcrest to
know whether the bound can be significantly improved,
or whether the diameter really can be this large. ’

At the end of the paper we present conjecturcs, open
problems, and suggestions for further research in movers’
problems and permutation group diameter.

2. Coordinatiné; Pebble Motion on Graphs

In this chapter we will solve the pebble coordination
problem given in the introduction:

Let G be a graph with n vertices with k& < n pebbles
numbered 1,...,k on dislinct vertices. A move consists of



transferring a pebble to an adjacent unoccupied vertex.
The problem is to decide whether one arrangement of the
pebbles is reachable from another, and to find the shortest
sequence of moves Lo find the rcarrangement when it is
possible.

2.1. General remarks

~ We make the assumption that the set of occupied
vertices of G is the same in both the initial and final
positions. Then two positions define a permutation on
the pebbles in a natural way, and so we can readily
introduce the méthods of group theory. There is no loss
of generality, as we can show how to cfficiently convert a
puzszle into this form.

We also assume that all graphs are simple, that is,
no two vertices are directly joined by more than one edge,
and no vertex is joined to itsell by an edge. It is clear that
il a graph G is nonsimple, we can remove the “extrancous”
edges to get a simple graph G, and the graph puszzle on
@' is exactly equivalent to that on G, both with respect
to solvability and the number of moves needed to solve
it. Hence there is no loss of generahty in making this
assumplion.

Since the set R(P) of pcrmutal.lons induced on the
pebbles by going from some fixed initial position P to
reachable positions fornis a group under composition, our
task is to analyze the structure of the group R(P).

It turns out to be natural to divide the analysis of
R(P) into two cases: '

1. R(P) is a transitive permutation group, i.e. any pebble
can move to where any other ‘pebble is located,
without changing the set of occupicd vertices.

2. R(P) is an intransitive permutation group.

Case 2 occurs, intuitively, when the graph G contains
an isthmus which is too long, compared to the number of
blanks, to be “crossed” by a pebble. The graph of Figure
3 consists of a simple nonclosed path of edge length m
which conncets subgraphs A and 2. Suppose we wish
to move pebble T from v to w. Since A has no blank
vertices, it is clear that 7" can reach w if and only if B has
m + 2 or more blank verlices. Thercfore, the number of
blanks has a direct effect on the ability of pcbbles to cross
isthmuses. Conversely, the lengths of the isthmuses will
determine whether or not certain pebbles can cross {rom
one component into another. And the more uncrossable

isthimuses there are, the greater the number of transitive

constituents (“orbits”) the pebbles get divided into.

w

TO—®

.{J' | b—ale

Figure 3. The Isthmus
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It turns out that R(P’) is the dircct product of
its actions on the orbits. Thus in a sense the puzzle
decomposes into independent transitive “subpuzzles” on
pebbles in an orbit situated on an appropriate subgraph
of @ (the proof will be in the final version). The ituition
is that we can “move blanks” temporarily to a subpuszle
site, solve the subpuszle, and return the blanks without
disturbing disturbing the.pebbles in the other subpuzzles. -

The solvability of a puzzle therefore reduces to the
analysis of -solvability of its transitive subpuzzles, i.e.
transitive R(P) (case 1).

We now indicate how to define the subpuzzles. (An
eflicient algorithm for actually determining them will be

-given in the final version.) Let R(P) have orbits 0y, ..., O,

such that ¥%..,10;] = k = number of pebbles; Let G; =
the graph consisting of the vertices of G reachable from
the initial position by pebbles in O; (here it isn’t required
that the occupied vertices be an .invariant set), together
with the edges of G both of whose endpoinls are in this
set of vcrtlces

Then we deline the i- I.h subpuzzle to have starting
position consisting of G; with pebbles on it as induced

, by the initial position of the entire puzzle. Similarly we
define Lthe ending position of the i-th subpuzzle. Note that

an obvious necessary condition [or solution of a subpuzzle
is that the set of pebbles in its initial and final positions
be identical (up to a reordering).

Example

The initial position in Figure 4 induces the three
subpuzzle initial positions in Figure §.

. TFigure 5. The subpuzzle starting positions

2.2. Criterion for transitive puzzles

- Having reduced the general problem to the case where
the pebbles move transitively, we now deseribe the solution
for.the transitive case.

First we need a few definitions. Define a polygon to

’ be a graph cousisting of a simple closed path containing

nt least tvo vcrl.lccs (where a simple closed path is a path




- taf 10

from a vertex to itsell which visits no intermediate vertex
more than once). A polygon looks like a “loop” containing
two or more verlices (sce Figure 6). Lot Ty be the other
graph shown in Figure 6. '

Figure 6. A Polygon; graph Ty

Theorem 1

The following is a critc:'rion for solvability for transitive
puzzles. S

la. If G is biconnccted, with k =n —1 pebbles, then use
Wilson’s criterion [W]: Let G be a biconnected graph
on n vertices, other than a polygon or Ty, with one
blank vertex. Il G is not bipartite, then the puzsle is
solvable. If G is bipartite, then the puzzle is solvable
ilf the permutation induced by the jnitial and final
positions is even.

1b. If G is biconnected, not a polygon, and k < n—1,
then the puzzle is solvable.

2. I G is separable (i.e. only l-conn.cctcd), the puzzle is
solvable.

Remarks

Since biparlitisin can be tested in polynomial Lime,
Wilson's criterion is polynomial time.

For G a polygon, only cyclical rearrangements of the
pebbles are possible, so it is easy to check reachability
in this case. For the special graph Tp, we can sinply
precaleulate (by exhaustive search) a table of all pairs of
positions, indicating which pairs are mutually reachable.
“T'able lookup is constant time, hence we have a P-lime
decision algorithm for all biconnected graphs with one
blank. :

1b. and 2. are new results. .

Theorem 2 (stated and proved later) gives an O(n?)
uppe; bound on the number of moves required for solutions
of puzzles, based on an analysis of the proofl below of
Theorem 1. i ) :

2.3. Proof of Theorem 1

2.3.1. Casc 2: Scparable graphs

We start by proving ‘the result for separable graphs,
since this is a new result. - -

A separable graph has one or more cutpoints, and so
is cither a tree, or a tree-like structure containing one or
more biconnected components (see Figure 7).

Figure 7. A l‘rgc;

2.3.1.1. Trees

We first consider the cas
show that the group R(P) is*
k pcbbles by’ showing that
pebbles in any order, py, ...y
order, q1, ... Qk- ‘

The high-level plan is:td-move: the pebbles from
their initial vertices to k sdiate vertices, giving
a position P’ (which is'n “to have the same
vertices occupied as in the _position P). Then we
reverse a scquence of moveswhiléh  takes the pebbles in
their final position to the simitdtazmediate position. The
net result is the desired reorddfitigiol the k pebbles, which
established k-transitivity. -amtdsid, -« -

The strategy is to moye'one,.pebble at a time to
intermediate vertices, which'#i"chosen to be “out-of-the-
way” so that once a pcbblg;veaches ils target, it will
not need to be moved again‘while the other pebbles are
being moved. So, once a pebble: reaches its target, we
can “prunc” the puzzle by resseving the vertex {rom the
graph, along with the pcbble, and proceed to move the
remaining pebbles on the smalles: graph.

Keys to the success of tl»iye’aboveitrategy are that

1. The puzzle was originally transitive (by hypothesis), so
that the first T

pebble can be moved to its intermediale vertex.

2. Intermediate vertices are chosen so that when they are
pruned, the resulting pusslé is still transitive.

In this way, we can guarantee that all pcbblés can be
moved to these intermediale. vertices.

Detailed plan

We first show how cach pebble is moved into place,
then how Lhe places are chosen. :

Showing l-Lransitivily

The decomposition of the puzzle into its transilive
subpuzzles (given in linal version) shows that if a subpuzzle
is a tree, then no -isthmus has edge length > m —2
(m = number of unoccupicd vertices). Furthermore, no
“hranch?, i.c. a path with onc end of valence > 2, internal
vertices all of valence 2, and the other end of valence 1
{the “leal”), has edge length > m — 1. These facts can
be seen intuitively by considering how many blanks are
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uceded to cross isthmuses and to reach leaves of branches; 2.3.1.2. Tree-like structures

the proof is simply a formalization of this intuition. We now indicate how to prove case 2 for separable

- Itisnot hard to sce that these conditions are sufficient graphs which are not trees, but rather are tree-like struc-
Lo ensurc Lhat a pebble can reach. any veriex in the tree, tures containing one or more biconnected components. -
i.c. that the subpuzzle is transitive. We proceed as follows. ‘This is similar to the tree case, with a few changes.
Suppose we wish to move 2 pebble p from vertex vy to We establish k- transitivity by moving pebbles successively
vertex va. Cousider the path through the tree, from vy to . to intermediate vertices. The existence of a biconnected
‘uy; for each of its internal vertices of valence > 2, leave component along the way does not hinder a pebble’s
attached a single cdge and its end vertex (which we call a movement to a target vertex, since by case 1 (proved
“leal™). This subgraph of G will be g:alled.G'. {Sce Figure below) biconnected puzzles are clearly transitive.

8) ’ v . We choose the intermediate vertices, as before, to be
LG leaves of branches having length > 1, or else “multiple
" leaves”. 1lowever, it may happen now, that there is no
branch of length > 1, and no multiple leaves. In this
case, it can be shown that there must be a biconnected-
component H which is attached to the rest of the graph
by ‘only one vertex (sce Figure 9). If we imagine shrinking
H down to a point, we can think of H as a leaf of the
branch to which it is attached. What we will do is to load
up the vertices of H, onc by one, with pebbles, leaving
only the junction blank. Then we will put the pebbles in

We claim that pcan be moved from v; to va, remaining H into the desired order Finall « " . with its
entirely within G'. The proof is informally as fallows. We, ) y we “prune” I, With ¥

move spaces next to vy 80 that p can be moved to the
Jeaf closest to v;. Then relocate the spaces so that p
. cun now move to the next leaf in the direction ol wa.
Continue in this way, “hopping” p from leaf to leaf, until
p finally reaches va. All these steps aTe possible, because
the isthmuses were assumed to have length < number of

Figure 8. Graph G and subgraph G'

pebbles, from the graph.

H is filled with the desired pebbles as follows. If
the pebble to load into IT'is already in H, then there is
nothing to do. Otherwise, move the pebble to a vertex
next to the junction to I, and move 2 pebble already
in [ which doesn’t belong there, to a vertex in II next
to the junction (this can be done, since H is transitive).

-2 . !
spuces L Then swap the two pebbles. In this way, we can Il H
This completes: the demonstration of transitivity. with any desired sct of pebbles.

Selection of Intermediate Verlices Then we can put the pebbles in I into the desired

order, as follows. We can obtain a swap of two pebbles
next to the junction of If, as in Figure 10. If H isnota
polygon, then by the proof of 1a (o be proved below) we

We wish to select vertices which, when pruncd, leave
the remaining puzzle transitive.

Now, it is not hard to sce that if we prune a leaf from can move the pebbles of JI 9.transitively. 2-transitivity
a branch with cdge length > 1, and decreasc the number and a swap gencrates, by conjugation, all swaps, and so
of pebbles by 1, then the above transitivity conditions we can generale any rearrangement of the pebblesiin mu
on the puzzle are preserved, and so the redueed puzzle is II is a polygon, then by moving the pebbles around I, we
still transitive (if the branch had length L, then pruning get a cyélic perinutation which, when conjugated with the
would remove the whole branch, thus potentia“y crcuting swap, givcs us cnough -swaps to gencrate all rco[dc[ing’

a long isthmus or 2 long branch). Heuce, choose as an of the pebbles in H.
intermediate vertex the leafl of any branch of length > 1. o
Alter Giling it with a pebble and pruning, we repeat the
choice on the pruned graph. In the case that all branches
are of length 1, then locate a vertex which is adjacent
to two or more leaves (this is always possible, in this
case). Then it is not hard to sce that onc of these leaves
-can be used as the next target vertex, and still preserve . (N
transitivity when pruncd, We call these “multiple lcaves”
(see Figure 9). )

Figure 10. Swapping two pcbbles

a b Having loaded I, and the pebbles in H put jnto the
intended order, we do the following incomplete pruning of

I+ semove If and its pebbles, except for the junction and
one incident edge. (We leave the edge hanging, to avoid
the possibility of the remaining graph being a polygon.)

Figure 9. a: Biconnected leaf; b: “Multiple leaves”




It is not hard Lo sce that the remaining graph is still
transitive.

Since there is always a branch of length > 1, or a
multiple lcaf, or a “biconnected leal” (as above), eventually
all pebbles can be moved into place. '

This completes the prool of case 2.
2.3.2. Case l1a: Biconnected, 1 blank

It is a well-known fact in graph theory that a
- biconnected graph other than a single edge, can be
viewed as” being “grown”, by starting with a polygon
graph and ‘successively adding zero or more “handles® (a
handle is a simple path with 0 or more internal vertices).
A biconnected .graph which can be grown by adding i
haandles to a polygon, appears pictorially to consist of i+1
simple loops joined together in some ‘way. This number
of loops is called the Betli number of the graph. We will

often denote a biconnected graph with Betti number ¢ by™

the term “I;-graph”. Wilson’s theorem will be proved by
induction on the Betti number of the graph. We skip the
Ti-graphs (the polygons) and begin Lhe mducuon with
the Th-graphs (except Tp).

The main step is to show that the group of possible
induced_permutations always contains the alternating
group A,.-. on the n — 1 pebbles. The final step is to
determine whether the group is A, or Sn-t. The group
will be S,,..; iff it contains an odd permutation, and it is
casy to see Lthat there is an odd permulation iff the graph
has a closed path of add length. As a graph has a closed
path of odd length iff it is not bipartite, we see that the

group is A,..; if the graph is bipartite, and S,_, if the"

graph is not bipartite. Therefore, to check solvability on
a bipartite graph, il is necessary and sullicient that the
“induced permulation be even; on a noubiparlite graph,
the puzzle is always solvable.

To show that the group of induced permutations
contains the alternating group, we show how (o oblain a
3-cycle and how Lo oblain 2-transitivity.

From this, the alternating group is efliciently generated

" - as follows: since A,, is cfliciently generated by the set of

- all 3-cycles, it suffices to show how to eflicicntly gencrate,
given a 3-cycle (123) and 2-transitivity, any 3-cycle (abe).
Using a permulation T taking 1,2 to g, b respectively, the

"conjugate T~}{123)7" is of the form (abd) If d = ¢, we're

.- done. Otherwise, obtain by a similar conjugation a 3-cycle
of the form (bce). If d = ¢, then using A = (abd) and

"B = (bed) we can cancel out d by A% = (dba)(bdc) =
(acb) Squaring the result, we get (abe). If d 75 e, then
conjugate (abd) by (bce) to get (acd). Then using (abd)
and (acd), and cancelling d as before, we get (abc).

The reason for using 2-transitivity instead of 3-
transitivity is that proof of 2-transivity for grapha is casier
and involves fewer exceplional cases than for 3-transitivity.
The price we pay is transflerred to the algebraic domain,
in the form of some extra conjugations.

‘A 3-cycle is oblained roughly as follows. A Ts-graph

fobua

by mioving pebbles around

" of adding a handle to I,

“Assume’ first that
ernal vertices. A =
‘permutations induced
oly, the left or right
‘* .g}eyclo. Ifr >0,
‘4 vaps; we can obtain
ces. 4-transitivity.
letnma (use k=3

looks like that pictured im
r =0, ie. the center arc My
(vay...a;) and B = (b;...

loops. Then ABA~1B~} =
then ABA™'8~! is a prod

a 3-cycle from this, if the,
In this connection, we use
below).
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Let IT be a nonseparab ‘be the result

nodes, then G is k + 1-tra

jraion., (Intnitively,

o the handle, using
la. Moving a pcbble
eady there. To
Betti number.)
‘the following
-later. Its proof
ﬂ(ﬂ’), by induction
polygon, which is
fvity, for bounded

The proof will be given
we move onc pebble after
1-transitivity of H to reachJ
to the handle does not dista
prove 1-transitivily uses ind

We take this opport
quantitative version, whic
involves showing that (-tr
on the Netti number (the
casily seen to be O(n?)); th
k, is atso ({n¥). (Proof in

Lemina 2

For any bounded k, t
by Lemima 1 can be done it

Now, using Lemma 1 it
graphs, where r > 0, which
of these gmphs inspection shows (details in final version)
that all but Ty produce a 3eyshe Hlence Ty is the only
Ty-graph w]uch docs not indisce a 3-cycle. We then show
that all T-graphs, ¢ > 2 give a:3-cycle, because they are
formed by adding handles to ng-grapl\ which can induce
the 3-cycle. The hole in the induction due to Ty will bc
taken care of with no dllﬁculty

Y

4 Qt Cy )
a, ' < "z
‘a, (Y
thure ll A Tz-gnph

2-transitivity will also be shown by induction. It can”
be shown that all Ta-graphs are 2-transitive, by Lemma 1
above. Then we show how adding a handle to a 2-transitive -
graph yields a 2-transitive graph. )

Putting 3-cycle and 2-transitivity together, we will
conclude that all Ti-graphs, 1> = 2, generate at least Lthe
alternating group, except Ty.

2.3.3. Case 1b: Biconnccted, > 1 bl:mk l.

If a biconnected graph is not a polygon, then there is



a vertex v of valence > 2. By hypothesis we have at least
. 2 blanks. Hence by moving one blank to v, and another

blank to a vertex adjacent to v, we can swap two pebbles

which are adjacent to v, as in Figurc 10. 2-transitivity

follows as in the proof of la. Pulting the awap and

2-transitivily Logether, the whole group of permutations
_is generated.

2.4. O(r}’) Upper Bound

-Thcorem 2 - - ‘-_ _
Let G he a graph. Let n = |V(G)}. If labeling g can

be reached from labeling f at all, then this can be done
within O(n®) moves, and such a sequence of moves can be-

efficiently generated.

Sketch of proof (details in final version)
G biconnected

We can show that a 3-cycle can always be obtained in

8.
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2.5. O(n?) lower bound

We now complement the above result with a lower
bound which matches, to within a constant factor.

Theorem

There exists a constant ¢ > 0 and an infinite sequence
of graph puzzles Puz; on increasingly large graphs G; with
n; vertices, such that for each ¢, Puz; requires at leas

_ end moves for solution. :
- Proof
V2 3y i 1 wia
D
2\ 2 bk 2l i Tank

O(n?) moves (cither ABA-1B~! gives a 3-cycle in O(n); '
or we get a product of two swaps; in which case we .

can do 4-transitivity in O(n®) moves to get a 3-cycle),
and that 2-transitivity requires at most O(n?) moves (sce
Lemma 2 above). Then by the algebra given in the proof
of Theorem 1 (case 1a) for obtaining (abc) f[rom (123) and
2-transitivity, we obtain any 3-cycle within O(n®) moves.
Since any element of A, is a product of O(n) 3-cycles,
the total for A, is O(n®). If the group is S, then any
permutation is a product of an odd permutation and an
clement of A,. An odd permutation is gencrated by a
.closed path of odd length in O(n) moves. Hence Sp-also
requires at most O(n®) moves. -

b. G Scparable and transitive

If G is a tree, then the proof of transitivity implies
that at most O(n) moves are nceded to move 2 pebble
anywhere; so the proof of Theorem 1, case 2, implies an
upper bound of O(n?) to move all the k < n pebbles. The
existence of biconnected subgraphs, however, can force
us to an upper bound of O(n?) (sce Figure 12, which is

essentially the same as the graph used in the lower bound

proof below). . L -

Figure 12,

c. G intransitive

The puzzle can be solved by solving the transitive
subpuzzies on subgraphs Gy, ..., Gr. It is not hard to show
that the O{n}) upper bounds on cach ‘subpuzzle combine
to give a O(n?) upper.bound-for the whole puzzle.

Figure 13. Lower bound graph

Let Puz; consist of graph G; shown in Figure 13, with
2i 4+ 1 vertices and 2i pebbles, and starting and ending
positions as shown. We will show that Puz; requires o@?)
moves, as follows. A move sequence that does not waste
moves (by retracing move sequences just made) is seen to
consist of cycles A, B and their inverses, interspersed in
some order (e.g. ABAAAABA™'B). It would be wastelul
to do D twice in succession, since this would cancel
itsell. Hence a.move sequence can be represented by the
form AWV BAD... A" BA'+! where 1; is a nonzero integer
(positive or negative), except iy and g4y may be 0.

Now consider the “entropy function” of position

E = 2;.';-0 (shortest circular distance from pebbles
jtoj+1i)

where circular distance is either clockwise or coun-

terclockwise. Initially, £ = i%; at the end, E == i. Change
in I is ¢ —1d.

It is scen that A does not change E, and & changes

. E by 0 or by 2. Hence to effect the change in E requires

O(i?) occurrences of 1} in the move scquence. But because
oceurrences of A% and I alternate, this implies that A
occurs at least O(4?) times. Since the number of moves to

“perform the cycle A is O(3), we nced al least O(#*) moves

for solution.

This completes the prool of the lower bound.



'3. The Diameter of Permutation Groups .

As mentioned in the introduction, this chapter is con-
cerned with the diameter of permutation groups gencrated
by sets of cyclic permnutations. We begin with some ex-

amples of generator sels which yield groups of polyno-

mial diameter, then speculate on somie conditions on the
generator set which might give groups of superpolynomial
diameter. The main part of the chapter consists of
theorems which give information about the diameter of
a group under various conditions. They imply the result
given in the introduction, which is a moderately exponen-
tial upper bound on the diameter of groups generated by
cycles which satisfy a few conditions. B

3.1. What is not of cxpunchtinl diameter, and what
might be

The Hungarian Rings puzzle consists of two inter-
sccling circular rings in which distingnished marbles cir-
culate. The problem is to oblain a desired rearrangement
of Lthe marbles by a scquence of operations, where an
operation cousists of circulating the marbles in one of
the rings. This problem immediately transiates into the
permutation problem of determining membership in the
group generated by two intersecting cyclic permutations.
By. [HFL], we can decide membership in polynomial Limie;
however, it is of interest to know how many “moves” are
required, i.e. the length of the shortest word which gives
the desired permutation.

In Figure 14 is shown schematically two cyclic per-
raulations which intersect at two points. "This corresponds
to the commercial version of the Hungarian Rings. Note
that this is not like a pebble puzzle on a T%-graph, because
only A and I3 are possible, and not the third loop; the
[lungarian rings is a physical movers’ problem which
imposes this restriction mechanically. This gives reason

“to ckpcct that the number of moves may need to be larger

in some perinutation puszles than in the pebble puzzles.

Kkt Ko
Figure 14. The llungarian Rings

What is the diameter of the group gcncraterd by these

_ two eycles? It is Girst useful to obscrve that, il some arc

koo

C contains at least r internd¥
the other cycle contains at Jo
we can get r + 1-transitivi
is done, roughly speaking,
after another to a;, then ro
not containing arc C is rol:
marble to a;, leaving the
Arc D serves as temporary:
alrcady on arc C, necds to
placed onto C at the right-

and m >= 1.

"ADAT'B~! =
6-transitivity,
Akt m+q Bkl
@k, Bh4 1) Ok+lem-

Suppose that in the §
Then we have efficient 6-tr
P-_—'(a|¢k+l+vu+qak+i)(htak+
we can find a permutation P,
t0 ay, G4l Bk +l+w+q respectl
Then conjugatling P by Py gi
(akar419k4t4m). P2 is 2 p
the inverse of the one in P
other in P. So PPy = (a8
using 3-transitivity, we get
[ >=6and m >=1 impléf
the Hungarian Rings puzzle wifi
two places. b

‘3-cycle. Then,
g group. Hence
romial diambter for
ings intersccting at

¢-of inlersection of the
‘thian 27 By similar
B" to be a product
@dment similar to the
itivity, then we can

What happens il the n
two cycles is some number.
reasoning to the above, we
of k 3-cycles. Then a conju ok
above yields that, if we have 3&%Fan
get a single 3-cycle. How do eificlent 3k-transitivity?
Well, an arc of 3k --1 nod “another arc with one
node would suffice. Or, in.%m that -k is bounded,
then it is known [DF] that the q:khiﬁ:d of k-transitivity
is enough to ensure k-transit] in_O(n*)-long words,
which is polynomial for fixed: ki Mowever-if k is large,
then Lhis bound is exponential. If no acc has cnough nodes
in it, there might be no eflicient way Lo get the desired
degree of transitivity. ' . A

The forcgoing considerations suggest that a good can-
didate for a Hungarian Rings pussle with superpolynomial
diameter is one with lots of crossings and no long arcs
(sce Figure 15). To be more quantitative, suppose that
there are k equally spaced crossings. Then the arcs have
length on the order of n/k. We want this to be less than
3k. So: n/k < 3k, i.e. k' > (/nf3. This suggests that we
should use at least ¢n the order of /1 crossings to create
a likely exponential puzzle. It would be of great interest to
establish an exponential or moderately exponential lower
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We now leave these examples and speculations, and
state some results about the diameter of permutation
groups (proofs in final version):

3.2. Some results about the diameter of permuta-
tion groups :

_“The following are classical theorems in the theory of
permutation groups.

Theorem A

. If the group G on n letiers is k-transitive and k >
.n/3 + 1, then G = Ap or Sp.
Theorem B " o
If G is primitive on n letters, and a subgroup IT
moves only m < n letters and is primitive on them, then
G is n —m + 1-transitive.

We prove the following versions of these theorems,
which give information about the diamecter:

Theorem 1

If group G on n letters is k-transitive in words of
length <= L, the generator sct S is closed under inverses,
and k > n/3 + 1, then G = A, or Sy and Diam(G(S))
< 4n2L.

“Theorem 2

If G is primitive on n letters, and I7 is the primitive
subgroup generated by a cyelic permutation of prime
length p < n, and the generator sct S is closed under

inverses, then G is n —p + 1-transitive using words of
length < 25VP+173(n? + diam(11{S)))-

Theorem 3

If G is primitive on n letters, and I/ is a 2-transitive
subgroup which movesonly 2 <=m < n letters, and the
generating set S is closed under inverses, then G is n—
m + I-transitive using words of length < 29vP+in3(n? +
diam(H(S))). )

We were not able to prove an effective version of
theorem B for arbitrary primitive IT, but did obtain the
special cases contained in-theorems 2 and 3. '

The following is an easy corollarj.

Thegrcm 4

If a primitive group G on n letters is generated by
a set S of cyclic permutations, one of prime length p <
2n/3, then G is A, or Sy, and Diam(G(8)) < 26vF+4 8,

3.3. Proofs of the 'l‘héo_rcnﬁ:;'
In this scction, we motivate the proofls of Theorems
2 and 3, and prove Theorem 4 as a corollary of ‘Theorems

1 and 2. Complete proofs of nll_ihc theorems will appear
in the final version. ) -
First we will need the following preliminary Lemmas.
f.ernma 2a o _ ) -
If @ is primitive on n letters, and H is the primitive
subgroup generated by a cyclic permutation of prime

length p < n, and the generator set S is closed under
inverses, - then there exists a ¢ € G which lakes D
= Domain(ll).to D', such that D and D’ overlap on
exactly m — | letters, and g has wordlength < 2“\"5(1;" +.
diam(H(S))).

Lemma 3a

If G is primitive on n letters, and I is a 2-transitive
subgroup which moves only 2 < m < n letiers, and the
generating sct S is closed under inverses, then there exists
a g € G which takes D == Domain(//) to D', such that
D and D' overlap on exactly m — 1 letters, and ¢ has
wordlength < 29V (n? 4 diam(H(S))).

The purpose of the Lemmas is roughly as follows. By -
making a sct of letters overlap itscif by alt but ane letter,
and repeating this process, it is possible to build a tower
of conjugates of I whose domains look like the diagraiin
in Figure 16. It is then possible to achieve n —m +'1
transitivity by using the lact that the domains intersect,
to move any letter to the riglit end of the hottom row (as
pictured in the figure), then move any letter to the right’
end of the next-to-bottom row wilhout disturbing the
previous clement, and so on to get n —m + 1 transitivity.
The details will be given in the final version, as well as an
analysis of the wordlength needed to do these operations.
This, combined with Lemma 2a, gives Theorem 2, and
with L.emma 3a it gives Theorem 3.

D v-—————’_—-‘
°|~‘_0—\
&U— — Sea———

O == — ==

n-m

"Figure 16. A tower of conjugates

Proofls of the Lemmas

We will motivate the proofs of the Lernmas. Roughly
speaking, we first find a permutation which maps D
to a D; which overlaps.D partially but not totally.
Then a conjugating device is repeated, which increases
the overlap with eaclt ileration, but never reaches total
overlap. Naturally, we must reach a D' where overlap is
all but one letter. Counting arguments (quite diflerent for
the two Leminas) show that the overlap increnses can be
chosen large enough so Lhat at most O(\/I_)) itcrations are
needed Lo reach overlap of all but 1. Since cach iteration,
which involves conjugaﬁng the permutation by a new
permutation of short wordlength, at most doubles the
wordlength of the permutation, the total wordiength can

be calculated to be 0(2‘/—5).

The details and explicit constants will be provided in
the tinal version of the paper.

Proof of Theorem 4

The generator b of the cyelic subgroup H = Iy of



order p is (by hypothesis) in the generator sct of C. So
Diam(Ily) < p. We are not assuming that the generators
are -closed under inverses, but because they are eyclic

of order < n, the inverse of a gencrator is at most the

n-th power of that gencrator. Ilence the wordlength is at
most a factor of n longer than obtained previously, where
we assumed closure under inverses. Therefore, n —m +1-

- transitivity requires wordlength

< 2“\/5“1;‘(112 +p)
< 28VFE26, .

Then, as m < 2n/3, wehaven —m +1 > n/3+1,
so using Theorem 1, we get an additional factor of 4n?,

giving Diam(G) < 26vF+in8, which proves the corollary..

This last theorem provides a partial extension of

[DF}'s upper bound for bounded cycles to unbounded

cycles. It would be desirable to generalize the result to

apply to all cycles, and to find 2 matehing lower bound

on diameter.

" 4. Conclusionand Open Problems

We have obtained some results in pebble coordina-

tion problems and the diameter of permutation groups. -
" Specifically, we derived: -

1. An efficient decision algorithm for the gcneril
pebble coordination problem on graphs.

2. O(»®) matching upper and lower bounds on the
number of moves to solve pebble toordination problems.

3. 28v+3,8 ypper bound on diameter of A, or S,
when gencrated by cycles, one of which has prime length
p < 2n/3.

We sec 1. as being a complete and satisfactory result
a3 it stands. It would be of interest to apply the algebraic
methods used in the pebble movers’ problem to special
cases of the general geometric movers’ problem which may
admit an algebraic approach.

2. could stand a number of reflinements.
a. Find exact constants in the O-terms.

b. Tt would be uscful to at least have an efficient
algorithm which approximates the number of moves
required. For it secms that only a small fraction of
the graph puzzles actually require O(n%) moves. As an
example, it is not hard to show that the “15-puzzle”
generalized to square grids of arbitrary size (with one
blank) requires only O(n"‘/z) moves (where n is the number
of vertices). '

3. is only a first step towards understanding the diameter

of groups generated by arbitrary cycles. A number of
rclated questions are open:

a. Is the upper bound in 3. tight? Is there a
corresponding lower bound of O(29VF) for some instances

of 3. 7 This would settle the following well-known open.

)

problem:’

b. Can a transitive group have larger than polynomial -
diameter for some generator set? Can this be the case for

A, or Sp?

c. Can the upper bound in 3. be generalized to less
restrictive conditions on the generating cycles? Is it even
true that the following conjecture holds?:

d. Is the diameter of a group, relative to any
generating set, always bounded above by O(n\/;)? E.g.
the group generated by S =={(12)(345)...(..[sum of first
n primes])} has diameter O(2Y™), which satisfies the
conjecture.
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